fix: some file didn't have the svn:eol-style native yet
This commit is contained in:
@@ -1,203 +1,203 @@
|
||||
/*
|
||||
* OPCODE - Optimized Collision Detection
|
||||
* http://www.codercorner.com/Opcode.htm
|
||||
*
|
||||
* Copyright (c) 2001-2008 Pierre Terdiman, pierre@codercorner.com
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
// This is collision detection. If you do another distance test for collision *response*,
|
||||
// if might be useful to simply *skip* the test below completely, and report a collision.
|
||||
// - if sphere-triangle overlap, result is ok
|
||||
// - if they don't, we'll discard them during collision response with a similar test anyway
|
||||
// Overall this approach should run faster.
|
||||
|
||||
// Original code by David Eberly in Magic.
|
||||
BOOL SphereCollider::SphereTriOverlap(const Point& vert0, const Point& vert1, const Point& vert2)
|
||||
{
|
||||
// Stats
|
||||
mNbVolumePrimTests++;
|
||||
|
||||
// Early exit if one of the vertices is inside the sphere
|
||||
Point kDiff = vert2 - mCenter;
|
||||
float fC = kDiff.SquareMagnitude();
|
||||
if(fC <= mRadius2) return TRUE;
|
||||
|
||||
kDiff = vert1 - mCenter;
|
||||
fC = kDiff.SquareMagnitude();
|
||||
if(fC <= mRadius2) return TRUE;
|
||||
|
||||
kDiff = vert0 - mCenter;
|
||||
fC = kDiff.SquareMagnitude();
|
||||
if(fC <= mRadius2) return TRUE;
|
||||
|
||||
// Else do the full distance test
|
||||
Point TriEdge0 = vert1 - vert0;
|
||||
Point TriEdge1 = vert2 - vert0;
|
||||
|
||||
//Point kDiff = vert0 - mCenter;
|
||||
float fA00 = TriEdge0.SquareMagnitude();
|
||||
float fA01 = TriEdge0 | TriEdge1;
|
||||
float fA11 = TriEdge1.SquareMagnitude();
|
||||
float fB0 = kDiff | TriEdge0;
|
||||
float fB1 = kDiff | TriEdge1;
|
||||
//float fC = kDiff.SquareMagnitude();
|
||||
float fDet = fabsf(fA00*fA11 - fA01*fA01);
|
||||
float u = fA01*fB1-fA11*fB0;
|
||||
float v = fA01*fB0-fA00*fB1;
|
||||
float SqrDist;
|
||||
|
||||
if(u + v <= fDet)
|
||||
{
|
||||
if(u < 0.0f)
|
||||
{
|
||||
if(v < 0.0f) // region 4
|
||||
{
|
||||
if(fB0 < 0.0f)
|
||||
{
|
||||
// v = 0.0f;
|
||||
if(-fB0>=fA00) { /*u = 1.0f;*/ SqrDist = fA00+2.0f*fB0+fC; }
|
||||
else { u = -fB0/fA00; SqrDist = fB0*u+fC; }
|
||||
}
|
||||
else
|
||||
{
|
||||
// u = 0.0f;
|
||||
if(fB1>=0.0f) { /*v = 0.0f;*/ SqrDist = fC; }
|
||||
else if(-fB1>=fA11) { /*v = 1.0f;*/ SqrDist = fA11+2.0f*fB1+fC; }
|
||||
else { v = -fB1/fA11; SqrDist = fB1*v+fC; }
|
||||
}
|
||||
}
|
||||
else // region 3
|
||||
{
|
||||
// u = 0.0f;
|
||||
if(fB1>=0.0f) { /*v = 0.0f;*/ SqrDist = fC; }
|
||||
else if(-fB1>=fA11) { /*v = 1.0f;*/ SqrDist = fA11+2.0f*fB1+fC; }
|
||||
else { v = -fB1/fA11; SqrDist = fB1*v+fC; }
|
||||
}
|
||||
}
|
||||
else if(v < 0.0f) // region 5
|
||||
{
|
||||
// v = 0.0f;
|
||||
if(fB0>=0.0f) { /*u = 0.0f;*/ SqrDist = fC; }
|
||||
else if(-fB0>=fA00) { /*u = 1.0f;*/ SqrDist = fA00+2.0f*fB0+fC; }
|
||||
else { u = -fB0/fA00; SqrDist = fB0*u+fC; }
|
||||
}
|
||||
else // region 0
|
||||
{
|
||||
// minimum at interior point
|
||||
if(fDet==0.0f)
|
||||
{
|
||||
// u = 0.0f;
|
||||
// v = 0.0f;
|
||||
SqrDist = MAX_FLOAT;
|
||||
}
|
||||
else
|
||||
{
|
||||
float fInvDet = 1.0f/fDet;
|
||||
u *= fInvDet;
|
||||
v *= fInvDet;
|
||||
SqrDist = u*(fA00*u+fA01*v+2.0f*fB0) + v*(fA01*u+fA11*v+2.0f*fB1)+fC;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
float fTmp0, fTmp1, fNumer, fDenom;
|
||||
|
||||
if(u < 0.0f) // region 2
|
||||
{
|
||||
fTmp0 = fA01 + fB0;
|
||||
fTmp1 = fA11 + fB1;
|
||||
if(fTmp1 > fTmp0)
|
||||
{
|
||||
fNumer = fTmp1 - fTmp0;
|
||||
fDenom = fA00-2.0f*fA01+fA11;
|
||||
if(fNumer >= fDenom)
|
||||
{
|
||||
// u = 1.0f;
|
||||
// v = 0.0f;
|
||||
SqrDist = fA00+2.0f*fB0+fC;
|
||||
}
|
||||
else
|
||||
{
|
||||
u = fNumer/fDenom;
|
||||
v = 1.0f - u;
|
||||
SqrDist = u*(fA00*u+fA01*v+2.0f*fB0) + v*(fA01*u+fA11*v+2.0f*fB1)+fC;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// u = 0.0f;
|
||||
if(fTmp1 <= 0.0f) { /*v = 1.0f;*/ SqrDist = fA11+2.0f*fB1+fC; }
|
||||
else if(fB1 >= 0.0f) { /*v = 0.0f;*/ SqrDist = fC; }
|
||||
else { v = -fB1/fA11; SqrDist = fB1*v+fC; }
|
||||
}
|
||||
}
|
||||
else if(v < 0.0f) // region 6
|
||||
{
|
||||
fTmp0 = fA01 + fB1;
|
||||
fTmp1 = fA00 + fB0;
|
||||
if(fTmp1 > fTmp0)
|
||||
{
|
||||
fNumer = fTmp1 - fTmp0;
|
||||
fDenom = fA00-2.0f*fA01+fA11;
|
||||
if(fNumer >= fDenom)
|
||||
{
|
||||
// v = 1.0f;
|
||||
// u = 0.0f;
|
||||
SqrDist = fA11+2.0f*fB1+fC;
|
||||
}
|
||||
else
|
||||
{
|
||||
v = fNumer/fDenom;
|
||||
u = 1.0f - v;
|
||||
SqrDist = u*(fA00*u+fA01*v+2.0f*fB0) + v*(fA01*u+fA11*v+2.0f*fB1)+fC;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// v = 0.0f;
|
||||
if(fTmp1 <= 0.0f) { /*u = 1.0f;*/ SqrDist = fA00+2.0f*fB0+fC; }
|
||||
else if(fB0 >= 0.0f) { /*u = 0.0f;*/ SqrDist = fC; }
|
||||
else { u = -fB0/fA00; SqrDist = fB0*u+fC; }
|
||||
}
|
||||
}
|
||||
else // region 1
|
||||
{
|
||||
fNumer = fA11 + fB1 - fA01 - fB0;
|
||||
if(fNumer <= 0.0f)
|
||||
{
|
||||
// u = 0.0f;
|
||||
// v = 1.0f;
|
||||
SqrDist = fA11+2.0f*fB1+fC;
|
||||
}
|
||||
else
|
||||
{
|
||||
fDenom = fA00-2.0f*fA01+fA11;
|
||||
if(fNumer >= fDenom)
|
||||
{
|
||||
// u = 1.0f;
|
||||
// v = 0.0f;
|
||||
SqrDist = fA00+2.0f*fB0+fC;
|
||||
}
|
||||
else
|
||||
{
|
||||
u = fNumer/fDenom;
|
||||
v = 1.0f - u;
|
||||
SqrDist = u*(fA00*u+fA01*v+2.0f*fB0) + v*(fA01*u+fA11*v+2.0f*fB1)+fC;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return fabsf(SqrDist) < mRadius2;
|
||||
}
|
||||
/*
|
||||
* OPCODE - Optimized Collision Detection
|
||||
* http://www.codercorner.com/Opcode.htm
|
||||
*
|
||||
* Copyright (c) 2001-2008 Pierre Terdiman, pierre@codercorner.com
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
// This is collision detection. If you do another distance test for collision *response*,
|
||||
// if might be useful to simply *skip* the test below completely, and report a collision.
|
||||
// - if sphere-triangle overlap, result is ok
|
||||
// - if they don't, we'll discard them during collision response with a similar test anyway
|
||||
// Overall this approach should run faster.
|
||||
|
||||
// Original code by David Eberly in Magic.
|
||||
BOOL SphereCollider::SphereTriOverlap(const Point& vert0, const Point& vert1, const Point& vert2)
|
||||
{
|
||||
// Stats
|
||||
mNbVolumePrimTests++;
|
||||
|
||||
// Early exit if one of the vertices is inside the sphere
|
||||
Point kDiff = vert2 - mCenter;
|
||||
float fC = kDiff.SquareMagnitude();
|
||||
if(fC <= mRadius2) return TRUE;
|
||||
|
||||
kDiff = vert1 - mCenter;
|
||||
fC = kDiff.SquareMagnitude();
|
||||
if(fC <= mRadius2) return TRUE;
|
||||
|
||||
kDiff = vert0 - mCenter;
|
||||
fC = kDiff.SquareMagnitude();
|
||||
if(fC <= mRadius2) return TRUE;
|
||||
|
||||
// Else do the full distance test
|
||||
Point TriEdge0 = vert1 - vert0;
|
||||
Point TriEdge1 = vert2 - vert0;
|
||||
|
||||
//Point kDiff = vert0 - mCenter;
|
||||
float fA00 = TriEdge0.SquareMagnitude();
|
||||
float fA01 = TriEdge0 | TriEdge1;
|
||||
float fA11 = TriEdge1.SquareMagnitude();
|
||||
float fB0 = kDiff | TriEdge0;
|
||||
float fB1 = kDiff | TriEdge1;
|
||||
//float fC = kDiff.SquareMagnitude();
|
||||
float fDet = fabsf(fA00*fA11 - fA01*fA01);
|
||||
float u = fA01*fB1-fA11*fB0;
|
||||
float v = fA01*fB0-fA00*fB1;
|
||||
float SqrDist;
|
||||
|
||||
if(u + v <= fDet)
|
||||
{
|
||||
if(u < 0.0f)
|
||||
{
|
||||
if(v < 0.0f) // region 4
|
||||
{
|
||||
if(fB0 < 0.0f)
|
||||
{
|
||||
// v = 0.0f;
|
||||
if(-fB0>=fA00) { /*u = 1.0f;*/ SqrDist = fA00+2.0f*fB0+fC; }
|
||||
else { u = -fB0/fA00; SqrDist = fB0*u+fC; }
|
||||
}
|
||||
else
|
||||
{
|
||||
// u = 0.0f;
|
||||
if(fB1>=0.0f) { /*v = 0.0f;*/ SqrDist = fC; }
|
||||
else if(-fB1>=fA11) { /*v = 1.0f;*/ SqrDist = fA11+2.0f*fB1+fC; }
|
||||
else { v = -fB1/fA11; SqrDist = fB1*v+fC; }
|
||||
}
|
||||
}
|
||||
else // region 3
|
||||
{
|
||||
// u = 0.0f;
|
||||
if(fB1>=0.0f) { /*v = 0.0f;*/ SqrDist = fC; }
|
||||
else if(-fB1>=fA11) { /*v = 1.0f;*/ SqrDist = fA11+2.0f*fB1+fC; }
|
||||
else { v = -fB1/fA11; SqrDist = fB1*v+fC; }
|
||||
}
|
||||
}
|
||||
else if(v < 0.0f) // region 5
|
||||
{
|
||||
// v = 0.0f;
|
||||
if(fB0>=0.0f) { /*u = 0.0f;*/ SqrDist = fC; }
|
||||
else if(-fB0>=fA00) { /*u = 1.0f;*/ SqrDist = fA00+2.0f*fB0+fC; }
|
||||
else { u = -fB0/fA00; SqrDist = fB0*u+fC; }
|
||||
}
|
||||
else // region 0
|
||||
{
|
||||
// minimum at interior point
|
||||
if(fDet==0.0f)
|
||||
{
|
||||
// u = 0.0f;
|
||||
// v = 0.0f;
|
||||
SqrDist = MAX_FLOAT;
|
||||
}
|
||||
else
|
||||
{
|
||||
float fInvDet = 1.0f/fDet;
|
||||
u *= fInvDet;
|
||||
v *= fInvDet;
|
||||
SqrDist = u*(fA00*u+fA01*v+2.0f*fB0) + v*(fA01*u+fA11*v+2.0f*fB1)+fC;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
float fTmp0, fTmp1, fNumer, fDenom;
|
||||
|
||||
if(u < 0.0f) // region 2
|
||||
{
|
||||
fTmp0 = fA01 + fB0;
|
||||
fTmp1 = fA11 + fB1;
|
||||
if(fTmp1 > fTmp0)
|
||||
{
|
||||
fNumer = fTmp1 - fTmp0;
|
||||
fDenom = fA00-2.0f*fA01+fA11;
|
||||
if(fNumer >= fDenom)
|
||||
{
|
||||
// u = 1.0f;
|
||||
// v = 0.0f;
|
||||
SqrDist = fA00+2.0f*fB0+fC;
|
||||
}
|
||||
else
|
||||
{
|
||||
u = fNumer/fDenom;
|
||||
v = 1.0f - u;
|
||||
SqrDist = u*(fA00*u+fA01*v+2.0f*fB0) + v*(fA01*u+fA11*v+2.0f*fB1)+fC;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// u = 0.0f;
|
||||
if(fTmp1 <= 0.0f) { /*v = 1.0f;*/ SqrDist = fA11+2.0f*fB1+fC; }
|
||||
else if(fB1 >= 0.0f) { /*v = 0.0f;*/ SqrDist = fC; }
|
||||
else { v = -fB1/fA11; SqrDist = fB1*v+fC; }
|
||||
}
|
||||
}
|
||||
else if(v < 0.0f) // region 6
|
||||
{
|
||||
fTmp0 = fA01 + fB1;
|
||||
fTmp1 = fA00 + fB0;
|
||||
if(fTmp1 > fTmp0)
|
||||
{
|
||||
fNumer = fTmp1 - fTmp0;
|
||||
fDenom = fA00-2.0f*fA01+fA11;
|
||||
if(fNumer >= fDenom)
|
||||
{
|
||||
// v = 1.0f;
|
||||
// u = 0.0f;
|
||||
SqrDist = fA11+2.0f*fB1+fC;
|
||||
}
|
||||
else
|
||||
{
|
||||
v = fNumer/fDenom;
|
||||
u = 1.0f - v;
|
||||
SqrDist = u*(fA00*u+fA01*v+2.0f*fB0) + v*(fA01*u+fA11*v+2.0f*fB1)+fC;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// v = 0.0f;
|
||||
if(fTmp1 <= 0.0f) { /*u = 1.0f;*/ SqrDist = fA00+2.0f*fB0+fC; }
|
||||
else if(fB0 >= 0.0f) { /*u = 0.0f;*/ SqrDist = fC; }
|
||||
else { u = -fB0/fA00; SqrDist = fB0*u+fC; }
|
||||
}
|
||||
}
|
||||
else // region 1
|
||||
{
|
||||
fNumer = fA11 + fB1 - fA01 - fB0;
|
||||
if(fNumer <= 0.0f)
|
||||
{
|
||||
// u = 0.0f;
|
||||
// v = 1.0f;
|
||||
SqrDist = fA11+2.0f*fB1+fC;
|
||||
}
|
||||
else
|
||||
{
|
||||
fDenom = fA00-2.0f*fA01+fA11;
|
||||
if(fNumer >= fDenom)
|
||||
{
|
||||
// u = 1.0f;
|
||||
// v = 0.0f;
|
||||
SqrDist = fA00+2.0f*fB0+fC;
|
||||
}
|
||||
else
|
||||
{
|
||||
u = fNumer/fDenom;
|
||||
v = 1.0f - u;
|
||||
SqrDist = u*(fA00*u+fA01*v+2.0f*fB0) + v*(fA01*u+fA11*v+2.0f*fB1)+fC;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return fabsf(SqrDist) < mRadius2;
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user