fix: some file didn't have the svn:eol-style native yet

This commit is contained in:
erwin.coumans
2010-03-06 15:23:36 +00:00
parent 4fd48ac691
commit 81f04a4d48
641 changed files with 301123 additions and 301123 deletions

View File

@@ -1,35 +1,35 @@
/*
Bullet Continuous Collision Detection and Physics Library Maya Plugin
Copyright (c) 2008 Walt Disney Studios
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising
from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must
not claim that you wrote the original software. If you use this
software in a product, an acknowledgment in the product documentation
would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must
not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Written by: Nicola Candussi <nicola@fluidinteractive.com>
*/
//base.h
#ifndef MVL_BASE_H
#define MVL_BASE_H
namespace mvl {
} //namespace mvl
#endif
/*
Bullet Continuous Collision Detection and Physics Library Maya Plugin
Copyright (c) 2008 Walt Disney Studios
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising
from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must
not claim that you wrote the original software. If you use this
software in a product, an acknowledgment in the product documentation
would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must
not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Written by: Nicola Candussi <nicola@fluidinteractive.com>
*/
//base.h
#ifndef MVL_BASE_H
#define MVL_BASE_H
namespace mvl {
} //namespace mvl
#endif

View File

@@ -1,399 +1,399 @@
/*
Bullet Continuous Collision Detection and Physics Library Maya Plugin
Copyright (c) 2008 Walt Disney Studios
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising
from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must
not claim that you wrote the original software. If you use this
software in a product, an acknowledgment in the product documentation
would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must
not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Written by: Nicola Candussi <nicola@fluidinteractive.com>
*/
//mat.h
#ifndef MVL_MAT_H
#define MVL_MAT_H
#include <cmath>
#include "base.h"
#include "traits.h"
namespace mvl {
template<typename T, std::size_t R, std::size_t C>
class mat
{
public:
typedef T value_type;
typedef T& reference;
typedef T const& const_reference;
typedef T* iterator;
typedef T const* const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
public:
enum {
Rows = R,
Cols = C,
Size = Rows * Cols,
};
public:
//constructors
explicit mat() {}
template<typename T2>
mat(mat<T2, Rows, Cols> const& m)
{
*this = m;
}
explicit mat(value_type val)
{
for(int i = 0; i < Size; ++i){
m_data[i] = val;
}
}
explicit mat(value_type m00, value_type m01,
value_type m10, value_type m11)
{
operator()(0, 0) = m00; operator()(0, 1) = m01;
operator()(1, 0) = m10; operator()(1, 1) = m11;
}
explicit mat(value_type m00, value_type m01, value_type m02,
value_type m10, value_type m11, value_type m12,
value_type m20, value_type m21, value_type m22)
{
operator()(0, 0) = m00; operator()(0, 1) = m01; operator()(0, 2) = m02;
operator()(1, 0) = m10; operator()(1, 1) = m11; operator()(1, 2) = m12;
operator()(2, 0) = m20; operator()(2, 1) = m21; operator()(2, 2) = m22;
}
explicit mat(value_type m00, value_type m01, value_type m02, value_type m03,
value_type m10, value_type m11, value_type m12, value_type m13,
value_type m20, value_type m21, value_type m22, value_type m23,
value_type m30, value_type m31, value_type m32, value_type m33)
{
operator()(0, 0) = m00; operator()(0, 1) = m01; operator()(0, 2) = m02; operator()(0, 3) = m03;
operator()(1, 0) = m10; operator()(1, 1) = m11; operator()(1, 2) = m12; operator()(1, 3) = m13;
operator()(2, 0) = m20; operator()(2, 1) = m21; operator()(2, 2) = m22; operator()(2, 3) = m23;
operator()(3, 0) = m30; operator()(3, 1) = m31; operator()(3, 2) = m32; operator()(3, 3) = m33;
}
public:
//data access
value_type operator()(std::size_t i, std::size_t j) const { return m_data[j * Rows + i]; }
reference operator()(std::size_t i, std::size_t j) { return m_data[j * Rows + i]; }
public:
//stl
static std::size_t size() { return Size; }
static std::size_t max_size() { return Size; }
static bool empty() { return false; }
iterator begin() { return m_data; }
iterator end() { return m_data + Size; }
const_iterator begin() const { return m_data; }
const_iterator end() const { return m_data + Size; }
reverse_iterator rbegin() { return reverse_iterator(end()); }
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); }
const_reverse_iterator rend() const { return const_reverse_iterator(begin()); }
value_type front() { return m_data[0]; }
value_type back() { return m_data[Size - 1]; }
const_reference front() const { return m_data[0]; }
const_reference back() const { return m_data[Size - 1]; }
friend std::ostream& operator << (std::ostream& out, mat const& m) {
out << "(";
for(size_t i = 0; i < Rows - 1; i++) {
for(size_t j = 0; j < Cols; j++) {
out << m(i, j) << ", ";
}
out << std::endl;
}
for(size_t j = 0; j < Cols - 1; j++) {
out << m(Rows - 1, j) << ", ";
}
out << m(Rows - 1, Cols - 1) << ")";
return out;
}
public:
//
mat& operator=(mat const& rhs) {
std::copy(rhs.begin(),rhs.end(), begin());
return *this;
}
template<typename T2>
mat& operator=(mat<T2, Rows, Cols> const& rhs) {
std::copy(rhs.begin(),rhs.end(), begin());
return *this;
}
private:
//data is stored in column major order, so the matrix can passed directly to the graphics APIs
T m_data[Size];
};
//assignment operators
// OP(mat<T1>, mat<T2>)
// OP(mat<T>, T)
#define MAT_IMPLEMENT_MACRO(OP) \
template<typename T1, typename T2, std::size_t R, std::size_t C> \
inline \
mat<T1, R, C>& \
operator OP(mat<T1, R, C>& lhs, mat<T2, R, C> const& rhs) { \
for(int i = 0; i < C * R; ++i) { \
lhs[i] OP rhs[i]; \
} \
return lhs; \
} \
\
template<typename T, std::size_t R, std::size_t C> \
inline \
mat<T, R, C>& \
operator OP(mat<T, R, C>& lhs, typename mat<T, R, C>::value_type const& rhs) { \
for(int i = 0; i < C * R; ++i) { \
lhs[i] OP rhs[i]; \
} \
return lhs; \
} \
MAT_IMPLEMENT_MACRO(+=)
MAT_IMPLEMENT_MACRO(-=)
MAT_IMPLEMENT_MACRO(*=)
MAT_IMPLEMENT_MACRO(/=)
#undef MAT_IMPLEMENT_MACRO
//operator + (mat, mat)
template<typename T1, typename T2, std::size_t R, std::size_t C>
inline
mat<typename promote_traits<T1, T2>::value_type, R, C>
operator + (mat<T1, R, C> const& lhs, mat<T2, R, C> const& rhs) {
mat<typename promote_traits<T1, T2>::value_type, R, C> res;
for(int i = 0; i < R ; ++i) {
for(int j = 0; j < C; ++j) {
res(i, j) = lhs(i, j) + rhs(i, j);
}
}
return res;
}
//operator - (mat, mat)
template<typename T1, typename T2, std::size_t R, std::size_t C>
inline
mat<typename promote_traits<T1, T2>::value_type, R, C>
operator - (mat<T1, R, C> const& lhs, mat<T2, R, C> const& rhs) {
mat<typename promote_traits<T1, T2>::value_type, R, C> res;
for(int i = 0; i < R ; ++i) {
for(int j = 0; j < C; ++j) {
res(i, j) = lhs(i, j) - rhs(i, j);
}
}
return res;
}
//operator * (mat, POD)
template<typename T1, typename T2, std::size_t R, std::size_t C>
inline
mat<typename promote_traits<T1, T2>::value_type, R, C>
operator * (mat<T1, R, C> const& lhs, T2 const& rhs) {
mat<typename promote_traits<T1, T2>::value_type, R, C> res;
for(int i = 0; i < R ; ++i) {
for(int j = 0; j < C; ++j) {
res(i, j) = lhs(i, j) * rhs;
}
}
return res;
}
//operator * (POD, mat)
template<typename T1, typename T2, std::size_t R, std::size_t C>
inline
mat<typename promote_traits<T1, T2>::value_type, R, C>
operator * (T1 const& lhs, mat<T2, R, C> const& rhs) {
mat<typename promote_traits<T1, T2>::value_type, R, C> res;
for(int i = 0; i < R ; ++i) {
for(int j = 0; j < C; ++j) {
res(i, j) = lhs * rhs(i, j);
}
}
return res;
}
//operator / (mat, POD)
template<typename T1, typename T2, std::size_t R, std::size_t C>
inline
mat<typename promote_traits<T1, T2>::value_type, R, C>
operator / (mat<T1, R, C> const& lhs, T2 const& rhs) {
mat<typename promote_traits<T1, T2>::value_type, R, C> res;
for(int i = 0; i < R ; ++i) {
for(int j = 0; j < C; ++j) {
res(i, j) = lhs(i, j) / rhs;
}
}
return res;
}
//element_prod(mat, mat)
template<typename T1, typename T2, std::size_t R, std::size_t C>
inline
mat<typename promote_traits<T1, T2>::value_type, R, C>
element_prod(mat<T1, R, C> const& lhs, mat<T2, R, C> const& rhs) {
mat<typename promote_traits<T1, T2>::value_type, R, C> res;
for(int i = 0; i < R ; ++i) {
for(int j = 0; j < C; ++j) {
res(i, j) = lhs(i, j) * rhs(i, j);
}
}
return res;
}
//element_div(mat, mat)
template<typename T1, typename T2, std::size_t R, std::size_t C>
inline
mat<typename promote_traits<T1, T2>::value_type, R, C>
element_div(mat<T1, R, C> const& lhs, mat<T2, R, C> const& rhs) {
mat<typename promote_traits<T1, T2>::value_type, R, C> res;
for(int i = 0; i < R ; ++i) {
for(int j = 0; j < C; ++j) {
res(i, j) = lhs(i, j) / rhs(i, j);
}
}
return res;
}
//unary operator -(mat)
template<typename T, std::size_t R, std::size_t C>
inline
mat<T, R, C>
operator -(mat<T, R, C> const& rhs) {
mat<T, R, C> res;
for(int i = 0; i < R ; ++i) {
for(int j = 0; j < C; ++j) {
res(i, j) = -rhs(i, j);
}
}
return res;
}
//matrix transpose
template<typename T, std::size_t R, std::size_t C>
inline
mat<T, R, C>
trans(mat<T, R, C> const& rhs) {
mat<T, R, C> res;
for(int i = 0; i < R ; ++i) {
for(int j = 0; j < C; ++j) {
res(i, j) = rhs(j, i);
}
}
return res;
}
//identity matrix
template<typename T, std::size_t Sz>
inline
mat<T, Sz, Sz>
identity() {
mat<T, Sz, Sz> res;
for(int i = 0; i < Sz ; ++i) {
for(int j = 0; j < Sz; ++j) {
res(i, j) = i == j ? 1 : 0;
}
}
return res;
}
//matrix diagonal as vector (for square matrices)
template<typename T, std::size_t N>
inline
vec<T, N>
diag(mat<T, N, N> const& rhs) {
vec<T, N> res;
for(int i = 0; i < N; ++i) {
res[i] = rhs(i, i);
}
return res;
}
//matrix row as vector
template<typename T, std::size_t R, std::size_t C>
inline
vec<T, C>
row(mat<T, R, C> const& rhs, std::size_t r) {
vec<T, C> res;
for(int i = 0; i < C; ++i) {
res[i] = rhs(r, i);
}
return res;
}
//matrix column as vector
template<typename T, std::size_t R, std::size_t C>
inline
vec<T, R>
col(mat<T, R, C> const& rhs, std::size_t c) {
vec<T, R> res;
for(int i = 0; i < R; ++i) {
res[i] = rhs(i, c);
}
return res;
}
//matrix-matrix product
template<typename T1, typename T2, std::size_t R1, std::size_t C1, std::size_t C2>
inline
mat<typename promote_traits<T1, T2>::value_type, R1, C2>
prod(mat<T1, R1, C1> const& lhs, mat<T2, C1, C2> const& rhs) {
mat<typename promote_traits<T1, T2>::value_type, R1, C2> res;
for(int i = 0; i < R1; ++i) {
for(int j = 0; j < C2; ++j) {
res(i, j) = 0;
for(int k = 0; k < C1; ++k) {
res(i, j) += lhs(i, k) * rhs(k, j);
}
}
}
return res;
}
//matrix - column vector product
template<typename T1, typename T2, std::size_t R, std::size_t C>
inline
vec<typename promote_traits<T1, T2>::value_type, R>
prod(mat<T1, R, C> const& lhs, vec<T2, C> const& rhs) {
vec<typename promote_traits<T1, T2>::value_type, R> res;
for(int i = 0; i < R; ++i) {
res(i) = 0;
for(int j = 0; j < C; ++j) {
res(i) += lhs(i, j) * rhs(j);
}
}
return res;
}
} // namespace mvl
#endif
/*
Bullet Continuous Collision Detection and Physics Library Maya Plugin
Copyright (c) 2008 Walt Disney Studios
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising
from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must
not claim that you wrote the original software. If you use this
software in a product, an acknowledgment in the product documentation
would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must
not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Written by: Nicola Candussi <nicola@fluidinteractive.com>
*/
//mat.h
#ifndef MVL_MAT_H
#define MVL_MAT_H
#include <cmath>
#include "base.h"
#include "traits.h"
namespace mvl {
template<typename T, std::size_t R, std::size_t C>
class mat
{
public:
typedef T value_type;
typedef T& reference;
typedef T const& const_reference;
typedef T* iterator;
typedef T const* const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
public:
enum {
Rows = R,
Cols = C,
Size = Rows * Cols,
};
public:
//constructors
explicit mat() {}
template<typename T2>
mat(mat<T2, Rows, Cols> const& m)
{
*this = m;
}
explicit mat(value_type val)
{
for(int i = 0; i < Size; ++i){
m_data[i] = val;
}
}
explicit mat(value_type m00, value_type m01,
value_type m10, value_type m11)
{
operator()(0, 0) = m00; operator()(0, 1) = m01;
operator()(1, 0) = m10; operator()(1, 1) = m11;
}
explicit mat(value_type m00, value_type m01, value_type m02,
value_type m10, value_type m11, value_type m12,
value_type m20, value_type m21, value_type m22)
{
operator()(0, 0) = m00; operator()(0, 1) = m01; operator()(0, 2) = m02;
operator()(1, 0) = m10; operator()(1, 1) = m11; operator()(1, 2) = m12;
operator()(2, 0) = m20; operator()(2, 1) = m21; operator()(2, 2) = m22;
}
explicit mat(value_type m00, value_type m01, value_type m02, value_type m03,
value_type m10, value_type m11, value_type m12, value_type m13,
value_type m20, value_type m21, value_type m22, value_type m23,
value_type m30, value_type m31, value_type m32, value_type m33)
{
operator()(0, 0) = m00; operator()(0, 1) = m01; operator()(0, 2) = m02; operator()(0, 3) = m03;
operator()(1, 0) = m10; operator()(1, 1) = m11; operator()(1, 2) = m12; operator()(1, 3) = m13;
operator()(2, 0) = m20; operator()(2, 1) = m21; operator()(2, 2) = m22; operator()(2, 3) = m23;
operator()(3, 0) = m30; operator()(3, 1) = m31; operator()(3, 2) = m32; operator()(3, 3) = m33;
}
public:
//data access
value_type operator()(std::size_t i, std::size_t j) const { return m_data[j * Rows + i]; }
reference operator()(std::size_t i, std::size_t j) { return m_data[j * Rows + i]; }
public:
//stl
static std::size_t size() { return Size; }
static std::size_t max_size() { return Size; }
static bool empty() { return false; }
iterator begin() { return m_data; }
iterator end() { return m_data + Size; }
const_iterator begin() const { return m_data; }
const_iterator end() const { return m_data + Size; }
reverse_iterator rbegin() { return reverse_iterator(end()); }
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); }
const_reverse_iterator rend() const { return const_reverse_iterator(begin()); }
value_type front() { return m_data[0]; }
value_type back() { return m_data[Size - 1]; }
const_reference front() const { return m_data[0]; }
const_reference back() const { return m_data[Size - 1]; }
friend std::ostream& operator << (std::ostream& out, mat const& m) {
out << "(";
for(size_t i = 0; i < Rows - 1; i++) {
for(size_t j = 0; j < Cols; j++) {
out << m(i, j) << ", ";
}
out << std::endl;
}
for(size_t j = 0; j < Cols - 1; j++) {
out << m(Rows - 1, j) << ", ";
}
out << m(Rows - 1, Cols - 1) << ")";
return out;
}
public:
//
mat& operator=(mat const& rhs) {
std::copy(rhs.begin(),rhs.end(), begin());
return *this;
}
template<typename T2>
mat& operator=(mat<T2, Rows, Cols> const& rhs) {
std::copy(rhs.begin(),rhs.end(), begin());
return *this;
}
private:
//data is stored in column major order, so the matrix can passed directly to the graphics APIs
T m_data[Size];
};
//assignment operators
// OP(mat<T1>, mat<T2>)
// OP(mat<T>, T)
#define MAT_IMPLEMENT_MACRO(OP) \
template<typename T1, typename T2, std::size_t R, std::size_t C> \
inline \
mat<T1, R, C>& \
operator OP(mat<T1, R, C>& lhs, mat<T2, R, C> const& rhs) { \
for(int i = 0; i < C * R; ++i) { \
lhs[i] OP rhs[i]; \
} \
return lhs; \
} \
\
template<typename T, std::size_t R, std::size_t C> \
inline \
mat<T, R, C>& \
operator OP(mat<T, R, C>& lhs, typename mat<T, R, C>::value_type const& rhs) { \
for(int i = 0; i < C * R; ++i) { \
lhs[i] OP rhs[i]; \
} \
return lhs; \
} \
MAT_IMPLEMENT_MACRO(+=)
MAT_IMPLEMENT_MACRO(-=)
MAT_IMPLEMENT_MACRO(*=)
MAT_IMPLEMENT_MACRO(/=)
#undef MAT_IMPLEMENT_MACRO
//operator + (mat, mat)
template<typename T1, typename T2, std::size_t R, std::size_t C>
inline
mat<typename promote_traits<T1, T2>::value_type, R, C>
operator + (mat<T1, R, C> const& lhs, mat<T2, R, C> const& rhs) {
mat<typename promote_traits<T1, T2>::value_type, R, C> res;
for(int i = 0; i < R ; ++i) {
for(int j = 0; j < C; ++j) {
res(i, j) = lhs(i, j) + rhs(i, j);
}
}
return res;
}
//operator - (mat, mat)
template<typename T1, typename T2, std::size_t R, std::size_t C>
inline
mat<typename promote_traits<T1, T2>::value_type, R, C>
operator - (mat<T1, R, C> const& lhs, mat<T2, R, C> const& rhs) {
mat<typename promote_traits<T1, T2>::value_type, R, C> res;
for(int i = 0; i < R ; ++i) {
for(int j = 0; j < C; ++j) {
res(i, j) = lhs(i, j) - rhs(i, j);
}
}
return res;
}
//operator * (mat, POD)
template<typename T1, typename T2, std::size_t R, std::size_t C>
inline
mat<typename promote_traits<T1, T2>::value_type, R, C>
operator * (mat<T1, R, C> const& lhs, T2 const& rhs) {
mat<typename promote_traits<T1, T2>::value_type, R, C> res;
for(int i = 0; i < R ; ++i) {
for(int j = 0; j < C; ++j) {
res(i, j) = lhs(i, j) * rhs;
}
}
return res;
}
//operator * (POD, mat)
template<typename T1, typename T2, std::size_t R, std::size_t C>
inline
mat<typename promote_traits<T1, T2>::value_type, R, C>
operator * (T1 const& lhs, mat<T2, R, C> const& rhs) {
mat<typename promote_traits<T1, T2>::value_type, R, C> res;
for(int i = 0; i < R ; ++i) {
for(int j = 0; j < C; ++j) {
res(i, j) = lhs * rhs(i, j);
}
}
return res;
}
//operator / (mat, POD)
template<typename T1, typename T2, std::size_t R, std::size_t C>
inline
mat<typename promote_traits<T1, T2>::value_type, R, C>
operator / (mat<T1, R, C> const& lhs, T2 const& rhs) {
mat<typename promote_traits<T1, T2>::value_type, R, C> res;
for(int i = 0; i < R ; ++i) {
for(int j = 0; j < C; ++j) {
res(i, j) = lhs(i, j) / rhs;
}
}
return res;
}
//element_prod(mat, mat)
template<typename T1, typename T2, std::size_t R, std::size_t C>
inline
mat<typename promote_traits<T1, T2>::value_type, R, C>
element_prod(mat<T1, R, C> const& lhs, mat<T2, R, C> const& rhs) {
mat<typename promote_traits<T1, T2>::value_type, R, C> res;
for(int i = 0; i < R ; ++i) {
for(int j = 0; j < C; ++j) {
res(i, j) = lhs(i, j) * rhs(i, j);
}
}
return res;
}
//element_div(mat, mat)
template<typename T1, typename T2, std::size_t R, std::size_t C>
inline
mat<typename promote_traits<T1, T2>::value_type, R, C>
element_div(mat<T1, R, C> const& lhs, mat<T2, R, C> const& rhs) {
mat<typename promote_traits<T1, T2>::value_type, R, C> res;
for(int i = 0; i < R ; ++i) {
for(int j = 0; j < C; ++j) {
res(i, j) = lhs(i, j) / rhs(i, j);
}
}
return res;
}
//unary operator -(mat)
template<typename T, std::size_t R, std::size_t C>
inline
mat<T, R, C>
operator -(mat<T, R, C> const& rhs) {
mat<T, R, C> res;
for(int i = 0; i < R ; ++i) {
for(int j = 0; j < C; ++j) {
res(i, j) = -rhs(i, j);
}
}
return res;
}
//matrix transpose
template<typename T, std::size_t R, std::size_t C>
inline
mat<T, R, C>
trans(mat<T, R, C> const& rhs) {
mat<T, R, C> res;
for(int i = 0; i < R ; ++i) {
for(int j = 0; j < C; ++j) {
res(i, j) = rhs(j, i);
}
}
return res;
}
//identity matrix
template<typename T, std::size_t Sz>
inline
mat<T, Sz, Sz>
identity() {
mat<T, Sz, Sz> res;
for(int i = 0; i < Sz ; ++i) {
for(int j = 0; j < Sz; ++j) {
res(i, j) = i == j ? 1 : 0;
}
}
return res;
}
//matrix diagonal as vector (for square matrices)
template<typename T, std::size_t N>
inline
vec<T, N>
diag(mat<T, N, N> const& rhs) {
vec<T, N> res;
for(int i = 0; i < N; ++i) {
res[i] = rhs(i, i);
}
return res;
}
//matrix row as vector
template<typename T, std::size_t R, std::size_t C>
inline
vec<T, C>
row(mat<T, R, C> const& rhs, std::size_t r) {
vec<T, C> res;
for(int i = 0; i < C; ++i) {
res[i] = rhs(r, i);
}
return res;
}
//matrix column as vector
template<typename T, std::size_t R, std::size_t C>
inline
vec<T, R>
col(mat<T, R, C> const& rhs, std::size_t c) {
vec<T, R> res;
for(int i = 0; i < R; ++i) {
res[i] = rhs(i, c);
}
return res;
}
//matrix-matrix product
template<typename T1, typename T2, std::size_t R1, std::size_t C1, std::size_t C2>
inline
mat<typename promote_traits<T1, T2>::value_type, R1, C2>
prod(mat<T1, R1, C1> const& lhs, mat<T2, C1, C2> const& rhs) {
mat<typename promote_traits<T1, T2>::value_type, R1, C2> res;
for(int i = 0; i < R1; ++i) {
for(int j = 0; j < C2; ++j) {
res(i, j) = 0;
for(int k = 0; k < C1; ++k) {
res(i, j) += lhs(i, k) * rhs(k, j);
}
}
}
return res;
}
//matrix - column vector product
template<typename T1, typename T2, std::size_t R, std::size_t C>
inline
vec<typename promote_traits<T1, T2>::value_type, R>
prod(mat<T1, R, C> const& lhs, vec<T2, C> const& rhs) {
vec<typename promote_traits<T1, T2>::value_type, R> res;
for(int i = 0; i < R; ++i) {
res(i) = 0;
for(int j = 0; j < C; ++j) {
res(i) += lhs(i, j) * rhs(j);
}
}
return res;
}
} // namespace mvl
#endif

View File

@@ -1,279 +1,279 @@
/*
Bullet Continuous Collision Detection and Physics Library Maya Plugin
Copyright (c) 2008 Walt Disney Studios
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising
from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must
not claim that you wrote the original software. If you use this
software in a product, an acknowledgment in the product documentation
would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must
not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Written by: Nicola Candussi <nicola@fluidinteractive.com>
*/
//quat.h
#ifndef MVL_QUAT_H
#define MVL_QUAT_H
#include <limits>
#include "vec.h"
#include "mat.h"
//quaternions are vectors of size 4
// it's assumed that the layout is in the form (w, (x, y, z)),
// so that the identity quaternion is (1, 0, 0, 0)
namespace mvl {
//quaternion conjugate
template<typename T>
inline vec<T, 4>
qconj(vec<T, 4> const& rhs) {
return vec<T, 4>(-rhs[0], rhs[1], rhs[2], rhs[3]);
}
//quaternion identity
template<typename T>
inline
vec<T, 4>
qidentity() {
return vec<T, 4>(1, 0, 0, 0);
}
//quaternion - quaternion product
template<typename T1, typename T2>
inline
vec<typename promote_traits<T1, T2>::value_type, 4>
qprod(vec<T1, 4> const& lhs, vec<T2, 4> const& rhs) {
typedef typename promote_traits<T1, T2>::value_type value_type;
return vec<value_type, 4>((lhs(0)*rhs(0)) - (lhs(1)*rhs(1)) - (lhs(2)*rhs(2)) - (lhs(3)*rhs(3)),
(lhs(0)*rhs(1)) + (lhs(1)*rhs(0)) + (lhs(2)*rhs(3)) - (lhs(3)*rhs(2)),
(lhs(0)*rhs(2)) - (lhs(1)*rhs(3)) + (lhs(2)*rhs(0)) + (lhs(3)*rhs(1)),
(lhs(0)*rhs(3)) + (lhs(1)*rhs(2)) - (lhs(2)*rhs(1)) + (lhs(3)*rhs(0)));
}
//quanternion - vector product (rotation)
template<typename T1, typename T2>
inline
vec<typename promote_traits<T1, T2>::value_type, 3>
qprod(vec<T1, 4> const& q, vec<T2, 3> const& v) {
typedef typename promote_traits<T1, T2>::value_type value_type;
vec<value_type, 4> tmp = qprod(qprod(q, vec<value_type, 4>(0, v[0], v[1], v[2])), qconj(q));
return vec<value_type, 3>(tmp[0], tmp[1], tmp[2]);
}
//spherical interpolation between q0 and q1
template <typename T1, typename T2, typename T3>
inline
vec<typename promote_traits<T1, T2>::value_type, 4>
qslerp(vec<T1, 4> const& q1, vec<T2, 4> const& q2, T3 t) {
typedef typename promote_traits<T1, T2>::value_type value_type;
value_type omega, cosom, sinom, scale0, scale1;
vec<value_type, 4> tmp;
cosom = dot(q1, q2);
if (cosom < static_cast<value_type>(0.0)) {
cosom = -cosom;
tmp = -q2;
} else {
tmp = q2;
}
if ((static_cast<value_type>(1.0) - cosom) > std::numeric_limits<value_type>::epsilon()) {
omega = (value_type) acos(cosom);
sinom = sin(omega);
scale0 = sin((static_cast<value_type>(1.0) - t) * omega) / sinom;
scale1 = sin(t * omega) / sinom;
} else {
scale0 = static_cast<value_type>(1.0) - t;
scale1 = t;
}
return scale0 * q1 + scale1 * tmp;
}
//init quaternion from axis-angle
template<typename T1, typename T2>
inline
vec<typename promote_traits<T1, T2>::value_type, 4>
q_from_axis_angle(vec<T1, 3> const& axis, T2 theta) {
typedef typename promote_traits<T1, T2>::value_type value_type;
value_type sin_theta = sin(static_cast<value_type>(static_cast<value_type>(0.5)) * theta);
return vec<value_type, 4>(cos(static_cast<value_type>(static_cast<value_type>(0.5)) * theta),
sin_theta * axis[0],
sin_theta * axis[1],
sin_theta * axis[2]);
}
//get the axis/angle from quaternion
template<typename T1, typename T2, typename T3>
inline
void
q_to_axis_angle(vec<T1, 4> const& q, vec<T2, 3>& axis, T3& theta)
{
T3 half_theta= acos(q[0]);
if(half_theta > 10 * std::numeric_limits<T3>::epsilon()) {
T3 oost = 1 / sin(half_theta);
axis[0] = oost * q[1];
axis[1] = oost * q[2];
axis[2] = oost * q[3];
theta = 2 * half_theta;
} else {
axis[0] = axis[1] = axis[2] = 0;
theta = 0;
}
}
//init quaternion from rotation matrix
template<typename T1>
inline
vec<T1, 4>
q_from_mat(mat<T1, 3, 3> const& m) {
T1 trace, s, hos;
trace = m(0, 0) + m(1, 1) + m(2, 2);
if (trace > static_cast<T1>(0.0)) {
s = sqrt(trace + static_cast<T1>(1.0));
hos = static_cast<T1>(0.5) / s;
return vec<T1, 4>(s * static_cast<T1>(0.5), (m(2, 1) - m(1, 2)) * hos, (m(0, 2) - m(2, 0)) * hos, (m(1, 0) - m(0, 1)) * hos);
} else {
int biggest;
enum {A,T,I};
if (m(0, 0) > m(1, 1)) {
if (m(2, 2) > m(0, 0)) biggest = I;
else biggest = A;
} else {
if (m(2, 2) > m(0, 0)) biggest = I;
else biggest = T;
}
switch (biggest) {
case A:
s = sqrt( m(0, 0) - (m(1, 1) + m(2, 2)) + static_cast<T1>(1.0));
if (s > (100 * std::numeric_limits<T1>::epsilon())) {
hos = static_cast<T1>(0.5) / s;
return vec<T1, 4>((m(2, 1) - m(1, 2)) * hos, s * static_cast<T1>(0.5), (m(0, 1) + m(1, 0)) * hos, (m(0, 2) + m(2, 0)) * hos);
}
// I
s = sqrt( m(2, 2) - (m(0, 0) + m(1, 1)) + static_cast<T1>(1.0));
if (s > (100 * std::numeric_limits<T1>::epsilon())) {
hos = static_cast<T1>(0.5) / s;
return vec<T1, 4>((m(1, 0) - m(0, 1)) * hos, (m(2, 0) + m(0, 2)) * hos, (m(2, 1) + m(1, 2)) * hos, s * static_cast<T1>(0.5));
}
// T
s = sqrt( m(1, 1) - (m(2, 2) + m(0, 0)) + static_cast<T1>(1.0));
if (s > (100 * std::numeric_limits<T1>::epsilon())) {
hos = static_cast<T1>(0.5) / s;
return vec<T1, 4>((m(0, 2) - m(2, 0)) * hos, (m(1, 0) + m(0, 1)) * hos, s * static_cast<T1>(0.5), (m(1, 2) + m(2, 1)) * hos);
}
break;
case T:
s = sqrt( m(1, 1) - (m(2, 2) + m(0, 0)) + static_cast<T1>(1.0));
if (s > (100 * std::numeric_limits<T1>::epsilon())) {
hos = static_cast<T1>(0.5) / s;
return vec<T1, 4>((m(0, 2) - m(2, 0)) * hos, (m(1, 0) + m(0, 1)) * hos, s * static_cast<T1>(0.5), (m(1, 2) + m(2, 1)) * hos);
}
// I
s = sqrt( m(2, 2) - (m(0, 0) + m(1, 1)) + static_cast<T1>(1.0));
if (s > (100 * std::numeric_limits<T1>::epsilon())) {
hos = static_cast<T1>(0.5) / s;
return vec<T1, 4>((m(1, 0) - m(0, 1)) * hos, (m(2, 0) + m(0, 2)) * hos, (m(2, 1) + m(1, 2)) * hos, s * static_cast<T1>(0.5));
}
// A
s = sqrt( m(0, 0) - (m(1, 1) + m(2, 2)) + static_cast<T1>(1.0));
if (s > (100 * std::numeric_limits<T1>::epsilon())) {
hos = static_cast<T1>(0.5) / s;
return vec<T1, 4>((m(2, 1) - m(1, 2)) * hos, s * static_cast<T1>(0.5), (m(0, 1) + m(1, 0)) * hos, (m(0, 2) + m(2, 0)) * hos);
}
break;
case I:
s = sqrt( m(2, 2) - (m(0, 0) + m(1, 1)) + static_cast<T1>(1.0));
if (s > (100 * std::numeric_limits<T1>::epsilon())) {
hos = static_cast<T1>(0.5) / s;
return vec<T1, 4>((m(1, 0) - m(0, 1)) * hos, (m(2, 0) + m(0, 2)) * hos, (m(2, 1) + m(1, 2)) * hos, s * static_cast<T1>(0.5));
}
// A
s = sqrt( m(0, 0) - (m(1, 1) + m(2, 2)) + static_cast<T1>(1.0));
if (s > (100 * std::numeric_limits<T1>::epsilon())) {
hos = static_cast<T1>(0.5) / s;
return vec<T1, 4>((m(2, 1) - m(1, 2)) * hos, s * static_cast<T1>(0.5), (m(0, 1) + m(1, 0)) * hos, (m(0, 2) + m(2, 0)) * hos);
}
// T
s = sqrt( m(1, 1) - (m(2, 2) + m(0, 0)) + static_cast<T1>(1.0));
if (s > (100 * std::numeric_limits<T1>::epsilon())) {
hos = static_cast<T1>(0.5) / s;
return vec<T1, 4>((m(0, 2) - m(2, 0)) * hos, (m(1, 0) + m(0, 1)) * hos, s * static_cast<T1>(0.5), (m(1, 2) + m(2, 1)) * hos);
}
break;
}
}
}
//get rotation matrix from quaternion
template<typename T>
inline
void
q_to_mat(vec<T, 4> const& q, mat<T, 3, 3>& m) {
T X2,Y2,Z2; //2*QX, 2*QY, 2*QZ
T XX2,YY2,ZZ2; //2*QX*QX, 2*QY*QY, 2*QZ*QZ
T XY2,XZ2,XW2; //2*QX*QY, 2*QX*QZ, 2*QX*QW
T YZ2,YW2,ZW2; // ...
X2 = 2 * q[1];
XX2 = X2 * q[1];
XY2 = X2 * q[2];
XZ2 = X2 * q[3];
XW2 = X2 * q[0];
Y2 = 2 * q[2];
YY2 = Y2 * q[2];
YZ2 = Y2 * q[3];
YW2 = Y2 * q[0];
Z2 = 2 * q[3];
ZZ2 = Z2 * q[3];
ZW2 = Z2 * q[0];
m(0, 0) = 1 - YY2 - ZZ2;
m(0, 1) = XY2 - ZW2;
m(0, 2) = XZ2 + YW2;
m(1, 0) = XY2 + ZW2;
m(1, 1) = 1 - XX2 - ZZ2;
m(1, 2) = YZ2 - XW2;
m(2, 0) = XZ2 - YW2;
m(2, 1) = YZ2 + XW2;
m(2, 2) = 1 - XX2 - YY2;
}
template<typename T, size_t R, size_t C>
mat<T, R, C>
cmat(T const* m)
{
mat<T, R, C> res;
for(int i = 0; i < R; ++i) {
for(int j = 0; j < C; ++j) {
res(i, j) = m[i * C + j];
}
}
return res;
}
} //namespace mvl
#endif
/*
Bullet Continuous Collision Detection and Physics Library Maya Plugin
Copyright (c) 2008 Walt Disney Studios
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising
from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must
not claim that you wrote the original software. If you use this
software in a product, an acknowledgment in the product documentation
would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must
not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Written by: Nicola Candussi <nicola@fluidinteractive.com>
*/
//quat.h
#ifndef MVL_QUAT_H
#define MVL_QUAT_H
#include <limits>
#include "vec.h"
#include "mat.h"
//quaternions are vectors of size 4
// it's assumed that the layout is in the form (w, (x, y, z)),
// so that the identity quaternion is (1, 0, 0, 0)
namespace mvl {
//quaternion conjugate
template<typename T>
inline vec<T, 4>
qconj(vec<T, 4> const& rhs) {
return vec<T, 4>(-rhs[0], rhs[1], rhs[2], rhs[3]);
}
//quaternion identity
template<typename T>
inline
vec<T, 4>
qidentity() {
return vec<T, 4>(1, 0, 0, 0);
}
//quaternion - quaternion product
template<typename T1, typename T2>
inline
vec<typename promote_traits<T1, T2>::value_type, 4>
qprod(vec<T1, 4> const& lhs, vec<T2, 4> const& rhs) {
typedef typename promote_traits<T1, T2>::value_type value_type;
return vec<value_type, 4>((lhs(0)*rhs(0)) - (lhs(1)*rhs(1)) - (lhs(2)*rhs(2)) - (lhs(3)*rhs(3)),
(lhs(0)*rhs(1)) + (lhs(1)*rhs(0)) + (lhs(2)*rhs(3)) - (lhs(3)*rhs(2)),
(lhs(0)*rhs(2)) - (lhs(1)*rhs(3)) + (lhs(2)*rhs(0)) + (lhs(3)*rhs(1)),
(lhs(0)*rhs(3)) + (lhs(1)*rhs(2)) - (lhs(2)*rhs(1)) + (lhs(3)*rhs(0)));
}
//quanternion - vector product (rotation)
template<typename T1, typename T2>
inline
vec<typename promote_traits<T1, T2>::value_type, 3>
qprod(vec<T1, 4> const& q, vec<T2, 3> const& v) {
typedef typename promote_traits<T1, T2>::value_type value_type;
vec<value_type, 4> tmp = qprod(qprod(q, vec<value_type, 4>(0, v[0], v[1], v[2])), qconj(q));
return vec<value_type, 3>(tmp[0], tmp[1], tmp[2]);
}
//spherical interpolation between q0 and q1
template <typename T1, typename T2, typename T3>
inline
vec<typename promote_traits<T1, T2>::value_type, 4>
qslerp(vec<T1, 4> const& q1, vec<T2, 4> const& q2, T3 t) {
typedef typename promote_traits<T1, T2>::value_type value_type;
value_type omega, cosom, sinom, scale0, scale1;
vec<value_type, 4> tmp;
cosom = dot(q1, q2);
if (cosom < static_cast<value_type>(0.0)) {
cosom = -cosom;
tmp = -q2;
} else {
tmp = q2;
}
if ((static_cast<value_type>(1.0) - cosom) > std::numeric_limits<value_type>::epsilon()) {
omega = (value_type) acos(cosom);
sinom = sin(omega);
scale0 = sin((static_cast<value_type>(1.0) - t) * omega) / sinom;
scale1 = sin(t * omega) / sinom;
} else {
scale0 = static_cast<value_type>(1.0) - t;
scale1 = t;
}
return scale0 * q1 + scale1 * tmp;
}
//init quaternion from axis-angle
template<typename T1, typename T2>
inline
vec<typename promote_traits<T1, T2>::value_type, 4>
q_from_axis_angle(vec<T1, 3> const& axis, T2 theta) {
typedef typename promote_traits<T1, T2>::value_type value_type;
value_type sin_theta = sin(static_cast<value_type>(static_cast<value_type>(0.5)) * theta);
return vec<value_type, 4>(cos(static_cast<value_type>(static_cast<value_type>(0.5)) * theta),
sin_theta * axis[0],
sin_theta * axis[1],
sin_theta * axis[2]);
}
//get the axis/angle from quaternion
template<typename T1, typename T2, typename T3>
inline
void
q_to_axis_angle(vec<T1, 4> const& q, vec<T2, 3>& axis, T3& theta)
{
T3 half_theta= acos(q[0]);
if(half_theta > 10 * std::numeric_limits<T3>::epsilon()) {
T3 oost = 1 / sin(half_theta);
axis[0] = oost * q[1];
axis[1] = oost * q[2];
axis[2] = oost * q[3];
theta = 2 * half_theta;
} else {
axis[0] = axis[1] = axis[2] = 0;
theta = 0;
}
}
//init quaternion from rotation matrix
template<typename T1>
inline
vec<T1, 4>
q_from_mat(mat<T1, 3, 3> const& m) {
T1 trace, s, hos;
trace = m(0, 0) + m(1, 1) + m(2, 2);
if (trace > static_cast<T1>(0.0)) {
s = sqrt(trace + static_cast<T1>(1.0));
hos = static_cast<T1>(0.5) / s;
return vec<T1, 4>(s * static_cast<T1>(0.5), (m(2, 1) - m(1, 2)) * hos, (m(0, 2) - m(2, 0)) * hos, (m(1, 0) - m(0, 1)) * hos);
} else {
int biggest;
enum {A,T,I};
if (m(0, 0) > m(1, 1)) {
if (m(2, 2) > m(0, 0)) biggest = I;
else biggest = A;
} else {
if (m(2, 2) > m(0, 0)) biggest = I;
else biggest = T;
}
switch (biggest) {
case A:
s = sqrt( m(0, 0) - (m(1, 1) + m(2, 2)) + static_cast<T1>(1.0));
if (s > (100 * std::numeric_limits<T1>::epsilon())) {
hos = static_cast<T1>(0.5) / s;
return vec<T1, 4>((m(2, 1) - m(1, 2)) * hos, s * static_cast<T1>(0.5), (m(0, 1) + m(1, 0)) * hos, (m(0, 2) + m(2, 0)) * hos);
}
// I
s = sqrt( m(2, 2) - (m(0, 0) + m(1, 1)) + static_cast<T1>(1.0));
if (s > (100 * std::numeric_limits<T1>::epsilon())) {
hos = static_cast<T1>(0.5) / s;
return vec<T1, 4>((m(1, 0) - m(0, 1)) * hos, (m(2, 0) + m(0, 2)) * hos, (m(2, 1) + m(1, 2)) * hos, s * static_cast<T1>(0.5));
}
// T
s = sqrt( m(1, 1) - (m(2, 2) + m(0, 0)) + static_cast<T1>(1.0));
if (s > (100 * std::numeric_limits<T1>::epsilon())) {
hos = static_cast<T1>(0.5) / s;
return vec<T1, 4>((m(0, 2) - m(2, 0)) * hos, (m(1, 0) + m(0, 1)) * hos, s * static_cast<T1>(0.5), (m(1, 2) + m(2, 1)) * hos);
}
break;
case T:
s = sqrt( m(1, 1) - (m(2, 2) + m(0, 0)) + static_cast<T1>(1.0));
if (s > (100 * std::numeric_limits<T1>::epsilon())) {
hos = static_cast<T1>(0.5) / s;
return vec<T1, 4>((m(0, 2) - m(2, 0)) * hos, (m(1, 0) + m(0, 1)) * hos, s * static_cast<T1>(0.5), (m(1, 2) + m(2, 1)) * hos);
}
// I
s = sqrt( m(2, 2) - (m(0, 0) + m(1, 1)) + static_cast<T1>(1.0));
if (s > (100 * std::numeric_limits<T1>::epsilon())) {
hos = static_cast<T1>(0.5) / s;
return vec<T1, 4>((m(1, 0) - m(0, 1)) * hos, (m(2, 0) + m(0, 2)) * hos, (m(2, 1) + m(1, 2)) * hos, s * static_cast<T1>(0.5));
}
// A
s = sqrt( m(0, 0) - (m(1, 1) + m(2, 2)) + static_cast<T1>(1.0));
if (s > (100 * std::numeric_limits<T1>::epsilon())) {
hos = static_cast<T1>(0.5) / s;
return vec<T1, 4>((m(2, 1) - m(1, 2)) * hos, s * static_cast<T1>(0.5), (m(0, 1) + m(1, 0)) * hos, (m(0, 2) + m(2, 0)) * hos);
}
break;
case I:
s = sqrt( m(2, 2) - (m(0, 0) + m(1, 1)) + static_cast<T1>(1.0));
if (s > (100 * std::numeric_limits<T1>::epsilon())) {
hos = static_cast<T1>(0.5) / s;
return vec<T1, 4>((m(1, 0) - m(0, 1)) * hos, (m(2, 0) + m(0, 2)) * hos, (m(2, 1) + m(1, 2)) * hos, s * static_cast<T1>(0.5));
}
// A
s = sqrt( m(0, 0) - (m(1, 1) + m(2, 2)) + static_cast<T1>(1.0));
if (s > (100 * std::numeric_limits<T1>::epsilon())) {
hos = static_cast<T1>(0.5) / s;
return vec<T1, 4>((m(2, 1) - m(1, 2)) * hos, s * static_cast<T1>(0.5), (m(0, 1) + m(1, 0)) * hos, (m(0, 2) + m(2, 0)) * hos);
}
// T
s = sqrt( m(1, 1) - (m(2, 2) + m(0, 0)) + static_cast<T1>(1.0));
if (s > (100 * std::numeric_limits<T1>::epsilon())) {
hos = static_cast<T1>(0.5) / s;
return vec<T1, 4>((m(0, 2) - m(2, 0)) * hos, (m(1, 0) + m(0, 1)) * hos, s * static_cast<T1>(0.5), (m(1, 2) + m(2, 1)) * hos);
}
break;
}
}
}
//get rotation matrix from quaternion
template<typename T>
inline
void
q_to_mat(vec<T, 4> const& q, mat<T, 3, 3>& m) {
T X2,Y2,Z2; //2*QX, 2*QY, 2*QZ
T XX2,YY2,ZZ2; //2*QX*QX, 2*QY*QY, 2*QZ*QZ
T XY2,XZ2,XW2; //2*QX*QY, 2*QX*QZ, 2*QX*QW
T YZ2,YW2,ZW2; // ...
X2 = 2 * q[1];
XX2 = X2 * q[1];
XY2 = X2 * q[2];
XZ2 = X2 * q[3];
XW2 = X2 * q[0];
Y2 = 2 * q[2];
YY2 = Y2 * q[2];
YZ2 = Y2 * q[3];
YW2 = Y2 * q[0];
Z2 = 2 * q[3];
ZZ2 = Z2 * q[3];
ZW2 = Z2 * q[0];
m(0, 0) = 1 - YY2 - ZZ2;
m(0, 1) = XY2 - ZW2;
m(0, 2) = XZ2 + YW2;
m(1, 0) = XY2 + ZW2;
m(1, 1) = 1 - XX2 - ZZ2;
m(1, 2) = YZ2 - XW2;
m(2, 0) = XZ2 - YW2;
m(2, 1) = YZ2 + XW2;
m(2, 2) = 1 - XX2 - YY2;
}
template<typename T, size_t R, size_t C>
mat<T, R, C>
cmat(T const* m)
{
mat<T, R, C> res;
for(int i = 0; i < R; ++i) {
for(int j = 0; j < C; ++j) {
res(i, j) = m[i * C + j];
}
}
return res;
}
} //namespace mvl
#endif

View File

@@ -1,85 +1,85 @@
/*
Bullet Continuous Collision Detection and Physics Library Maya Plugin
Copyright (c) 2008 Walt Disney Studios
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising
from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must
not claim that you wrote the original software. If you use this
software in a product, an acknowledgment in the product documentation
would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must
not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Written by: Nicola Candussi <nicola@fluidinteractive.com>
*/
//traits.h
#ifndef MVL_TRAITS_H
#define MVL_TRAITS_H
namespace mvl {
//simple promotion for now
//check if a type is a POD
template<typename T>
struct isPOD { enum { value = false }; };
template<> struct isPOD<char> { enum { value = true }; };
template<> struct isPOD<short> { enum { value = true }; };
template<> struct isPOD<int> { enum { value = true }; };
template<> struct isPOD<float> { enum { value = true }; };
template<> struct isPOD<double> { enum { value = true }; };
template<> struct isPOD<long double> { enum { value = true }; };
//
template<bool Condition, typename T1, typename T2> struct ifThenElse { typedef T2 value_type; };
template<typename T1, typename T2> struct ifThenElse<true, T1, T2> { typedef T1 value_type; };
template<typename T1, typename T2>
struct promote_traits
{
typedef typename ifThenElse<isPOD<T1>::value, T2, T1>::value_type value_type;
};
template<typename T>
struct promote_traits<T, T>
{
typedef T value_type;
};
#define TRAITS_DEFINE_MACRO(T1, T2, TP) \
template<> \
struct promote_traits<T1, T2> \
{ \
typedef TP value_type; \
}; \
template<> \
struct promote_traits<T2, T1> \
{ \
typedef TP value_type; \
};
TRAITS_DEFINE_MACRO(int, float, float)
TRAITS_DEFINE_MACRO(int, double, double)
TRAITS_DEFINE_MACRO(int, long double, long double)
TRAITS_DEFINE_MACRO(float, double, double)
TRAITS_DEFINE_MACRO(float, long double, long double)
TRAITS_DEFINE_MACRO(double, long double, long double)
#undef TRAITS_DEFINE_MACRO
} // namespace mvl
#endif
/*
Bullet Continuous Collision Detection and Physics Library Maya Plugin
Copyright (c) 2008 Walt Disney Studios
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising
from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must
not claim that you wrote the original software. If you use this
software in a product, an acknowledgment in the product documentation
would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must
not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Written by: Nicola Candussi <nicola@fluidinteractive.com>
*/
//traits.h
#ifndef MVL_TRAITS_H
#define MVL_TRAITS_H
namespace mvl {
//simple promotion for now
//check if a type is a POD
template<typename T>
struct isPOD { enum { value = false }; };
template<> struct isPOD<char> { enum { value = true }; };
template<> struct isPOD<short> { enum { value = true }; };
template<> struct isPOD<int> { enum { value = true }; };
template<> struct isPOD<float> { enum { value = true }; };
template<> struct isPOD<double> { enum { value = true }; };
template<> struct isPOD<long double> { enum { value = true }; };
//
template<bool Condition, typename T1, typename T2> struct ifThenElse { typedef T2 value_type; };
template<typename T1, typename T2> struct ifThenElse<true, T1, T2> { typedef T1 value_type; };
template<typename T1, typename T2>
struct promote_traits
{
typedef typename ifThenElse<isPOD<T1>::value, T2, T1>::value_type value_type;
};
template<typename T>
struct promote_traits<T, T>
{
typedef T value_type;
};
#define TRAITS_DEFINE_MACRO(T1, T2, TP) \
template<> \
struct promote_traits<T1, T2> \
{ \
typedef TP value_type; \
}; \
template<> \
struct promote_traits<T2, T1> \
{ \
typedef TP value_type; \
};
TRAITS_DEFINE_MACRO(int, float, float)
TRAITS_DEFINE_MACRO(int, double, double)
TRAITS_DEFINE_MACRO(int, long double, long double)
TRAITS_DEFINE_MACRO(float, double, double)
TRAITS_DEFINE_MACRO(float, long double, long double)
TRAITS_DEFINE_MACRO(double, long double, long double)
#undef TRAITS_DEFINE_MACRO
} // namespace mvl
#endif

View File

@@ -1,61 +1,61 @@
/*
Bullet Continuous Collision Detection and Physics Library Maya Plugin
Copyright (c) 2008 Walt Disney Studios
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising
from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must
not claim that you wrote the original software. If you use this
software in a product, an acknowledgment in the product documentation
would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must
not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Written by: Nicola Candussi <nicola@fluidinteractive.com>
*/
//util.h
#ifndef MVL_UTIL_H
#define MVL_UTIL_H
#include <cmath>
#include "base.h"
#include "traits.h"
#include "vec.h"
namespace mvl {
//translation
template<typename T>
inline
mat<T, 4, 4> translation(vec<T, 3> const& v)
{
return mat<T, 4, 4>(1, 0, 0, v(0),
0, 1, 0, v(1),
0, 0, 1, v(2),
0, 0, 0, 1);
}
//scale
template<typename T>
inline
mat<T, 4, 4> scale(vec<T, 3> const& v)
{
return mat<T, 4, 4> (v(0), 0, 0, 0,
0, v(1), 0, 0,
0, 0, v(2), 0,
0, 0, 0, 1);
}
} // namespace mvl
#endif
/*
Bullet Continuous Collision Detection and Physics Library Maya Plugin
Copyright (c) 2008 Walt Disney Studios
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising
from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must
not claim that you wrote the original software. If you use this
software in a product, an acknowledgment in the product documentation
would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must
not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Written by: Nicola Candussi <nicola@fluidinteractive.com>
*/
//util.h
#ifndef MVL_UTIL_H
#define MVL_UTIL_H
#include <cmath>
#include "base.h"
#include "traits.h"
#include "vec.h"
namespace mvl {
//translation
template<typename T>
inline
mat<T, 4, 4> translation(vec<T, 3> const& v)
{
return mat<T, 4, 4>(1, 0, 0, v(0),
0, 1, 0, v(1),
0, 0, 1, v(2),
0, 0, 0, 1);
}
//scale
template<typename T>
inline
mat<T, 4, 4> scale(vec<T, 3> const& v)
{
return mat<T, 4, 4> (v(0), 0, 0, 0,
0, v(1), 0, 0,
0, 0, v(2), 0,
0, 0, 0, 1);
}
} // namespace mvl
#endif

View File

@@ -1,347 +1,347 @@
/*
Bullet Continuous Collision Detection and Physics Library Maya Plugin
Copyright (c) 2008 Walt Disney Studios
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising
from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must
not claim that you wrote the original software. If you use this
software in a product, an acknowledgment in the product documentation
would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must
not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Written by: Nicola Candussi <nicola@fluidinteractive.com>
*/
//vec.h
#ifndef MVL_VEC_H
#define MVL_VEC_H
#include <iostream>
#include <cmath>
#include "base.h"
#include "traits.h"
namespace mvl {
template<typename T, std::size_t Sz>
class vec
{
public:
typedef T value_type;
typedef T& reference;
typedef T const& const_reference;
typedef T* iterator;
typedef T const* const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
public:
enum {
Size = Sz,
};
public:
//constructors
explicit vec() {}
template<typename T2>
vec(vec<T2, Size> const& v)
{
*this = v;
}
explicit vec(value_type val)
{
for(int i = 0; i < Size; ++i) {
m_data[i] = val;
}
}
explicit vec(value_type x0, value_type x1)
{
m_data[0] = x0; m_data[1] = x1;
}
explicit vec(value_type x0, value_type x1, value_type x2)
{
m_data[0] = x0; m_data[1] = x1; m_data[2] = x2;
}
explicit vec(value_type x0, value_type x1, value_type x2, value_type x3)
{
m_data[0] = x0; m_data[1] = x1; m_data[2] = x2; m_data[3] = x3;
}
explicit vec(value_type x0, value_type x1, value_type x2, value_type x3, value_type x4)
{
m_data[0] = x0; m_data[1] = x1; m_data[2] = x2; m_data[3] = x3; m_data[4] = x4;
}
explicit vec(value_type x0, value_type x1, value_type x2, value_type x3, value_type x4, value_type x5)
{
m_data[0] = x0; m_data[1] = x1; m_data[2] = x2; m_data[3] = x3; m_data[4] = x4; m_data[5] = x5;
}
public:
//data access
value_type operator[](std::size_t i) const { return m_data[i]; }
reference operator[](std::size_t i) { return m_data[i]; }
value_type operator()(std::size_t i) const { return m_data[i]; }
reference operator()(std::size_t i) { return m_data[i]; }
public:
//stl
static std::size_t size() { return Size; }
static std::size_t max_size() { return Size; }
static bool empty() { return false; }
iterator begin() { return m_data; }
iterator end() { return m_data + Size; }
const_iterator begin() const { return m_data; }
const_iterator end() const { return m_data + Size; }
reverse_iterator rbegin() { return reverse_iterator(end()); }
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); }
const_reverse_iterator rend() const { return const_reverse_iterator(begin()); }
value_type front() { return m_data[0]; }
value_type back() { return m_data[Size - 1]; }
const_reference front() const { return m_data[0]; }
const_reference back() const { return m_data[Size - 1]; }
friend std::ostream& operator << (std::ostream& out, vec const& v) {
out << "(";
for(size_t i = 0; i < Size - 1; i++) {
out << v(i) << ", ";
}
out << v(Size - 1) << ")";
return out;
}
public:
//assignment
vec& operator=(vec const& rhs) {
for(int i = 0; i < Size; ++i) {
m_data[i] = rhs[i];
}
return *this;
}
template<typename T2>
vec& operator=(vec<T2, Size> const& rhs) {
for(int i = 0; i < Size; ++i) {
m_data[i] = rhs[i];
}
return *this;
}
private:
T m_data[Size];
};
//assignment operators
// OP(vec<T1>, vec<T2>)
// OP(vec<T>, T)
#define VEC_IMPLEMENT_MACRO(OP) \
template<typename T1, typename T2, std::size_t Sz> \
inline \
vec<T1, Sz>& \
operator OP(vec<T1, Sz>& lhs, vec<T2, Sz> const& rhs) { \
for(int i = 0; i < Sz; ++i) { \
lhs[i] OP rhs[i]; \
} \
return lhs; \
} \
\
template<typename T, std::size_t Sz> \
inline \
vec<T, Sz>& \
operator OP(vec<T, Sz>& lhs, T const& rhs) { \
for(int i = 0; i < Sz; ++i) { \
lhs[i] OP rhs; \
} \
return lhs; \
} \
VEC_IMPLEMENT_MACRO(+=)
VEC_IMPLEMENT_MACRO(-=)
VEC_IMPLEMENT_MACRO(*=)
VEC_IMPLEMENT_MACRO(/=)
#undef VEC_IMPLEMENT_MACRO
//operator + (vec, vec)
template<typename T1, typename T2, std::size_t Sz>
inline
vec<typename promote_traits<T1, T2>::value_type, Sz>
operator + (vec<T1, Sz> const& lhs, vec<T2, Sz> const& rhs)
{
vec<typename promote_traits<T1, T2>::value_type, Sz> res;
for(int i = 0; i < Sz; ++i) {
res[i] = lhs[i] + rhs[i];
}
return res;
}
//operator - (vec, vec)
template<typename T1, typename T2, std::size_t Sz>
inline
vec<typename promote_traits<T1, T2>::value_type, Sz>
operator - (vec<T1, Sz> const& lhs, vec<T2, Sz> const& rhs)
{
vec<typename promote_traits<T1, T2>::value_type, Sz> res;
for(int i = 0; i < Sz; ++i) {
res[i] = lhs[i] - rhs[i];
}
return res;
}
//operator * (vec, POD)
template<typename T1, typename T2, std::size_t Sz>
inline
vec<typename promote_traits<T1, T2>::value_type, Sz>
operator * (vec<T1, Sz> const& lhs, T2 const& rhs) {
vec<typename promote_traits<T1, T2>::value_type, Sz> res;
for(int i = 0; i < Sz; ++i) {
res[i] = lhs[i] * rhs;
}
return res;
}
//operator * (POD, vec)
template<typename T1, typename T2, std::size_t Sz>
inline
vec<typename promote_traits<T1, T2>::value_type, Sz>
operator * (T1 const& lhs, vec<T2, Sz> const& rhs) {
vec<typename promote_traits<T1, T2>::value_type, Sz> res;
for(int i = 0; i < Sz; ++i) {
res[i] = lhs * rhs[i];
}
return res;
}
//operator / (vec, POD)
template<typename T1, typename T2, std::size_t Sz>
inline
vec<typename promote_traits<T1, T2>::value_type, Sz>
operator / (vec<T1, Sz> const& lhs, T2 const& rhs) {
vec<typename promote_traits<T1, T2>::value_type, Sz> res;
for(int i = 0; i < Sz; ++i) {
res[i] = lhs[i] / rhs;
}
return res;
}
//element_prod(vec, vec)
template<typename T1, typename T2, std::size_t Sz>
inline
vec<typename promote_traits<T1, T2>::value_type, Sz>
element_prod(vec<T1, Sz> const& lhs, vec<T2, Sz> const& rhs) {
vec<typename promote_traits<T1, T2>::value_type, Sz> res;
for(int i = 0; i < Sz; ++i) {
res[i] = lhs[i] * rhs[i];
}
return res;
}
//element_div(vec, vec)
template<typename T1, typename T2, std::size_t Sz>
inline
vec<typename promote_traits<T1, T2>::value_type, Sz>
element_div(vec<T1, Sz> const& lhs, vec<T2, Sz> const& rhs) {
vec<typename promote_traits<T1, T2>::value_type, Sz> res;
for(int i = 0; i < Sz; ++i) {
res[i] = lhs[i] / rhs[i];
}
return res;
}
//unary operator -(expr_vec)
template<typename T, std::size_t Sz>
inline
vec<T, Sz>
operator -(vec<T, Sz> const& rhs) {
vec<T, Sz> res;
for(int i = 0; i < Sz; ++i) {
res[i] = -rhs[i];
}
return res;
}
//dot product
template<typename T1, typename T2, std::size_t Sz>
inline
typename promote_traits<T1, T2>::value_type
dot(vec<T1, Sz> const& lhs, vec<T2, Sz> const& rhs)
{
typename promote_traits<T1, T2>::value_type res(0);
for(int i = 0; i < Sz; ++i) {
res += rhs[i] * lhs[i];
}
return res;
}
//cross product
template<typename T1, typename T2>
inline
vec<typename promote_traits<T1, T2>::value_type, 3>
cross(vec<T1, 3> const& lhs, vec<T2, 3> const& rhs) {
typedef typename promote_traits<T1, T2>::value_type value_type;
return vec<value_type, 3>(lhs(1)*rhs(2) - rhs(1)*lhs(2),
rhs(0)*lhs(2) - lhs(0)*rhs(2),
lhs(0)*rhs(1) - rhs(0)*lhs(1));
}
//length of the vector
template<typename T, std::size_t Sz>
inline T
norm2(vec<T, Sz> const& rhs)
{
return static_cast<T>(sqrt(dot(rhs, rhs)));
}
//length of the vector squared
template<typename T, std::size_t Sz>
inline T
norm_squared(vec<T, Sz> const& rhs)
{
return dot(rhs, rhs);
}
//normalize the vector
template<typename T, std::size_t Sz>
inline
vec<T, Sz>
normalize(vec<T, Sz> const& v) {
typedef T value_type;
T tmp = norm2(v);
if(tmp == value_type(0)) {
tmp = value_type(0);
} else {
tmp = value_type(1) / tmp;
}
vec<T, Sz> res;
for(int i = 0; i < Sz; ++i) {
res[i] = v[i] * tmp;
}
return res;
}
} //namespace mvl
#endif
/*
Bullet Continuous Collision Detection and Physics Library Maya Plugin
Copyright (c) 2008 Walt Disney Studios
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising
from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must
not claim that you wrote the original software. If you use this
software in a product, an acknowledgment in the product documentation
would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must
not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Written by: Nicola Candussi <nicola@fluidinteractive.com>
*/
//vec.h
#ifndef MVL_VEC_H
#define MVL_VEC_H
#include <iostream>
#include <cmath>
#include "base.h"
#include "traits.h"
namespace mvl {
template<typename T, std::size_t Sz>
class vec
{
public:
typedef T value_type;
typedef T& reference;
typedef T const& const_reference;
typedef T* iterator;
typedef T const* const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
public:
enum {
Size = Sz,
};
public:
//constructors
explicit vec() {}
template<typename T2>
vec(vec<T2, Size> const& v)
{
*this = v;
}
explicit vec(value_type val)
{
for(int i = 0; i < Size; ++i) {
m_data[i] = val;
}
}
explicit vec(value_type x0, value_type x1)
{
m_data[0] = x0; m_data[1] = x1;
}
explicit vec(value_type x0, value_type x1, value_type x2)
{
m_data[0] = x0; m_data[1] = x1; m_data[2] = x2;
}
explicit vec(value_type x0, value_type x1, value_type x2, value_type x3)
{
m_data[0] = x0; m_data[1] = x1; m_data[2] = x2; m_data[3] = x3;
}
explicit vec(value_type x0, value_type x1, value_type x2, value_type x3, value_type x4)
{
m_data[0] = x0; m_data[1] = x1; m_data[2] = x2; m_data[3] = x3; m_data[4] = x4;
}
explicit vec(value_type x0, value_type x1, value_type x2, value_type x3, value_type x4, value_type x5)
{
m_data[0] = x0; m_data[1] = x1; m_data[2] = x2; m_data[3] = x3; m_data[4] = x4; m_data[5] = x5;
}
public:
//data access
value_type operator[](std::size_t i) const { return m_data[i]; }
reference operator[](std::size_t i) { return m_data[i]; }
value_type operator()(std::size_t i) const { return m_data[i]; }
reference operator()(std::size_t i) { return m_data[i]; }
public:
//stl
static std::size_t size() { return Size; }
static std::size_t max_size() { return Size; }
static bool empty() { return false; }
iterator begin() { return m_data; }
iterator end() { return m_data + Size; }
const_iterator begin() const { return m_data; }
const_iterator end() const { return m_data + Size; }
reverse_iterator rbegin() { return reverse_iterator(end()); }
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); }
const_reverse_iterator rend() const { return const_reverse_iterator(begin()); }
value_type front() { return m_data[0]; }
value_type back() { return m_data[Size - 1]; }
const_reference front() const { return m_data[0]; }
const_reference back() const { return m_data[Size - 1]; }
friend std::ostream& operator << (std::ostream& out, vec const& v) {
out << "(";
for(size_t i = 0; i < Size - 1; i++) {
out << v(i) << ", ";
}
out << v(Size - 1) << ")";
return out;
}
public:
//assignment
vec& operator=(vec const& rhs) {
for(int i = 0; i < Size; ++i) {
m_data[i] = rhs[i];
}
return *this;
}
template<typename T2>
vec& operator=(vec<T2, Size> const& rhs) {
for(int i = 0; i < Size; ++i) {
m_data[i] = rhs[i];
}
return *this;
}
private:
T m_data[Size];
};
//assignment operators
// OP(vec<T1>, vec<T2>)
// OP(vec<T>, T)
#define VEC_IMPLEMENT_MACRO(OP) \
template<typename T1, typename T2, std::size_t Sz> \
inline \
vec<T1, Sz>& \
operator OP(vec<T1, Sz>& lhs, vec<T2, Sz> const& rhs) { \
for(int i = 0; i < Sz; ++i) { \
lhs[i] OP rhs[i]; \
} \
return lhs; \
} \
\
template<typename T, std::size_t Sz> \
inline \
vec<T, Sz>& \
operator OP(vec<T, Sz>& lhs, T const& rhs) { \
for(int i = 0; i < Sz; ++i) { \
lhs[i] OP rhs; \
} \
return lhs; \
} \
VEC_IMPLEMENT_MACRO(+=)
VEC_IMPLEMENT_MACRO(-=)
VEC_IMPLEMENT_MACRO(*=)
VEC_IMPLEMENT_MACRO(/=)
#undef VEC_IMPLEMENT_MACRO
//operator + (vec, vec)
template<typename T1, typename T2, std::size_t Sz>
inline
vec<typename promote_traits<T1, T2>::value_type, Sz>
operator + (vec<T1, Sz> const& lhs, vec<T2, Sz> const& rhs)
{
vec<typename promote_traits<T1, T2>::value_type, Sz> res;
for(int i = 0; i < Sz; ++i) {
res[i] = lhs[i] + rhs[i];
}
return res;
}
//operator - (vec, vec)
template<typename T1, typename T2, std::size_t Sz>
inline
vec<typename promote_traits<T1, T2>::value_type, Sz>
operator - (vec<T1, Sz> const& lhs, vec<T2, Sz> const& rhs)
{
vec<typename promote_traits<T1, T2>::value_type, Sz> res;
for(int i = 0; i < Sz; ++i) {
res[i] = lhs[i] - rhs[i];
}
return res;
}
//operator * (vec, POD)
template<typename T1, typename T2, std::size_t Sz>
inline
vec<typename promote_traits<T1, T2>::value_type, Sz>
operator * (vec<T1, Sz> const& lhs, T2 const& rhs) {
vec<typename promote_traits<T1, T2>::value_type, Sz> res;
for(int i = 0; i < Sz; ++i) {
res[i] = lhs[i] * rhs;
}
return res;
}
//operator * (POD, vec)
template<typename T1, typename T2, std::size_t Sz>
inline
vec<typename promote_traits<T1, T2>::value_type, Sz>
operator * (T1 const& lhs, vec<T2, Sz> const& rhs) {
vec<typename promote_traits<T1, T2>::value_type, Sz> res;
for(int i = 0; i < Sz; ++i) {
res[i] = lhs * rhs[i];
}
return res;
}
//operator / (vec, POD)
template<typename T1, typename T2, std::size_t Sz>
inline
vec<typename promote_traits<T1, T2>::value_type, Sz>
operator / (vec<T1, Sz> const& lhs, T2 const& rhs) {
vec<typename promote_traits<T1, T2>::value_type, Sz> res;
for(int i = 0; i < Sz; ++i) {
res[i] = lhs[i] / rhs;
}
return res;
}
//element_prod(vec, vec)
template<typename T1, typename T2, std::size_t Sz>
inline
vec<typename promote_traits<T1, T2>::value_type, Sz>
element_prod(vec<T1, Sz> const& lhs, vec<T2, Sz> const& rhs) {
vec<typename promote_traits<T1, T2>::value_type, Sz> res;
for(int i = 0; i < Sz; ++i) {
res[i] = lhs[i] * rhs[i];
}
return res;
}
//element_div(vec, vec)
template<typename T1, typename T2, std::size_t Sz>
inline
vec<typename promote_traits<T1, T2>::value_type, Sz>
element_div(vec<T1, Sz> const& lhs, vec<T2, Sz> const& rhs) {
vec<typename promote_traits<T1, T2>::value_type, Sz> res;
for(int i = 0; i < Sz; ++i) {
res[i] = lhs[i] / rhs[i];
}
return res;
}
//unary operator -(expr_vec)
template<typename T, std::size_t Sz>
inline
vec<T, Sz>
operator -(vec<T, Sz> const& rhs) {
vec<T, Sz> res;
for(int i = 0; i < Sz; ++i) {
res[i] = -rhs[i];
}
return res;
}
//dot product
template<typename T1, typename T2, std::size_t Sz>
inline
typename promote_traits<T1, T2>::value_type
dot(vec<T1, Sz> const& lhs, vec<T2, Sz> const& rhs)
{
typename promote_traits<T1, T2>::value_type res(0);
for(int i = 0; i < Sz; ++i) {
res += rhs[i] * lhs[i];
}
return res;
}
//cross product
template<typename T1, typename T2>
inline
vec<typename promote_traits<T1, T2>::value_type, 3>
cross(vec<T1, 3> const& lhs, vec<T2, 3> const& rhs) {
typedef typename promote_traits<T1, T2>::value_type value_type;
return vec<value_type, 3>(lhs(1)*rhs(2) - rhs(1)*lhs(2),
rhs(0)*lhs(2) - lhs(0)*rhs(2),
lhs(0)*rhs(1) - rhs(0)*lhs(1));
}
//length of the vector
template<typename T, std::size_t Sz>
inline T
norm2(vec<T, Sz> const& rhs)
{
return static_cast<T>(sqrt(dot(rhs, rhs)));
}
//length of the vector squared
template<typename T, std::size_t Sz>
inline T
norm_squared(vec<T, Sz> const& rhs)
{
return dot(rhs, rhs);
}
//normalize the vector
template<typename T, std::size_t Sz>
inline
vec<T, Sz>
normalize(vec<T, Sz> const& v) {
typedef T value_type;
T tmp = norm2(v);
if(tmp == value_type(0)) {
tmp = value_type(0);
} else {
tmp = value_type(1) / tmp;
}
vec<T, Sz> res;
for(int i = 0; i < Sz; ++i) {
res[i] = v[i] * tmp;
}
return res;
}
} //namespace mvl
#endif