Use merged AABB to calculate grid cell size for PLBVH.

This commit is contained in:
Jackson Lee
2014-02-18 19:59:05 -08:00
parent b7b7356af8
commit 7f0e361fa0
4 changed files with 115 additions and 45 deletions

View File

@@ -55,6 +55,7 @@ class b3GpuParallelLinearBvh
cl_program m_parallelLinearBvhProgram; cl_program m_parallelLinearBvhProgram;
cl_kernel m_findAllNodesMergedAabbKernel;
cl_kernel m_assignMortonCodesAndAabbIndiciesKernel; cl_kernel m_assignMortonCodesAndAabbIndiciesKernel;
cl_kernel m_constructBinaryTreeKernel; cl_kernel m_constructBinaryTreeKernel;
cl_kernel m_determineInternalNodeAabbsKernel; cl_kernel m_determineInternalNodeAabbsKernel;
@@ -78,6 +79,7 @@ class b3GpuParallelLinearBvh
//1 element per leaf node //1 element per leaf node
b3OpenCLArray<int> m_leafNodeParentNodes; b3OpenCLArray<int> m_leafNodeParentNodes;
b3OpenCLArray<b3SortData> m_mortonCodesAndAabbIndicies; //m_key = morton code, m_value == aabb index b3OpenCLArray<b3SortData> m_mortonCodesAndAabbIndicies; //m_key = morton code, m_value == aabb index
b3OpenCLArray<b3SapAabb> m_mergedAabb;
public: public:
b3GpuParallelLinearBvh(cl_context context, cl_device_id device, cl_command_queue queue) : b3GpuParallelLinearBvh(cl_context context, cl_device_id device, cl_command_queue queue) :
@@ -91,7 +93,8 @@ public:
m_internalNodeChildNodes(context, queue), m_internalNodeChildNodes(context, queue),
m_internalNodeParentNodes(context, queue), m_internalNodeParentNodes(context, queue),
m_leafNodeParentNodes(context, queue), m_leafNodeParentNodes(context, queue),
m_mortonCodesAndAabbIndicies(context, queue) m_mortonCodesAndAabbIndicies(context, queue),
m_mergedAabb(context, queue)
{ {
const char CL_PROGRAM_PATH[] = "src/Bullet3OpenCL/BroadphaseCollision/kernels/parallelLinearBvh.cl"; const char CL_PROGRAM_PATH[] = "src/Bullet3OpenCL/BroadphaseCollision/kernels/parallelLinearBvh.cl";
@@ -101,6 +104,8 @@ public:
m_parallelLinearBvhProgram = b3OpenCLUtils::compileCLProgramFromString(context, device, kernelSource, &error, additionalMacros, CL_PROGRAM_PATH); m_parallelLinearBvhProgram = b3OpenCLUtils::compileCLProgramFromString(context, device, kernelSource, &error, additionalMacros, CL_PROGRAM_PATH);
b3Assert(m_parallelLinearBvhProgram); b3Assert(m_parallelLinearBvhProgram);
m_findAllNodesMergedAabbKernel = b3OpenCLUtils::compileCLKernelFromString( context, device, kernelSource, "findAllNodesMergedAabb", &error, m_parallelLinearBvhProgram, additionalMacros );
b3Assert(m_findAllNodesMergedAabbKernel);
m_assignMortonCodesAndAabbIndiciesKernel = b3OpenCLUtils::compileCLKernelFromString( context, device, kernelSource, "assignMortonCodesAndAabbIndicies", &error, m_parallelLinearBvhProgram, additionalMacros ); m_assignMortonCodesAndAabbIndiciesKernel = b3OpenCLUtils::compileCLKernelFromString( context, device, kernelSource, "assignMortonCodesAndAabbIndicies", &error, m_parallelLinearBvhProgram, additionalMacros );
b3Assert(m_assignMortonCodesAndAabbIndiciesKernel); b3Assert(m_assignMortonCodesAndAabbIndiciesKernel);
m_constructBinaryTreeKernel = b3OpenCLUtils::compileCLKernelFromString( context, device, kernelSource, "constructBinaryTree", &error, m_parallelLinearBvhProgram, additionalMacros ); m_constructBinaryTreeKernel = b3OpenCLUtils::compileCLKernelFromString( context, device, kernelSource, "constructBinaryTree", &error, m_parallelLinearBvhProgram, additionalMacros );
@@ -114,6 +119,7 @@ public:
virtual ~b3GpuParallelLinearBvh() virtual ~b3GpuParallelLinearBvh()
{ {
clReleaseKernel(m_findAllNodesMergedAabbKernel);
clReleaseKernel(m_assignMortonCodesAndAabbIndiciesKernel); clReleaseKernel(m_assignMortonCodesAndAabbIndiciesKernel);
clReleaseKernel(m_constructBinaryTreeKernel); clReleaseKernel(m_constructBinaryTreeKernel);
clReleaseKernel(m_determineInternalNodeAabbsKernel); clReleaseKernel(m_determineInternalNodeAabbsKernel);
@@ -125,8 +131,7 @@ public:
// fix: need to handle/test case with 2 nodes // fix: need to handle/test case with 2 nodes
///@param cellsize A virtual grid of size 2^10^3 is used in the process of creating the BVH void build(const b3OpenCLArray<b3SapAabb>& worldSpaceAabbs)
void build(const b3OpenCLArray<b3SapAabb>& worldSpaceAabbs, b3Scalar cellSize)
{ {
B3_PROFILE("b3ParallelLinearBvh::build()"); B3_PROFILE("b3ParallelLinearBvh::build()");
@@ -143,6 +148,7 @@ public:
m_leafNodeParentNodes.resize(numLeaves); m_leafNodeParentNodes.resize(numLeaves);
m_mortonCodesAndAabbIndicies.resize(numLeaves); m_mortonCodesAndAabbIndicies.resize(numLeaves);
m_mergedAabb.resize(numLeaves);
} }
//Determine number of levels in the binary tree( numLevels = ceil( log2(numLeaves) ) ) //Determine number of levels in the binary tree( numLevels = ceil( log2(numLeaves) ) )
@@ -160,7 +166,7 @@ public:
//If the number of nodes is not a power of 2(as in, can be expressed as 2^N where N is an integer), then there is 1 additional level //If the number of nodes is not a power of 2(as in, can be expressed as 2^N where N is an integer), then there is 1 additional level
if( ~(1 << mostSignificantBit) & numLeaves ) numLevels++; if( ~(1 << mostSignificantBit) & numLeaves ) numLevels++;
if(1) printf("numLeaves, numLevels, mostSignificantBit: %d, %d, %d \n", numLeaves, numLevels, mostSignificantBit); if(0) printf("numLeaves, numLevels, mostSignificantBit: %d, %d, %d \n", numLeaves, numLevels, mostSignificantBit);
} }
//Determine number of nodes per level, use prefix sum to get offsets of each level, and send to GPU //Determine number of nodes per level, use prefix sum to get offsets of each level, and send to GPU
@@ -202,7 +208,7 @@ public:
m_firstIndexOffsetPerLevelCpu[i] -= m_numNodesPerLevelCpu[i]; m_firstIndexOffsetPerLevelCpu[i] -= m_numNodesPerLevelCpu[i];
} }
if(1) if(0)
{ {
int numInternalNodes = 0; int numInternalNodes = 0;
for(int i = 0; i < numLevels; ++i) for(int i = 0; i < numLevels; ++i)
@@ -225,20 +231,22 @@ public:
{ {
B3_PROFILE("Find AABB of merged nodes"); B3_PROFILE("Find AABB of merged nodes");
/*b3BufferInfoCL bufferInfo[] = m_mergedAabb.copyFromOpenCLArray(worldSpaceAabbs); //Need to make a copy since the kernel modifies the array
b3BufferInfoCL bufferInfo[] =
{ {
b3BufferInfoCL( worldSpaceAabbs.getBufferCL() ), b3BufferInfoCL( m_mergedAabb.getBufferCL() ) //Resulting AABB is stored in m_mergedAabb[0]
b3BufferInfoCL( m_allNodesMergedAabb.getBufferCL() ),
}; };
b3LauncherCL launcher(m_queue, m_findAllNodesMergedAabb, "m_findAllNodesMergedAabb"); b3LauncherCL launcher(m_queue, m_findAllNodesMergedAabbKernel, "m_findAllNodesMergedAabbKernel");
launcher.setBuffers( bufferInfo, sizeof(bufferInfo)/sizeof(b3BufferInfoCL) ); launcher.setBuffers( bufferInfo, sizeof(bufferInfo)/sizeof(b3BufferInfoCL) );
launcher.setConst(numLeaves); launcher.setConst(numLeaves);
launcher.launch1D(numLeaves); launcher.launch1D(numLeaves);
clFinish(m_queue);*/ clFinish(m_queue);
} }
//Insert the center of the AABBs into a virtual grid, //Insert the center of the AABBs into a virtual grid,
//then convert the discrete grid coordinates into a morton code //then convert the discrete grid coordinates into a morton code
//For each element in m_mortonCodesAndAabbIndicies, set //For each element in m_mortonCodesAndAabbIndicies, set
@@ -250,12 +258,12 @@ public:
b3BufferInfoCL bufferInfo[] = b3BufferInfoCL bufferInfo[] =
{ {
b3BufferInfoCL( worldSpaceAabbs.getBufferCL() ), b3BufferInfoCL( worldSpaceAabbs.getBufferCL() ),
b3BufferInfoCL( m_mergedAabb.getBufferCL() ),
b3BufferInfoCL( m_mortonCodesAndAabbIndicies.getBufferCL() ) b3BufferInfoCL( m_mortonCodesAndAabbIndicies.getBufferCL() )
}; };
b3LauncherCL launcher(m_queue, m_assignMortonCodesAndAabbIndiciesKernel, "m_assignMortonCodesAndAabbIndiciesKernel"); b3LauncherCL launcher(m_queue, m_assignMortonCodesAndAabbIndiciesKernel, "m_assignMortonCodesAndAabbIndiciesKernel");
launcher.setBuffers( bufferInfo, sizeof(bufferInfo)/sizeof(b3BufferInfoCL) ); launcher.setBuffers( bufferInfo, sizeof(bufferInfo)/sizeof(b3BufferInfoCL) );
launcher.setConst(cellSize);
launcher.setConst(numLeaves); launcher.setConst(numLeaves);
launcher.launch1D(numLeaves); launcher.launch1D(numLeaves);
@@ -301,7 +309,7 @@ public:
launcher.launch1D(numInternalNodes); launcher.launch1D(numInternalNodes);
clFinish(m_queue); clFinish(m_queue);
if(1) if(0)
{ {
static b3AlignedObjectArray<b3Int2> internalNodeChildNodes; static b3AlignedObjectArray<b3Int2> internalNodeChildNodes;
m_internalNodeChildNodes.copyToHost(internalNodeChildNodes, false); m_internalNodeChildNodes.copyToHost(internalNodeChildNodes, false);
@@ -335,6 +343,12 @@ public:
launcher.launch1D(numLeaves); launcher.launch1D(numLeaves);
clFinish(m_queue); clFinish(m_queue);
if(0)
{
b3SapAabb mergedAABB = m_mergedAabb.at(0);
printf("mergedAABBMin: %f, %f, %f \n", mergedAABB.m_minVec.x, mergedAABB.m_minVec.y, mergedAABB.m_minVec.z);
printf("mergedAABBMax: %f, %f, %f \n", mergedAABB.m_maxVec.x, mergedAABB.m_maxVec.y, mergedAABB.m_maxVec.z);
}
if(0) if(0)
{ {
static b3AlignedObjectArray<b3SapAabb> rigidAabbs; static b3AlignedObjectArray<b3SapAabb> rigidAabbs;

View File

@@ -56,14 +56,8 @@ public:
virtual void calculateOverlappingPairs(int maxPairs) virtual void calculateOverlappingPairs(int maxPairs)
{ {
//Detect overall min/max
{
//Not implemented
}
//Reconstruct BVH //Reconstruct BVH
const b3Scalar CELL_SIZE(0.1); m_plbvh.build(m_aabbsGpu);
m_plbvh.build(m_aabbsGpu, CELL_SIZE);
// //
m_overlappingPairsGpu.resize(maxPairs); m_overlappingPairsGpu.resize(maxPairs);

View File

@@ -80,8 +80,8 @@ unsigned int getMortonCode(unsigned int x, unsigned int y, unsigned int z)
return interleaveBits(x) << 0 | interleaveBits(y) << 1 | interleaveBits(z) << 2; return interleaveBits(x) << 0 | interleaveBits(y) << 1 | interleaveBits(z) << 2;
} }
/*
__kernel void findAllNodesMergedAabb(__global b3AabbCL* worldSpaceAabbs, __global b3AabbCL* out_mergedAabb, int numAabbs) __kernel void findAllNodesMergedAabb(__global b3AabbCL* out_mergedAabb, int numAabbs)
{ {
int aabbIndex = get_global_id(0); int aabbIndex = get_global_id(0);
if(aabbIndex >= numAabbs) return; if(aabbIndex >= numAabbs) return;
@@ -89,11 +89,11 @@ __kernel void findAllNodesMergedAabb(__global b3AabbCL* worldSpaceAabbs, __globa
//Find the most significant bit(msb) //Find the most significant bit(msb)
int mostSignificantBit = 0; int mostSignificantBit = 0;
{ {
int temp = numLeaves; int temp = numAabbs;
while(temp >>= 1) mostSignificantBit++; //Start counting from 0 (0 and 1 have msb 0, 2 has msb 1) while(temp >>= 1) mostSignificantBit++; //Start counting from 0 (0 and 1 have msb 0, 2 has msb 1)
} }
int numberOfAabbsAboveMsbSplit = numAabbs & ~( ~(0) << mostSignificantBit ); // verify int numberOfAabbsAboveMsbSplit = numAabbs & ~( ~(0) << mostSignificantBit );
int numRemainingAabbs = (1 << mostSignificantBit); int numRemainingAabbs = (1 << mostSignificantBit);
//Merge AABBs above most significant bit so that the number of remaining AABBs is a power of 2 //Merge AABBs above most significant bit so that the number of remaining AABBs is a power of 2
@@ -102,8 +102,8 @@ __kernel void findAllNodesMergedAabb(__global b3AabbCL* worldSpaceAabbs, __globa
{ {
int otherAabbIndex = numRemainingAabbs + aabbIndex; int otherAabbIndex = numRemainingAabbs + aabbIndex;
b3AabbCL aabb = worldSpaceAabbs[aabbIndex]; b3AabbCL aabb = out_mergedAabb[aabbIndex];
b3AabbCL otherAabb = worldSpaceAabbs[otherAabbIndex]; b3AabbCL otherAabb = out_mergedAabb[otherAabbIndex];
b3AabbCL mergedAabb; b3AabbCL mergedAabb;
mergedAabb.m_min = b3Min(aabb.m_min, otherAabb.m_min); mergedAabb.m_min = b3Min(aabb.m_min, otherAabb.m_min);
@@ -121,8 +121,8 @@ __kernel void findAllNodesMergedAabb(__global b3AabbCL* worldSpaceAabbs, __globa
{ {
int otherAabbIndex = aabbIndex + offset; int otherAabbIndex = aabbIndex + offset;
b3AabbCL aabb = worldSpaceAabbs[aabbIndex]; b3AabbCL aabb = out_mergedAabb[aabbIndex];
b3AabbCL otherAabb = worldSpaceAabbs[otherAabbIndex]; b3AabbCL otherAabb = out_mergedAabb[otherAabbIndex];
b3AabbCL mergedAabb; b3AabbCL mergedAabb;
mergedAabb.m_min = b3Min(aabb.m_min, otherAabb.m_min); mergedAabb.m_min = b3Min(aabb.m_min, otherAabb.m_min);
@@ -130,27 +130,29 @@ __kernel void findAllNodesMergedAabb(__global b3AabbCL* worldSpaceAabbs, __globa
out_mergedAabb[aabbIndex] = mergedAabb; out_mergedAabb[aabbIndex] = mergedAabb;
} }
offset = offset / 2; offset /= 2;
barrier(CLK_GLOBAL_MEM_FENCE); barrier(CLK_GLOBAL_MEM_FENCE);
} }
} }
*/
__kernel void assignMortonCodesAndAabbIndicies(__global b3AabbCL* worldSpaceAabbs, __kernel void assignMortonCodesAndAabbIndicies(__global b3AabbCL* worldSpaceAabbs, __global b3AabbCL* mergedAabbOfAllNodes,
__global SortDataCL* out_mortonCodesAndAabbIndices, __global SortDataCL* out_mortonCodesAndAabbIndices, int numAabbs)
b3Scalar cellSize, int numAabbs)
{ {
int leafNodeIndex = get_global_id(0); //Leaf node index == AABB index int leafNodeIndex = get_global_id(0); //Leaf node index == AABB index
if(leafNodeIndex >= numAabbs) return; if(leafNodeIndex >= numAabbs) return;
b3AabbCL aabb = worldSpaceAabbs[leafNodeIndex]; b3AabbCL mergedAabb = mergedAabbOfAllNodes[0];
b3Vector3 gridCenter = (mergedAabb.m_min + mergedAabb.m_max) * 0.5f;
b3Vector3 gridCellSize = (mergedAabb.m_max - mergedAabb.m_min) / (float)1024;
b3Vector3 center = (aabb.m_min + aabb.m_max) * 0.5f; b3AabbCL aabb = worldSpaceAabbs[leafNodeIndex];
b3Vector3 aabbCenter = (aabb.m_min + aabb.m_max) * 0.5f;
b3Vector3 aabbCenterRelativeToGrid = aabbCenter - gridCenter;
//Quantize into integer coordinates //Quantize into integer coordinates
//floor() is needed to prevent the center cell, at (0,0,0) from being twice the size //floor() is needed to prevent the center cell, at (0,0,0) from being twice the size
b3Vector3 gridPosition = center / cellSize; b3Vector3 gridPosition = aabbCenterRelativeToGrid / gridCellSize;
int4 discretePosition; int4 discretePosition;
discretePosition.x = (int)( (gridPosition.x >= 0.0f) ? gridPosition.x : floor(gridPosition.x) ); discretePosition.x = (int)( (gridPosition.x >= 0.0f) ? gridPosition.x : floor(gridPosition.x) );

View File

@@ -75,20 +75,77 @@ static const char* parallelLinearBvhCL= \
"{\n" "{\n"
" return interleaveBits(x) << 0 | interleaveBits(y) << 1 | interleaveBits(z) << 2;\n" " return interleaveBits(x) << 0 | interleaveBits(y) << 1 | interleaveBits(z) << 2;\n"
"}\n" "}\n"
"__kernel void assignMortonCodesAndAabbIndicies(__global b3AabbCL* worldSpaceAabbs, \n" "__kernel void findAllNodesMergedAabb(__global b3AabbCL* out_mergedAabb, int numAabbs)\n"
" __global SortDataCL* out_mortonCodesAndAabbIndices, \n" "{\n"
" b3Scalar cellSize, int numAabbs)\n" " int aabbIndex = get_global_id(0);\n"
" if(aabbIndex >= numAabbs) return;\n"
" \n"
" //Find the most significant bit(msb)\n"
" int mostSignificantBit = 0;\n"
" {\n"
" int temp = numAabbs;\n"
" while(temp >>= 1) mostSignificantBit++; //Start counting from 0 (0 and 1 have msb 0, 2 has msb 1)\n"
" }\n"
" \n"
" int numberOfAabbsAboveMsbSplit = numAabbs & ~( ~(0) << mostSignificantBit );\n"
" int numRemainingAabbs = (1 << mostSignificantBit);\n"
" \n"
" //Merge AABBs above most significant bit so that the number of remaining AABBs is a power of 2\n"
" //For example, if there are 159 AABBs = 128 + 31, then merge indices [0, 30] and 128 + [0, 30]\n"
" if(aabbIndex < numberOfAabbsAboveMsbSplit)\n"
" {\n"
" int otherAabbIndex = numRemainingAabbs + aabbIndex;\n"
" \n"
" b3AabbCL aabb = out_mergedAabb[aabbIndex];\n"
" b3AabbCL otherAabb = out_mergedAabb[otherAabbIndex];\n"
" \n"
" b3AabbCL mergedAabb;\n"
" mergedAabb.m_min = b3Min(aabb.m_min, otherAabb.m_min);\n"
" mergedAabb.m_max = b3Max(aabb.m_max, otherAabb.m_max);\n"
" out_mergedAabb[aabbIndex] = mergedAabb;\n"
" }\n"
" \n"
" barrier(CLK_GLOBAL_MEM_FENCE);\n"
" \n"
" //\n"
" int offset = numRemainingAabbs / 2;\n"
" while(offset >= 1)\n"
" {\n"
" if(aabbIndex < offset)\n"
" {\n"
" int otherAabbIndex = aabbIndex + offset;\n"
" \n"
" b3AabbCL aabb = out_mergedAabb[aabbIndex];\n"
" b3AabbCL otherAabb = out_mergedAabb[otherAabbIndex];\n"
" \n"
" b3AabbCL mergedAabb;\n"
" mergedAabb.m_min = b3Min(aabb.m_min, otherAabb.m_min);\n"
" mergedAabb.m_max = b3Max(aabb.m_max, otherAabb.m_max);\n"
" out_mergedAabb[aabbIndex] = mergedAabb;\n"
" }\n"
" \n"
" offset /= 2;\n"
" \n"
" barrier(CLK_GLOBAL_MEM_FENCE);\n"
" }\n"
"}\n"
"__kernel void assignMortonCodesAndAabbIndicies(__global b3AabbCL* worldSpaceAabbs, __global b3AabbCL* mergedAabbOfAllNodes, \n"
" __global SortDataCL* out_mortonCodesAndAabbIndices, int numAabbs)\n"
"{\n" "{\n"
" int leafNodeIndex = get_global_id(0); //Leaf node index == AABB index\n" " int leafNodeIndex = get_global_id(0); //Leaf node index == AABB index\n"
" if(leafNodeIndex >= numAabbs) return;\n" " if(leafNodeIndex >= numAabbs) return;\n"
" \n" " \n"
" b3AabbCL aabb = worldSpaceAabbs[leafNodeIndex];\n" " b3AabbCL mergedAabb = mergedAabbOfAllNodes[0];\n"
" b3Vector3 gridCenter = (mergedAabb.m_min + mergedAabb.m_max) * 0.5f;\n"
" b3Vector3 gridCellSize = (mergedAabb.m_max - mergedAabb.m_min) / (float)1024;\n"
" \n" " \n"
" b3Vector3 center = (aabb.m_min + aabb.m_max) * 0.5f;\n" " b3AabbCL aabb = worldSpaceAabbs[leafNodeIndex];\n"
" b3Vector3 aabbCenter = (aabb.m_min + aabb.m_max) * 0.5f;\n"
" b3Vector3 aabbCenterRelativeToGrid = aabbCenter - gridCenter;\n"
" \n" " \n"
" //Quantize into integer coordinates\n" " //Quantize into integer coordinates\n"
" //floor() is needed to prevent the center cell, at (0,0,0) from being twice the size\n" " //floor() is needed to prevent the center cell, at (0,0,0) from being twice the size\n"
" b3Vector3 gridPosition = center / cellSize;\n" " b3Vector3 gridPosition = aabbCenterRelativeToGrid / gridCellSize;\n"
" \n" " \n"
" int4 discretePosition;\n" " int4 discretePosition;\n"
" discretePosition.x = (int)( (gridPosition.x >= 0.0f) ? gridPosition.x : floor(gridPosition.x) );\n" " discretePosition.x = (int)( (gridPosition.x >= 0.0f) ? gridPosition.x : floor(gridPosition.x) );\n"
@@ -110,7 +167,7 @@ static const char* parallelLinearBvhCL= \
" out_mortonCodesAndAabbIndices[leafNodeIndex] = mortonCodeIndexPair;\n" " out_mortonCodesAndAabbIndices[leafNodeIndex] = mortonCodeIndexPair;\n"
"}\n" "}\n"
"#define B3_PLVBH_TRAVERSE_MAX_STACK_SIZE 128\n" "#define B3_PLVBH_TRAVERSE_MAX_STACK_SIZE 128\n"
"#define B3_PLBVH_ROOT_NODE_MARKER -1 //Used to indicate that the node has no parent \n" "#define B3_PLBVH_ROOT_NODE_MARKER -1 //Used to indicate that the (root) node has no parent \n"
"#define B3_PLBVH_ROOT_NODE_INDEX 0\n" "#define B3_PLBVH_ROOT_NODE_INDEX 0\n"
"//For elements of internalNodeChildIndices(int2), the negative bit determines whether it is a leaf or internal node.\n" "//For elements of internalNodeChildIndices(int2), the negative bit determines whether it is a leaf or internal node.\n"
"//Positive index == leaf node, while negative index == internal node (remove negative sign to get index).\n" "//Positive index == leaf node, while negative index == internal node (remove negative sign to get index).\n"
@@ -264,13 +321,16 @@ static const char* parallelLinearBvhCL= \
" __global int* out_numPairs, __global int4* out_overlappingPairs, \n" " __global int* out_numPairs, __global int4* out_overlappingPairs, \n"
" int maxPairs, int numQueryAabbs)\n" " int maxPairs, int numQueryAabbs)\n"
"{\n" "{\n"
"#define USE_SPATIALLY_COHERENT_INDICIES //mortonCodesAndAabbIndices[] contains rigid body indices sorted along the z-curve\n"
"#ifdef USE_SPATIALLY_COHERENT_INDICIES\n"
" int queryRigidIndex = get_group_id(0) * get_local_size(0) + get_local_id(0);\n" " int queryRigidIndex = get_group_id(0) * get_local_size(0) + get_local_id(0);\n"
" if(queryRigidIndex >= numQueryAabbs) return;\n" " if(queryRigidIndex >= numQueryAabbs) return;\n"
" \n" " \n"
" queryRigidIndex = mortonCodesAndAabbIndices[queryRigidIndex].m_value;\n" " queryRigidIndex = mortonCodesAndAabbIndices[queryRigidIndex].m_value;\n"
" //int queryRigidIndex = get_global_id(0);\n" "#else\n"
" //if(queryRigidIndex >= numQueryAabbs) return;\n" " int queryRigidIndex = get_global_id(0);\n"
" \n" " if(queryRigidIndex >= numQueryAabbs) return;\n"
"#endif\n"
" b3AabbCL queryAabb = rigidAabbs[queryRigidIndex];\n" " b3AabbCL queryAabb = rigidAabbs[queryRigidIndex];\n"
" \n" " \n"
" int stack[B3_PLVBH_TRAVERSE_MAX_STACK_SIZE];\n" " int stack[B3_PLVBH_TRAVERSE_MAX_STACK_SIZE];\n"