updated Bullet sequential impulse constraint solver, so it matches 100% ODE PGS quickstep solver innerloop, mainly by renaming variables...
This commit is contained in:
@@ -35,7 +35,7 @@ int m_numRows = 3;
|
||||
|
||||
void btOdeContactJoint::GetInfo1(Info1 *info)
|
||||
{
|
||||
info->m = m_numRows;
|
||||
info->m_numConstraintRows = m_numRows;
|
||||
//friction adds another 2...
|
||||
|
||||
info->nub = 0;
|
||||
@@ -107,16 +107,12 @@ void btOdeContactJoint::GetInfo2(Info2 *info)
|
||||
btVector3 relativePositionA;
|
||||
{
|
||||
relativePositionA = point.getPositionWorldOnA() - m_body0->m_centerOfMassPosition;
|
||||
dVector3 c1;
|
||||
c1[0] = relativePositionA.x();
|
||||
c1[1] = relativePositionA.y();
|
||||
c1[2] = relativePositionA.z();
|
||||
|
||||
// set jacobian for normal
|
||||
info->J1l[0] = normal[0];
|
||||
info->J1l[1] = normal[1];
|
||||
info->J1l[2] = normal[2];
|
||||
dCROSS (info->J1a,=,c1,normal);
|
||||
info->m_J1linearAxis[0] = normal[0];
|
||||
info->m_J1linearAxis[1] = normal[1];
|
||||
info->m_J1linearAxis[2] = normal[2];
|
||||
dCROSS (info->m_J1angularAxis,=,relativePositionA,normal);
|
||||
|
||||
}
|
||||
|
||||
@@ -126,30 +122,24 @@ void btOdeContactJoint::GetInfo2(Info2 *info)
|
||||
// if (GetBody1())
|
||||
|
||||
{
|
||||
dVector3 c2;
|
||||
btVector3 posBody1 = m_body1 ? m_body1->m_centerOfMassPosition : btVector3(0,0,0);
|
||||
relativePositionB = point.getPositionWorldOnB() - posBody1;
|
||||
|
||||
// for (i=0; i<3; i++) c2[i] = j->contact.geom.pos[i] -
|
||||
// j->node[1].body->pos[i];
|
||||
c2[0] = relativePositionB.x();
|
||||
c2[1] = relativePositionB.y();
|
||||
c2[2] = relativePositionB.z();
|
||||
|
||||
info->J2l[0] = -normal[0];
|
||||
info->J2l[1] = -normal[1];
|
||||
info->J2l[2] = -normal[2];
|
||||
dCROSS (info->J2a,= -,c2,normal);
|
||||
info->m_J2linearAxis[0] = -normal[0];
|
||||
info->m_J2linearAxis[1] = -normal[1];
|
||||
info->m_J2linearAxis[2] = -normal[2];
|
||||
dCROSS (info->m_J2angularAxis,= -,relativePositionB,normal);
|
||||
}
|
||||
}
|
||||
|
||||
btScalar k = info->fps * info->erp;
|
||||
|
||||
float depth = -point.getDistance();
|
||||
// if (depth < 0.f)
|
||||
// depth = 0.f;
|
||||
|
||||
info->c[0] = k * depth;
|
||||
info->m_constraintError[0] = depth * info->fps * info->erp ;
|
||||
//float maxvel = .2f;
|
||||
|
||||
// if (info->c[0] > maxvel)
|
||||
@@ -164,12 +154,12 @@ void btOdeContactJoint::GetInfo2(Info2 *info)
|
||||
|
||||
|
||||
// set LCP limits for normal
|
||||
info->lo[0] = 0;
|
||||
info->hi[0] = 1e30f;//dInfinity;
|
||||
info->lo[1] = 0;
|
||||
info->hi[1] = 0.f;
|
||||
info->lo[2] = 0.f;
|
||||
info->hi[2] = 0.f;
|
||||
info->m_lowerLimit[0] = 0;
|
||||
info->m_higherLimit[0] = 1e30f;//dInfinity;
|
||||
info->m_lowerLimit[1] = 0;
|
||||
info->m_higherLimit[1] = 0.f;
|
||||
info->m_lowerLimit[2] = 0.f;
|
||||
info->m_higherLimit[2] = 0.f;
|
||||
|
||||
#define DO_THE_FRICTION_2
|
||||
#ifdef DO_THE_FRICTION_2
|
||||
@@ -197,15 +187,15 @@ void btOdeContactJoint::GetInfo2(Info2 *info)
|
||||
|
||||
dPlaneSpace1 (normal,t1,t2);
|
||||
|
||||
info->J1l[s+0] = t1[0];
|
||||
info->J1l[s+1] = t1[1];
|
||||
info->J1l[s+2] = t1[2];
|
||||
dCROSS (info->J1a+s,=,c1,t1);
|
||||
info->m_J1linearAxis[s+0] = t1[0];
|
||||
info->m_J1linearAxis[s+1] = t1[1];
|
||||
info->m_J1linearAxis[s+2] = t1[2];
|
||||
dCROSS (info->m_J1angularAxis+s,=,c1,t1);
|
||||
// if (1) { //j->node[1].body) {
|
||||
info->J2l[s+0] = -t1[0];
|
||||
info->J2l[s+1] = -t1[1];
|
||||
info->J2l[s+2] = -t1[2];
|
||||
dCROSS (info->J2a+s,= -,c2,t1);
|
||||
info->m_J2linearAxis[s+0] = -t1[0];
|
||||
info->m_J2linearAxis[s+1] = -t1[1];
|
||||
info->m_J2linearAxis[s+2] = -t1[2];
|
||||
dCROSS (info->m_J2angularAxis+s,= -,c2,t1);
|
||||
// }
|
||||
// set right hand side
|
||||
// if (0) {//j->contact.surface.mode & dContactMotion1) {
|
||||
@@ -216,8 +206,8 @@ void btOdeContactJoint::GetInfo2(Info2 *info)
|
||||
//1e30f
|
||||
|
||||
|
||||
info->lo[1] = -friction;//-j->contact.surface.mu;
|
||||
info->hi[1] = friction;//j->contact.surface.mu;
|
||||
info->m_lowerLimit[1] = -friction;//-j->contact.surface.mu;
|
||||
info->m_higherLimit[1] = friction;//j->contact.surface.mu;
|
||||
// if (1)//j->contact.surface.mode & dContactApprox1_1)
|
||||
info->findex[1] = 0;
|
||||
|
||||
@@ -233,15 +223,15 @@ void btOdeContactJoint::GetInfo2(Info2 *info)
|
||||
|
||||
// second friction direction
|
||||
if (m_numRows >= 3) {
|
||||
info->J1l[s2+0] = t2[0];
|
||||
info->J1l[s2+1] = t2[1];
|
||||
info->J1l[s2+2] = t2[2];
|
||||
dCROSS (info->J1a+s2,=,c1,t2);
|
||||
info->m_J1linearAxis[s2+0] = t2[0];
|
||||
info->m_J1linearAxis[s2+1] = t2[1];
|
||||
info->m_J1linearAxis[s2+2] = t2[2];
|
||||
dCROSS (info->m_J1angularAxis+s2,=,c1,t2);
|
||||
// if (1) { //j->node[1].body) {
|
||||
info->J2l[s2+0] = -t2[0];
|
||||
info->J2l[s2+1] = -t2[1];
|
||||
info->J2l[s2+2] = -t2[2];
|
||||
dCROSS (info->J2a+s2,= -,c2,t2);
|
||||
info->m_J2linearAxis[s2+0] = -t2[0];
|
||||
info->m_J2linearAxis[s2+1] = -t2[1];
|
||||
info->m_J2linearAxis[s2+2] = -t2[2];
|
||||
dCROSS (info->m_J2angularAxis+s2,= -,c2,t2);
|
||||
// }
|
||||
|
||||
// set right hand side
|
||||
@@ -251,18 +241,18 @@ void btOdeContactJoint::GetInfo2(Info2 *info)
|
||||
// set LCP bounds and friction index. this depends on the approximation
|
||||
// mode
|
||||
// if (0){//j->contact.surface.mode & dContactMu2) {
|
||||
//info->lo[2] = -j->contact.surface.mu2;
|
||||
//info->hi[2] = j->contact.surface.mu2;
|
||||
//info->m_lowerLimit[2] = -j->contact.surface.mu2;
|
||||
//info->m_higherLimit[2] = j->contact.surface.mu2;
|
||||
// }
|
||||
// else {
|
||||
info->lo[2] = -friction;
|
||||
info->hi[2] = friction;
|
||||
info->m_lowerLimit[2] = -friction;
|
||||
info->m_higherLimit[2] = friction;
|
||||
// }
|
||||
// if (0)//j->contact.surface.mode & dContactApprox1_2)
|
||||
if (1)//j->contact.surface.mode & dContactApprox1_2)
|
||||
|
||||
// {
|
||||
// info->findex[2] = 0;
|
||||
// }
|
||||
{
|
||||
info->findex[2] = 0;
|
||||
}
|
||||
// set slip (constraint force mixing)
|
||||
// if (0) //j->contact.surface.mode & dContactSlip2)
|
||||
|
||||
|
||||
@@ -44,7 +44,7 @@ public:
|
||||
|
||||
|
||||
struct Info1 {
|
||||
int m,nub;
|
||||
int m_numConstraintRows,nub;
|
||||
};
|
||||
|
||||
// info returned by getInfo2 function
|
||||
@@ -58,7 +58,7 @@ public:
|
||||
// n*3 jacobian sub matrices, stored by rows. these matrices will have
|
||||
// been initialized to 0 on entry. if the second body is zero then the
|
||||
// J2xx pointers may be 0.
|
||||
btScalar *J1l,*J1a,*J2l,*J2a;
|
||||
btScalar *m_J1linearAxis,*m_J1angularAxis,*m_J2linearAxis,*m_J2angularAxis;
|
||||
|
||||
// elements to jump from one row to the next in J's
|
||||
int rowskip;
|
||||
@@ -66,10 +66,10 @@ public:
|
||||
// right hand sides of the equation J*v = c + cfm * lambda. cfm is the
|
||||
// "constraint force mixing" vector. c is set to zero on entry, cfm is
|
||||
// set to a constant value (typically very small or zero) value on entry.
|
||||
btScalar *c,*cfm;
|
||||
btScalar *m_constraintError,*cfm;
|
||||
|
||||
// lo and hi limits for variables (set to -/+ infinity on entry).
|
||||
btScalar *lo,*hi;
|
||||
btScalar *m_lowerLimit,*m_higherLimit;
|
||||
|
||||
// findex vector for variables. see the LCP solver interface for a
|
||||
// description of what this does. this is set to -1 on entry.
|
||||
|
||||
@@ -58,9 +58,7 @@ class btOdeJoint;
|
||||
//to bridge with ODE quickstep, we make a temp copy of the rigidbodies in each simultion island
|
||||
|
||||
|
||||
btOdeQuickstepConstraintSolver::btOdeQuickstepConstraintSolver():
|
||||
m_cfm(0.f),//1e-5f),
|
||||
m_erp(0.4f)
|
||||
btOdeQuickstepConstraintSolver::btOdeQuickstepConstraintSolver()
|
||||
{
|
||||
}
|
||||
|
||||
@@ -124,7 +122,7 @@ btScalar btOdeQuickstepConstraintSolver::solveGroup(btCollisionObject** /*bodies
|
||||
// printf(" numJoints > numManifolds * 4 + numConstraints");
|
||||
|
||||
|
||||
m_SorLcpSolver.SolveInternal1(m_cfm,m_erp,m_odeBodies,numBodies,m_joints,numJoints,infoGlobal,stackAlloc); ///do
|
||||
m_SorLcpSolver.SolveInternal1(m_odeBodies,numBodies,m_joints,numJoints,infoGlobal,stackAlloc); ///do
|
||||
|
||||
//write back resulting velocities
|
||||
for (int i=0;i<numBodies;i++)
|
||||
@@ -264,8 +262,9 @@ void btOdeQuickstepConstraintSolver::ConvertConstraint(btPersistentManifold* man
|
||||
{
|
||||
|
||||
|
||||
manifold->refreshContactPoints(((btRigidBody*)manifold->getBody0())->getCenterOfMassTransform(),
|
||||
/* manifold->refreshContactPoints(((btRigidBody*)manifold->getBody0())->getCenterOfMassTransform(),
|
||||
((btRigidBody*)manifold->getBody1())->getCenterOfMassTransform());
|
||||
*/
|
||||
|
||||
int bodyId0 = _bodyId0,bodyId1 = _bodyId1;
|
||||
|
||||
|
||||
@@ -40,9 +40,6 @@ private:
|
||||
int m_CurJoint;
|
||||
int m_CurTypedJoint;
|
||||
|
||||
float m_cfm;
|
||||
float m_erp;
|
||||
|
||||
btSorLcpSolver m_SorLcpSolver;
|
||||
|
||||
btAlignedObjectArray<btOdeSolverBody*> m_odeBodies;
|
||||
@@ -74,19 +71,7 @@ public:
|
||||
|
||||
virtual btScalar solveGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifold,int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& info,btIDebugDraw* debugDrawer,btStackAlloc* stackAlloc,btDispatcher* dispatcher);
|
||||
|
||||
///setConstraintForceMixing, the cfm adds some positive value to the main diagonal
|
||||
///This can improve convergence (make matrix positive semidefinite), but it can make the simulation look more 'springy'
|
||||
void setConstraintForceMixing(float cfm) {
|
||||
m_cfm = cfm;
|
||||
}
|
||||
|
||||
///setErrorReductionParamter sets the maximum amount of error reduction
|
||||
///which limits energy addition during penetration depth recovery
|
||||
void setErrorReductionParamter(float erp)
|
||||
{
|
||||
m_erp = erp;
|
||||
}
|
||||
|
||||
|
||||
///clear internal cached data and reset random seed
|
||||
void reset()
|
||||
{
|
||||
|
||||
@@ -80,7 +80,7 @@ OdeP2PJoint::OdeP2PJoint(
|
||||
|
||||
void OdeP2PJoint::GetInfo1(Info1 *info)
|
||||
{
|
||||
info->m = 3;
|
||||
info->m_numConstraintRows = 3;
|
||||
info->nub = 3;
|
||||
}
|
||||
|
||||
@@ -133,24 +133,24 @@ void OdeP2PJoint::GetInfo2(Info2 *info)
|
||||
int s = info->rowskip;
|
||||
|
||||
// set jacobian
|
||||
info->J1l[0] = 1;
|
||||
info->J1l[s+1] = 1;
|
||||
info->J1l[2*s+2] = 1;
|
||||
info->m_J1linearAxis[0] = 1;
|
||||
info->m_J1linearAxis[s+1] = 1;
|
||||
info->m_J1linearAxis[2*s+2] = 1;
|
||||
|
||||
|
||||
btVector3 a1,a2;
|
||||
|
||||
a1 = body0_trans.getBasis()*p2pconstraint->getPivotInA();
|
||||
//dMULTIPLY0_331 (a1, body0_mat,m_constraint->m_pivotInA);
|
||||
dCROSSMAT (info->J1a,a1,s,-,+);
|
||||
dCROSSMAT (info->m_J1angularAxis,a1,s,-,+);
|
||||
if (m_body1)
|
||||
{
|
||||
info->J2l[0] = -1;
|
||||
info->J2l[s+1] = -1;
|
||||
info->J2l[2*s+2] = -1;
|
||||
info->m_J2linearAxis[0] = -1;
|
||||
info->m_J2linearAxis[s+1] = -1;
|
||||
info->m_J2linearAxis[2*s+2] = -1;
|
||||
a2 = body1_trans.getBasis()*p2pconstraint->getPivotInB();
|
||||
//dMULTIPLY0_331 (a2,body1_mat,m_constraint->m_pivotInB);
|
||||
dCROSSMAT (info->J2a,a2,s,+,-);
|
||||
dCROSSMAT (info->m_J2angularAxis,a2,s,+,-);
|
||||
}
|
||||
|
||||
|
||||
@@ -160,7 +160,7 @@ void OdeP2PJoint::GetInfo2(Info2 *info)
|
||||
{
|
||||
for (int j=0; j<3; j++)
|
||||
{
|
||||
info->c[j] = k * (a2[j] + body1_trans.getOrigin()[j] -
|
||||
info->m_constraintError[j] = k * (a2[j] + body1_trans.getOrigin()[j] -
|
||||
a1[j] - body0_trans.getOrigin()[j]);
|
||||
}
|
||||
}
|
||||
@@ -168,7 +168,7 @@ void OdeP2PJoint::GetInfo2(Info2 *info)
|
||||
{
|
||||
for (int j=0; j<3; j++)
|
||||
{
|
||||
info->c[j] = k * (p2pconstraint->getPivotInB()[j] - a1[j] -
|
||||
info->m_constraintError[j] = k * (p2pconstraint->getPivotInB()[j] - a1[j] -
|
||||
body0_trans.getOrigin()[j]);
|
||||
}
|
||||
}
|
||||
@@ -193,8 +193,8 @@ int bt_get_limit_motor_info2(
|
||||
|
||||
if (powered || limit)
|
||||
{
|
||||
btScalar *J1 = rotational ? info->J1a : info->J1l;
|
||||
btScalar *J2 = rotational ? info->J2a : info->J2l;
|
||||
btScalar *J1 = rotational ? info->m_J1angularAxis : info->m_J1linearAxis;
|
||||
btScalar *J2 = rotational ? info->m_J2angularAxis : info->m_J2linearAxis;
|
||||
|
||||
J1[srow+0] = ax1[0];
|
||||
J1[srow+1] = ax1[1];
|
||||
@@ -232,12 +232,12 @@ int bt_get_limit_motor_info2(
|
||||
|
||||
ltd = c.cross(ax1);
|
||||
|
||||
info->J1a[srow+0] = ltd[0];
|
||||
info->J1a[srow+1] = ltd[1];
|
||||
info->J1a[srow+2] = ltd[2];
|
||||
info->J2a[srow+0] = ltd[0];
|
||||
info->J2a[srow+1] = ltd[1];
|
||||
info->J2a[srow+2] = ltd[2];
|
||||
info->m_J1angularAxis[srow+0] = ltd[0];
|
||||
info->m_J1angularAxis[srow+1] = ltd[1];
|
||||
info->m_J1angularAxis[srow+2] = ltd[2];
|
||||
info->m_J2angularAxis[srow+0] = ltd[0];
|
||||
info->m_J2angularAxis[srow+1] = ltd[1];
|
||||
info->m_J2angularAxis[srow+2] = ltd[2];
|
||||
}
|
||||
|
||||
// if we're limited low and high simultaneously, the joint motor is
|
||||
@@ -250,37 +250,37 @@ int bt_get_limit_motor_info2(
|
||||
info->cfm[row] = 0.0f;//limot->m_normalCFM;
|
||||
if (! limit)
|
||||
{
|
||||
info->c[row] = limot->m_targetVelocity;
|
||||
info->lo[row] = -limot->m_maxMotorForce;
|
||||
info->hi[row] = limot->m_maxMotorForce;
|
||||
info->m_constraintError[row] = limot->m_targetVelocity;
|
||||
info->m_lowerLimit[row] = -limot->m_maxMotorForce;
|
||||
info->m_higherLimit[row] = limot->m_maxMotorForce;
|
||||
}
|
||||
}
|
||||
|
||||
if (limit)
|
||||
{
|
||||
btScalar k = info->fps * limot->m_ERP;
|
||||
info->c[row] = -k * limot->m_currentLimitError;
|
||||
info->m_constraintError[row] = -k * limot->m_currentLimitError;
|
||||
info->cfm[row] = 0.0f;//limot->m_stopCFM;
|
||||
|
||||
if (limot->m_loLimit == limot->m_hiLimit)
|
||||
{
|
||||
// limited low and high simultaneously
|
||||
info->lo[row] = -dInfinity;
|
||||
info->hi[row] = dInfinity;
|
||||
info->m_lowerLimit[row] = -dInfinity;
|
||||
info->m_higherLimit[row] = dInfinity;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (limit == 1)
|
||||
{
|
||||
// low limit
|
||||
info->lo[row] = 0;
|
||||
info->hi[row] = SIMD_INFINITY;
|
||||
info->m_lowerLimit[row] = 0;
|
||||
info->m_higherLimit[row] = SIMD_INFINITY;
|
||||
}
|
||||
else
|
||||
{
|
||||
// high limit
|
||||
info->lo[row] = -SIMD_INFINITY;
|
||||
info->hi[row] = 0;
|
||||
info->m_lowerLimit[row] = -SIMD_INFINITY;
|
||||
info->m_higherLimit[row] = 0;
|
||||
}
|
||||
|
||||
// deal with bounce
|
||||
@@ -309,7 +309,8 @@ int bt_get_limit_motor_info2(
|
||||
if (vel < 0)
|
||||
{
|
||||
btScalar newc = -limot->m_bounce* vel;
|
||||
if (newc > info->c[row]) info->c[row] = newc;
|
||||
if (newc > info->m_constraintError[row])
|
||||
info->m_constraintError[row] = newc;
|
||||
}
|
||||
}
|
||||
else
|
||||
@@ -318,7 +319,8 @@ int bt_get_limit_motor_info2(
|
||||
if (vel > 0)
|
||||
{
|
||||
btScalar newc = -limot->m_bounce * vel;
|
||||
if (newc < info->c[row]) info->c[row] = newc;
|
||||
if (newc < info->m_constraintError[row])
|
||||
info->m_constraintError[row] = newc;
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -349,7 +351,7 @@ void OdeD6Joint::GetInfo1(Info1 *info)
|
||||
btGeneric6DofConstraint * d6constraint = this->getD6Constraint();
|
||||
//prepare constraint
|
||||
d6constraint->calculateTransforms();
|
||||
info->m = 3;
|
||||
info->m_numConstraintRows = 3;
|
||||
info->nub = 3;
|
||||
|
||||
//test angular limits
|
||||
@@ -358,7 +360,7 @@ void OdeD6Joint::GetInfo1(Info1 *info)
|
||||
//if(i==2) continue;
|
||||
if(d6constraint->testAngularLimitMotor(i))
|
||||
{
|
||||
info->m++;
|
||||
info->m_numConstraintRows++;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -390,25 +392,25 @@ int OdeD6Joint::setLinearLimits(Info2 *info)
|
||||
int s = info->rowskip;
|
||||
|
||||
// set jacobian
|
||||
info->J1l[0] = 1;
|
||||
info->J1l[s+1] = 1;
|
||||
info->J1l[2*s+2] = 1;
|
||||
info->m_J1linearAxis[0] = 1;
|
||||
info->m_J1linearAxis[s+1] = 1;
|
||||
info->m_J1linearAxis[2*s+2] = 1;
|
||||
|
||||
|
||||
btVector3 a1,a2;
|
||||
|
||||
a1 = body0_trans.getBasis()*d6constraint->getFrameOffsetA().getOrigin();
|
||||
//dMULTIPLY0_331 (a1, body0_mat,m_constraint->m_pivotInA);
|
||||
dCROSSMAT (info->J1a,a1,s,-,+);
|
||||
dCROSSMAT (info->m_J1angularAxis,a1,s,-,+);
|
||||
if (m_body1)
|
||||
{
|
||||
info->J2l[0] = -1;
|
||||
info->J2l[s+1] = -1;
|
||||
info->J2l[2*s+2] = -1;
|
||||
info->m_J2linearAxis[0] = -1;
|
||||
info->m_J2linearAxis[s+1] = -1;
|
||||
info->m_J2linearAxis[2*s+2] = -1;
|
||||
a2 = body1_trans.getBasis()*d6constraint->getFrameOffsetB().getOrigin();
|
||||
|
||||
//dMULTIPLY0_331 (a2,body1_mat,m_constraint->m_pivotInB);
|
||||
dCROSSMAT (info->J2a,a2,s,+,-);
|
||||
dCROSSMAT (info->m_J2angularAxis,a2,s,+,-);
|
||||
}
|
||||
|
||||
|
||||
@@ -418,7 +420,7 @@ int OdeD6Joint::setLinearLimits(Info2 *info)
|
||||
{
|
||||
for (int j=0; j<3; j++)
|
||||
{
|
||||
info->c[j] = k * (a2[j] + body1_trans.getOrigin()[j] -
|
||||
info->m_constraintError[j] = k * (a2[j] + body1_trans.getOrigin()[j] -
|
||||
a1[j] - body0_trans.getOrigin()[j]);
|
||||
}
|
||||
}
|
||||
@@ -426,7 +428,7 @@ int OdeD6Joint::setLinearLimits(Info2 *info)
|
||||
{
|
||||
for (int j=0; j<3; j++)
|
||||
{
|
||||
info->c[j] = k * (d6constraint->getCalculatedTransformB().getOrigin()[j] - a1[j] -
|
||||
info->m_constraintError[j] = k * (d6constraint->getCalculatedTransformB().getOrigin()[j] - a1[j] -
|
||||
body0_trans.getOrigin()[j]);
|
||||
}
|
||||
}
|
||||
@@ -485,19 +487,19 @@ OdeSliderJoint::OdeSliderJoint(
|
||||
void OdeSliderJoint::GetInfo1(Info1* info)
|
||||
{
|
||||
info->nub = 4;
|
||||
info->m = 4; // Fixed 2 linear + 2 angular
|
||||
info->m_numConstraintRows = 4; // Fixed 2 linear + 2 angular
|
||||
btSliderConstraint * slider = this->getSliderConstraint();
|
||||
//prepare constraint
|
||||
slider->calculateTransforms();
|
||||
slider->testLinLimits();
|
||||
if(slider->getSolveLinLimit() || slider->getPoweredLinMotor())
|
||||
{
|
||||
info->m++; // limit 3rd linear as well
|
||||
info->m_numConstraintRows++; // limit 3rd linear as well
|
||||
}
|
||||
slider->testAngLimits();
|
||||
if(slider->getSolveAngLimit() || slider->getPoweredAngMotor())
|
||||
{
|
||||
info->m++; // limit 3rd angular as well
|
||||
info->m_numConstraintRows++; // limit 3rd angular as well
|
||||
}
|
||||
} // OdeSliderJoint::GetInfo1()
|
||||
|
||||
@@ -523,20 +525,20 @@ void OdeSliderJoint::GetInfo2(Info2 *info)
|
||||
btVector3 p = trA.getBasis().getColumn(1);
|
||||
btVector3 q = trA.getBasis().getColumn(2);
|
||||
// set the two slider rows
|
||||
info->J1a[0] = p[0];
|
||||
info->J1a[1] = p[1];
|
||||
info->J1a[2] = p[2];
|
||||
info->J1a[s+0] = q[0];
|
||||
info->J1a[s+1] = q[1];
|
||||
info->J1a[s+2] = q[2];
|
||||
info->m_J1angularAxis[0] = p[0];
|
||||
info->m_J1angularAxis[1] = p[1];
|
||||
info->m_J1angularAxis[2] = p[2];
|
||||
info->m_J1angularAxis[s+0] = q[0];
|
||||
info->m_J1angularAxis[s+1] = q[1];
|
||||
info->m_J1angularAxis[s+2] = q[2];
|
||||
if(m_body1)
|
||||
{
|
||||
info->J2a[0] = -p[0];
|
||||
info->J2a[1] = -p[1];
|
||||
info->J2a[2] = -p[2];
|
||||
info->J2a[s+0] = -q[0];
|
||||
info->J2a[s+1] = -q[1];
|
||||
info->J2a[s+2] = -q[2];
|
||||
info->m_J2angularAxis[0] = -p[0];
|
||||
info->m_J2angularAxis[1] = -p[1];
|
||||
info->m_J2angularAxis[2] = -p[2];
|
||||
info->m_J2angularAxis[s+0] = -q[0];
|
||||
info->m_J2angularAxis[s+1] = -q[1];
|
||||
info->m_J2angularAxis[s+2] = -q[2];
|
||||
}
|
||||
// compute the right hand side of the constraint equation. set relative
|
||||
// body velocities along p and q to bring the slider back into alignment.
|
||||
@@ -564,8 +566,8 @@ void OdeSliderJoint::GetInfo2(Info2 *info)
|
||||
{
|
||||
u = ax2.cross(ax1);
|
||||
}
|
||||
info->c[0] = k * u.dot(p);
|
||||
info->c[1] = k * u.dot(q);
|
||||
info->m_constraintError[0] = k * u.dot(p);
|
||||
info->m_constraintError[1] = k * u.dot(q);
|
||||
// pull out pos and R for both bodies. also get the connection
|
||||
// vector c = pos2-pos1.
|
||||
// next two rows. we want: vel2 = vel1 + w1 x c ... but this would
|
||||
@@ -585,19 +587,19 @@ void OdeSliderJoint::GetInfo2(Info2 *info)
|
||||
c = bodyB_trans.getOrigin() - bodyA_trans.getOrigin();
|
||||
btVector3 tmp = btScalar(0.5) * c.cross(p);
|
||||
|
||||
for (i=0; i<3; i++) info->J1a[s2+i] = tmp[i];
|
||||
for (i=0; i<3; i++) info->J2a[s2+i] = tmp[i];
|
||||
for (i=0; i<3; i++) info->m_J1angularAxis[s2+i] = tmp[i];
|
||||
for (i=0; i<3; i++) info->m_J2angularAxis[s2+i] = tmp[i];
|
||||
|
||||
tmp = btScalar(0.5) * c.cross(q);
|
||||
|
||||
for (i=0; i<3; i++) info->J1a[s3+i] = tmp[i];
|
||||
for (i=0; i<3; i++) info->J2a[s3+i] = tmp[i];
|
||||
for (i=0; i<3; i++) info->m_J1angularAxis[s3+i] = tmp[i];
|
||||
for (i=0; i<3; i++) info->m_J2angularAxis[s3+i] = tmp[i];
|
||||
|
||||
for (i=0; i<3; i++) info->J2l[s2+i] = -p[i];
|
||||
for (i=0; i<3; i++) info->J2l[s3+i] = -q[i];
|
||||
for (i=0; i<3; i++) info->m_J2linearAxis[s2+i] = -p[i];
|
||||
for (i=0; i<3; i++) info->m_J2linearAxis[s3+i] = -q[i];
|
||||
}
|
||||
for (i=0; i<3; i++) info->J1l[s2+i] = p[i];
|
||||
for (i=0; i<3; i++) info->J1l[s3+i] = q[i];
|
||||
for (i=0; i<3; i++) info->m_J1linearAxis[s2+i] = p[i];
|
||||
for (i=0; i<3; i++) info->m_J1linearAxis[s3+i] = q[i];
|
||||
// compute two elements of right hand side. we want to align the offset
|
||||
// point (in body 2's frame) with the center of body 1.
|
||||
btVector3 ofs; // offset point in global coordinates
|
||||
@@ -610,8 +612,8 @@ void OdeSliderJoint::GetInfo2(Info2 *info)
|
||||
ofs = trA.getOrigin() - trB.getOrigin();
|
||||
}
|
||||
k = info->fps * info->erp * slider->getSoftnessOrthoLin();
|
||||
info->c[2] = k * p.dot(ofs);
|
||||
info->c[3] = k * q.dot(ofs);
|
||||
info->m_constraintError[2] = k * p.dot(ofs);
|
||||
info->m_constraintError[3] = k * q.dot(ofs);
|
||||
int nrow = 3; // last filled row
|
||||
int srow;
|
||||
// check linear limits linear
|
||||
@@ -639,14 +641,14 @@ void OdeSliderJoint::GetInfo2(Info2 *info)
|
||||
{
|
||||
nrow++;
|
||||
srow = nrow * info->rowskip;
|
||||
info->J1l[srow+0] = ax1[0];
|
||||
info->J1l[srow+1] = ax1[1];
|
||||
info->J1l[srow+2] = ax1[2];
|
||||
info->m_J1linearAxis[srow+0] = ax1[0];
|
||||
info->m_J1linearAxis[srow+1] = ax1[1];
|
||||
info->m_J1linearAxis[srow+2] = ax1[2];
|
||||
if(m_body1)
|
||||
{
|
||||
info->J2l[srow+0] = -ax1[0];
|
||||
info->J2l[srow+1] = -ax1[1];
|
||||
info->J2l[srow+2] = -ax1[2];
|
||||
info->m_J2linearAxis[srow+0] = -ax1[0];
|
||||
info->m_J2linearAxis[srow+1] = -ax1[1];
|
||||
info->m_J2linearAxis[srow+2] = -ax1[2];
|
||||
}
|
||||
// linear torque decoupling step:
|
||||
//
|
||||
@@ -664,12 +666,12 @@ void OdeSliderJoint::GetInfo2(Info2 *info)
|
||||
dVector3 ltd; // Linear Torque Decoupling vector (a torque)
|
||||
c = btScalar(0.5) * c;
|
||||
dCROSS (ltd,=,c,ax1);
|
||||
info->J1a[srow+0] = ltd[0];
|
||||
info->J1a[srow+1] = ltd[1];
|
||||
info->J1a[srow+2] = ltd[2];
|
||||
info->J2a[srow+0] = ltd[0];
|
||||
info->J2a[srow+1] = ltd[1];
|
||||
info->J2a[srow+2] = ltd[2];
|
||||
info->m_J1angularAxis[srow+0] = ltd[0];
|
||||
info->m_J1angularAxis[srow+1] = ltd[1];
|
||||
info->m_J1angularAxis[srow+2] = ltd[2];
|
||||
info->m_J2angularAxis[srow+0] = ltd[0];
|
||||
info->m_J2angularAxis[srow+1] = ltd[1];
|
||||
info->m_J2angularAxis[srow+2] = ltd[2];
|
||||
}
|
||||
// right-hand part
|
||||
btScalar lostop = slider->getLowerLinLimit();
|
||||
@@ -683,9 +685,9 @@ void OdeSliderJoint::GetInfo2(Info2 *info)
|
||||
info->cfm[nrow] = btScalar(0.0);
|
||||
if(!limit)
|
||||
{
|
||||
info->c[nrow] = slider->getTargetLinMotorVelocity();
|
||||
info->lo[nrow] = -slider->getMaxLinMotorForce() * info->fps;
|
||||
info->hi[nrow] = slider->getMaxLinMotorForce() * info->fps;
|
||||
info->m_constraintError[nrow] = slider->getTargetLinMotorVelocity();
|
||||
info->m_lowerLimit[nrow] = -slider->getMaxLinMotorForce() * info->fps;
|
||||
info->m_higherLimit[nrow] = slider->getMaxLinMotorForce() * info->fps;
|
||||
}
|
||||
}
|
||||
if(limit)
|
||||
@@ -693,32 +695,32 @@ void OdeSliderJoint::GetInfo2(Info2 *info)
|
||||
k = info->fps * info->erp;
|
||||
if(m_body1)
|
||||
{
|
||||
info->c[nrow] = k * limit_err;
|
||||
info->m_constraintError[nrow] = k * limit_err;
|
||||
}
|
||||
else
|
||||
{
|
||||
info->c[nrow] = - k * limit_err;
|
||||
info->m_constraintError[nrow] = - k * limit_err;
|
||||
}
|
||||
info->cfm[nrow] = btScalar(0.0); // stop_cfm;
|
||||
if(lostop == histop)
|
||||
{
|
||||
// limited low and high simultaneously
|
||||
info->lo[nrow] = -SIMD_INFINITY;
|
||||
info->hi[nrow] = SIMD_INFINITY;
|
||||
info->m_lowerLimit[nrow] = -SIMD_INFINITY;
|
||||
info->m_higherLimit[nrow] = SIMD_INFINITY;
|
||||
}
|
||||
else
|
||||
{
|
||||
if(limit == 1)
|
||||
{
|
||||
// low limit
|
||||
info->lo[nrow] = 0;
|
||||
info->hi[nrow] = SIMD_INFINITY;
|
||||
info->m_lowerLimit[nrow] = 0;
|
||||
info->m_higherLimit[nrow] = SIMD_INFINITY;
|
||||
}
|
||||
else
|
||||
{
|
||||
// high limit
|
||||
info->lo[nrow] = -SIMD_INFINITY;
|
||||
info->hi[nrow] = 0;
|
||||
info->m_lowerLimit[nrow] = -SIMD_INFINITY;
|
||||
info->m_higherLimit[nrow] = 0;
|
||||
}
|
||||
}
|
||||
// bounce (we'll use slider parameter abs(1.0 - m_dampingLimLin) for that)
|
||||
@@ -738,7 +740,8 @@ void OdeSliderJoint::GetInfo2(Info2 *info)
|
||||
if(vel < 0)
|
||||
{
|
||||
btScalar newc = -bounce * vel;
|
||||
if (newc > info->c[nrow]) info->c[nrow] = newc;
|
||||
if (newc > info->m_constraintError[nrow])
|
||||
info->m_constraintError[nrow] = newc;
|
||||
}
|
||||
}
|
||||
else
|
||||
@@ -747,11 +750,12 @@ void OdeSliderJoint::GetInfo2(Info2 *info)
|
||||
if(vel > 0)
|
||||
{
|
||||
btScalar newc = -bounce * vel;
|
||||
if(newc < info->c[nrow]) info->c[nrow] = newc;
|
||||
if(newc < info->m_constraintError[nrow])
|
||||
info->m_constraintError[nrow] = newc;
|
||||
}
|
||||
}
|
||||
}
|
||||
info->c[nrow] *= slider->getSoftnessLimLin();
|
||||
info->m_constraintError[nrow] *= slider->getSoftnessLimLin();
|
||||
} // if(limit)
|
||||
} // if linear limit
|
||||
// check angular limits
|
||||
@@ -779,14 +783,14 @@ void OdeSliderJoint::GetInfo2(Info2 *info)
|
||||
{
|
||||
nrow++;
|
||||
srow = nrow * info->rowskip;
|
||||
info->J1a[srow+0] = ax1[0];
|
||||
info->J1a[srow+1] = ax1[1];
|
||||
info->J1a[srow+2] = ax1[2];
|
||||
info->m_J1angularAxis[srow+0] = ax1[0];
|
||||
info->m_J1angularAxis[srow+1] = ax1[1];
|
||||
info->m_J1angularAxis[srow+2] = ax1[2];
|
||||
if(m_body1)
|
||||
{
|
||||
info->J2a[srow+0] = -ax1[0];
|
||||
info->J2a[srow+1] = -ax1[1];
|
||||
info->J2a[srow+2] = -ax1[2];
|
||||
info->m_J2angularAxis[srow+0] = -ax1[0];
|
||||
info->m_J2angularAxis[srow+1] = -ax1[1];
|
||||
info->m_J2angularAxis[srow+2] = -ax1[2];
|
||||
}
|
||||
btScalar lostop = slider->getLowerAngLimit();
|
||||
btScalar histop = slider->getUpperAngLimit();
|
||||
@@ -799,9 +803,9 @@ void OdeSliderJoint::GetInfo2(Info2 *info)
|
||||
info->cfm[nrow] = btScalar(0.0);
|
||||
if(!limit)
|
||||
{
|
||||
info->c[nrow] = slider->getTargetAngMotorVelocity();
|
||||
info->lo[nrow] = -slider->getMaxAngMotorForce() * info->fps;
|
||||
info->hi[nrow] = slider->getMaxAngMotorForce() * info->fps;
|
||||
info->m_constraintError[nrow] = slider->getTargetAngMotorVelocity();
|
||||
info->m_lowerLimit[nrow] = -slider->getMaxAngMotorForce() * info->fps;
|
||||
info->m_higherLimit[nrow] = slider->getMaxAngMotorForce() * info->fps;
|
||||
}
|
||||
}
|
||||
if(limit)
|
||||
@@ -809,32 +813,32 @@ void OdeSliderJoint::GetInfo2(Info2 *info)
|
||||
k = info->fps * info->erp;
|
||||
if (m_body1)
|
||||
{
|
||||
info->c[nrow] = k * limit_err;
|
||||
info->m_constraintError[nrow] = k * limit_err;
|
||||
}
|
||||
else
|
||||
{
|
||||
info->c[nrow] = -k * limit_err;
|
||||
info->m_constraintError[nrow] = -k * limit_err;
|
||||
}
|
||||
info->cfm[nrow] = btScalar(0.0); // stop_cfm;
|
||||
if(lostop == histop)
|
||||
{
|
||||
// limited low and high simultaneously
|
||||
info->lo[nrow] = -SIMD_INFINITY;
|
||||
info->hi[nrow] = SIMD_INFINITY;
|
||||
info->m_lowerLimit[nrow] = -SIMD_INFINITY;
|
||||
info->m_higherLimit[nrow] = SIMD_INFINITY;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (limit == 1)
|
||||
{
|
||||
// low limit
|
||||
info->lo[nrow] = 0;
|
||||
info->hi[nrow] = SIMD_INFINITY;
|
||||
info->m_lowerLimit[nrow] = 0;
|
||||
info->m_higherLimit[nrow] = SIMD_INFINITY;
|
||||
}
|
||||
else
|
||||
{
|
||||
// high limit
|
||||
info->lo[nrow] = -SIMD_INFINITY;
|
||||
info->hi[nrow] = 0;
|
||||
info->m_lowerLimit[nrow] = -SIMD_INFINITY;
|
||||
info->m_higherLimit[nrow] = 0;
|
||||
}
|
||||
}
|
||||
// bounce (we'll use slider parameter abs(1.0 - m_dampingLimAng) for that)
|
||||
@@ -854,7 +858,7 @@ void OdeSliderJoint::GetInfo2(Info2 *info)
|
||||
if(vel < 0)
|
||||
{
|
||||
btScalar newc = -bounce * vel;
|
||||
if (newc > info->c[nrow]) info->c[nrow] = newc;
|
||||
if (newc > info->m_constraintError[nrow]) info->m_constraintError[nrow] = newc;
|
||||
}
|
||||
}
|
||||
else
|
||||
@@ -863,11 +867,11 @@ void OdeSliderJoint::GetInfo2(Info2 *info)
|
||||
if(vel > 0)
|
||||
{
|
||||
btScalar newc = -bounce * vel;
|
||||
if(newc < info->c[nrow]) info->c[nrow] = newc;
|
||||
if(newc < info->m_constraintError[nrow]) info->m_constraintError[nrow] = newc;
|
||||
}
|
||||
}
|
||||
}
|
||||
info->c[nrow] *= slider->getSoftnessLimAng();
|
||||
info->m_constraintError[nrow] *= slider->getSoftnessLimAng();
|
||||
} // if(limit)
|
||||
} // if angular limit or powered
|
||||
} // OdeSliderJoint::GetInfo2()
|
||||
|
||||
@@ -65,29 +65,30 @@ subject to the following restrictions:
|
||||
// during the solution. depending on the situation, this can help a lot
|
||||
// or hardly at all, but it doesn't seem to hurt.
|
||||
|
||||
#define RANDOMLY_REORDER_CONSTRAINTS 1
|
||||
//#define RANDOMLY_REORDER_CONSTRAINTS 1
|
||||
|
||||
//***************************************************************************
|
||||
// various common computations involving the matrix J
|
||||
// compute iMJ = inv(M)*J'
|
||||
inline void compute_invM_JT (int m, dRealMutablePtr J, dRealMutablePtr iMJ, int *jb,
|
||||
// various common computations involving the matrix JconstraintAxis
|
||||
// compute iMJ = inv(M)*JconstraintAxis'
|
||||
inline void compute_invM_JT (int numConstraintRows, dRealMutablePtr JconstraintAxis, dRealMutablePtr iMJ, int *jb,
|
||||
//OdeSolverBody* const *body,
|
||||
const btAlignedObjectArray<btOdeSolverBody*> &body,
|
||||
dRealPtr invI)
|
||||
dRealPtr inverseInertiaWorld)
|
||||
{
|
||||
int i,j;
|
||||
dRealMutablePtr iMJ_ptr = iMJ;
|
||||
dRealMutablePtr J_ptr = J;
|
||||
for (i=0; i<m; i++) {
|
||||
dRealMutablePtr J_ptr = JconstraintAxis;
|
||||
for (i=0; i<numConstraintRows; i++) {
|
||||
int b1 = jb[i*2];
|
||||
int b2 = jb[i*2+1];
|
||||
btScalar k = body[b1]->m_invMass;
|
||||
for (j=0; j<3; j++) iMJ_ptr[j] = k*J_ptr[j];
|
||||
dMULTIPLY0_331 (iMJ_ptr + 3, invI + 12*b1, J_ptr + 3);
|
||||
for (j=0; j<3; j++)
|
||||
iMJ_ptr[j] = body[b1]->m_invMass*J_ptr[j];
|
||||
dMULTIPLY0_331 (iMJ_ptr + 3, inverseInertiaWorld + 12*b1, J_ptr + 3);
|
||||
|
||||
if (b2 >= 0) {
|
||||
k = body[b2]->m_invMass;
|
||||
for (j=0; j<3; j++) iMJ_ptr[j+6] = k*J_ptr[j+6];
|
||||
dMULTIPLY0_331 (iMJ_ptr + 9, invI + 12*b2, J_ptr + 9);
|
||||
for (j=0; j<3; j++)
|
||||
iMJ_ptr[j+6] = body[b2]->m_invMass*J_ptr[j+6];//inv mass * constraint (normal) axis
|
||||
dMULTIPLY0_331 (iMJ_ptr + 9, inverseInertiaWorld + 12*b2, J_ptr + 9);//inverse inertia world * constraint (normal) axis
|
||||
}
|
||||
J_ptr += 12;
|
||||
iMJ_ptr += 12;
|
||||
@@ -95,7 +96,7 @@ inline void compute_invM_JT (int m, dRealMutablePtr J, dRealMutablePtr iMJ, int
|
||||
}
|
||||
|
||||
#if 0
|
||||
static void multiply_invM_JTSpecial (int m, int nb, dRealMutablePtr iMJ, int *jb,
|
||||
static void multiply_invM_JTSpecial (int numConstraintRows, int nb, dRealMutablePtr iMJ, int *jb,
|
||||
dRealMutablePtr in, dRealMutablePtr out,int onlyBody1,int onlyBody2)
|
||||
{
|
||||
int i,j;
|
||||
@@ -116,7 +117,7 @@ static void multiply_invM_JTSpecial (int m, int nb, dRealMutablePtr iMJ, int *jb
|
||||
}
|
||||
|
||||
dRealPtr iMJ_ptr = iMJ;
|
||||
for (i=0; i<m; i++) {
|
||||
for (i=0; i<numConstraintRows; i++) {
|
||||
|
||||
int b1 = jb[i*2];
|
||||
|
||||
@@ -147,16 +148,16 @@ static void multiply_invM_JTSpecial (int m, int nb, dRealMutablePtr iMJ, int *jb
|
||||
#endif
|
||||
|
||||
|
||||
// compute out = inv(M)*J'*in.
|
||||
// compute out = inv(M)*JconstraintAxis'*in.
|
||||
|
||||
#if 0
|
||||
static void multiply_invM_JT (int m, int nb, dRealMutablePtr iMJ, int *jb,
|
||||
static void multiply_invM_JT (int numConstraintRows, int nb, dRealMutablePtr iMJ, int *jb,
|
||||
dRealMutablePtr in, dRealMutablePtr out)
|
||||
{
|
||||
int i,j;
|
||||
dSetZero1 (out,6*nb);
|
||||
dRealPtr iMJ_ptr = iMJ;
|
||||
for (i=0; i<m; i++) {
|
||||
for (i=0; i<numConstraintRows; i++) {
|
||||
int b1 = jb[i*2];
|
||||
int b2 = jb[i*2+1];
|
||||
dRealMutablePtr out_ptr = out + b1*6;
|
||||
@@ -173,13 +174,13 @@ static void multiply_invM_JT (int m, int nb, dRealMutablePtr iMJ, int *jb,
|
||||
#endif
|
||||
|
||||
|
||||
// compute out = J*in.
|
||||
inline void multiply_J (int m, dRealMutablePtr J, int *jb,
|
||||
// compute out = JconstraintAxis*in.
|
||||
inline void multiply_J (int numConstraintRows, dRealMutablePtr JconstraintAxis, int *jb,
|
||||
dRealMutablePtr in, dRealMutablePtr out)
|
||||
{
|
||||
int i,j;
|
||||
dRealPtr J_ptr = J;
|
||||
for (i=0; i<m; i++) {
|
||||
dRealPtr J_ptr = JconstraintAxis;
|
||||
for (i=0; i<numConstraintRows; i++) {
|
||||
int b1 = jb[i*2];
|
||||
int b2 = jb[i*2+1];
|
||||
btScalar sum = 0;
|
||||
@@ -199,14 +200,14 @@ inline void multiply_J (int m, dRealMutablePtr J, int *jb,
|
||||
// SOR-LCP method
|
||||
|
||||
// nb is the number of bodies in the body array.
|
||||
// J is an m*12 matrix of constraint rows
|
||||
// JconstraintAxis is an numConstraintRows*12 matrix of constraint rows
|
||||
// jb is an array of first and second body numbers for each constraint row
|
||||
// invI is the global frame inverse inertia for each body (stacked 3x3 matrices)
|
||||
// inverseInertiaWorld is the global frame inverse inertia for each body (stacked 3x3 matrices)
|
||||
//
|
||||
// this returns lambda and fc (the constraint force).
|
||||
// note: fc is returned as inv(M)*J'*lambda, the constraint force is actually J'*lambda
|
||||
// this returns lambdaAccumulatedImpulse and fc (the constraint force).
|
||||
// note: fc is returned as inv(M)*JconstraintAxis'*lambdaAccumulatedImpulse, the constraint force is actually JconstraintAxis'*lambdaAccumulatedImpulse
|
||||
//
|
||||
// b, lo and hi are modified on exit
|
||||
// b, lowerLimit and higherLimit are modified on exit
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
ATTRIBUTE_ALIGNED16(struct) IndexError {
|
||||
@@ -216,10 +217,10 @@ ATTRIBUTE_ALIGNED16(struct) IndexError {
|
||||
};
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
void btSorLcpSolver::SOR_LCP(int m, int nb, dRealMutablePtr J, int *jb,
|
||||
void btSorLcpSolver::SOR_LCP(int numConstraintRows, int nb, dRealMutablePtr JconstraintAxis, int *jb,
|
||||
const btAlignedObjectArray<btOdeSolverBody*> &body,
|
||||
dRealPtr invI, dRealMutablePtr lambda, dRealMutablePtr invMforce, dRealMutablePtr rhs,
|
||||
dRealMutablePtr lo, dRealMutablePtr hi, dRealPtr cfm, int *findex,
|
||||
dRealPtr inverseInertiaWorld, dRealMutablePtr lambdaAccumulatedImpulse, dRealMutablePtr invMforce, dRealMutablePtr rhs,
|
||||
dRealMutablePtr lowerLimit, dRealMutablePtr higherLimit, dRealPtr cfm, int *findex,
|
||||
int numiter,float overRelax,
|
||||
btStackAlloc* stackAlloc
|
||||
)
|
||||
@@ -237,49 +238,51 @@ void btSorLcpSolver::SOR_LCP(int m, int nb, dRealMutablePtr J, int *jb,
|
||||
#ifdef WARM_STARTING
|
||||
// for warm starting, this seems to be necessary to prevent
|
||||
// jerkiness in motor-driven joints. i have no idea why this works.
|
||||
for (i=0; i<m; i++) lambda[i] *= 0.9;
|
||||
for (i=0; i<numConstraintRows; i++) lambdaAccumulatedImpulse[i] *= 0.9;
|
||||
#else
|
||||
dSetZero1 (lambda,m);
|
||||
dSetZero1 (lambdaAccumulatedImpulse,numConstraintRows);
|
||||
#endif
|
||||
|
||||
// the lambda computed at the previous iteration.
|
||||
// the lambdaAccumulatedImpulse computed at the previous iteration.
|
||||
// this is used to measure error for when we are reordering the indexes.
|
||||
dRealAllocaArray (last_lambda,m);
|
||||
dRealAllocaArray (last_lambda,numConstraintRows);
|
||||
|
||||
// a copy of the 'hi' vector in case findex[] is being used
|
||||
dRealAllocaArray (hicopy,m);
|
||||
memcpy (hicopy,hi,m*sizeof(float));
|
||||
// a copy of the 'higherLimit' vector in case findex[] is being used
|
||||
dRealAllocaArray (hicopy,numConstraintRows);
|
||||
memcpy (hicopy,higherLimit,numConstraintRows*sizeof(float));
|
||||
|
||||
// precompute iMJ = inv(M)*J'
|
||||
dRealAllocaArray (iMJ,m*12);
|
||||
compute_invM_JT (m,J,iMJ,jb,body,invI);
|
||||
// precompute iMJ = inv(M)*JconstraintAxis'
|
||||
dRealAllocaArray (iMJ,numConstraintRows*12);
|
||||
compute_invM_JT (numConstraintRows,JconstraintAxis,iMJ,jb,body,inverseInertiaWorld);
|
||||
|
||||
// compute fc=(inv(M)*J')*lambda. we will incrementally maintain fc
|
||||
// as we change lambda.
|
||||
// compute fc=(inv(M)*JconstraintAxis')*lambdaAccumulatedImpulse. we will incrementally maintain fc
|
||||
// as we change lambdaAccumulatedImpulse.
|
||||
#ifdef WARM_STARTING
|
||||
multiply_invM_JT (m,nb,iMJ,jb,lambda,fc);
|
||||
multiply_invM_JT (numConstraintRows,nb,iMJ,jb,lambdaAccumulatedImpulse,fc);
|
||||
#else
|
||||
dSetZero1 (invMforce,nb*6);
|
||||
#endif
|
||||
|
||||
// precompute 1 / diagonals of A
|
||||
dRealAllocaArray (Ad,m);
|
||||
dRealAllocaArray (Ad,numConstraintRows);
|
||||
dRealPtr iMJ_ptr = iMJ;
|
||||
dRealMutablePtr J_ptr = J;
|
||||
for (i=0; i<m; i++) {
|
||||
dRealMutablePtr J_ptr = JconstraintAxis;
|
||||
for (i=0; i<numConstraintRows; i++) {
|
||||
float sum = 0;
|
||||
for (j=0; j<6; j++) sum += iMJ_ptr[j] * J_ptr[j];
|
||||
for (j=0; j<6; j++)
|
||||
sum += iMJ_ptr[j] * J_ptr[j];
|
||||
if (jb[i*2+1] >= 0) {
|
||||
for (j=6; j<12; j++) sum += iMJ_ptr[j] * J_ptr[j];
|
||||
for (j=6; j<12; j++)
|
||||
sum += iMJ_ptr[j] * J_ptr[j];
|
||||
}
|
||||
iMJ_ptr += 12;
|
||||
J_ptr += 12;
|
||||
Ad[i] = sor_w / sum;//(sum + cfm[i]);
|
||||
}
|
||||
|
||||
// scale J and b by Ad
|
||||
J_ptr = J;
|
||||
for (i=0; i<m; i++) {
|
||||
// scale JconstraintAxis and b by Ad
|
||||
J_ptr = JconstraintAxis;
|
||||
for (i=0; i<numConstraintRows; i++) {
|
||||
for (j=0; j<12; j++) {
|
||||
J_ptr[0] *= Ad[i];
|
||||
J_ptr++;
|
||||
@@ -288,24 +291,24 @@ void btSorLcpSolver::SOR_LCP(int m, int nb, dRealMutablePtr J, int *jb,
|
||||
}
|
||||
|
||||
// scale Ad by CFM
|
||||
for (i=0; i<m; i++)
|
||||
for (i=0; i<numConstraintRows; i++)
|
||||
Ad[i] *= cfm[i];
|
||||
|
||||
// order to solve constraint rows in
|
||||
//IndexError *order = (IndexError*) alloca (m*sizeof(IndexError));
|
||||
IndexError *order = (IndexError*) ALLOCA (m*sizeof(IndexError));
|
||||
//IndexError *order = (IndexError*) alloca (numConstraintRows*sizeof(IndexError));
|
||||
IndexError *order = (IndexError*) ALLOCA (numConstraintRows*sizeof(IndexError));
|
||||
|
||||
|
||||
#ifndef REORDER_CONSTRAINTS
|
||||
// make sure constraints with findex < 0 come first.
|
||||
j=0;
|
||||
for (i=0; i<m; i++)
|
||||
for (i=0; i<numConstraintRows; i++)
|
||||
if (findex[i] < 0)
|
||||
order[j++].index = i;
|
||||
for (i=0; i<m; i++)
|
||||
for (i=0; i<numConstraintRows; i++)
|
||||
if (findex[i] >= 0)
|
||||
order[j++].index = i;
|
||||
dIASSERT (j==m);
|
||||
dIASSERT (j==numConstraintRows);
|
||||
#endif
|
||||
|
||||
for (int iteration=0; iteration < num_iterations; iteration++) {
|
||||
@@ -315,7 +318,7 @@ void btSorLcpSolver::SOR_LCP(int m, int nb, dRealMutablePtr J, int *jb,
|
||||
if (iteration < 2) {
|
||||
// for the first two iterations, solve the constraints in
|
||||
// the given order
|
||||
for (i=0; i<m; i++) {
|
||||
for (i=0; i<numConstraintRows; i++) {
|
||||
order[i].error = i;
|
||||
order[i].findex = findex[i];
|
||||
order[i].index = i;
|
||||
@@ -324,13 +327,13 @@ void btSorLcpSolver::SOR_LCP(int m, int nb, dRealMutablePtr J, int *jb,
|
||||
else {
|
||||
// sort the constraints so that the ones converging slowest
|
||||
// get solved last. use the absolute (not relative) error.
|
||||
for (i=0; i<m; i++) {
|
||||
float v1 = dFabs (lambda[i]);
|
||||
for (i=0; i<numConstraintRows; i++) {
|
||||
float v1 = dFabs (lambdaAccumulatedImpulse[i]);
|
||||
float v2 = dFabs (last_lambda[i]);
|
||||
float max = (v1 > v2) ? v1 : v2;
|
||||
if (max > 0) {
|
||||
//@@@ relative error: order[i].error = dFabs(lambda[i]-last_lambda[i])/max;
|
||||
order[i].error = dFabs(lambda[i]-last_lambda[i]);
|
||||
//@@@ relative error: order[i].error = dFabs(lambdaAccumulatedImpulse[i]-last_lambda[i])/max;
|
||||
order[i].error = dFabs(lambdaAccumulatedImpulse[i]-last_lambda[i]);
|
||||
}
|
||||
else {
|
||||
order[i].error = dInfinity;
|
||||
@@ -339,11 +342,11 @@ void btSorLcpSolver::SOR_LCP(int m, int nb, dRealMutablePtr J, int *jb,
|
||||
order[i].index = i;
|
||||
}
|
||||
}
|
||||
qsort (order,m,sizeof(IndexError),&compare_index_error);
|
||||
qsort (order,numConstraintRows,sizeof(IndexError),&compare_index_error);
|
||||
#endif
|
||||
#ifdef RANDOMLY_REORDER_CONSTRAINTS
|
||||
if ((iteration & 7) == 0) {
|
||||
for (i=1; i<m; ++i) {
|
||||
for (i=1; i<numConstraintRows; ++i) {
|
||||
IndexError tmp = order[i];
|
||||
int swapi = dRandInt2(i+1);
|
||||
order[i] = order[swapi];
|
||||
@@ -352,19 +355,19 @@ void btSorLcpSolver::SOR_LCP(int m, int nb, dRealMutablePtr J, int *jb,
|
||||
}
|
||||
#endif
|
||||
|
||||
//@@@ potential optimization: swap lambda and last_lambda pointers rather
|
||||
// than copying the data. we must make sure lambda is properly
|
||||
//@@@ potential optimization: swap lambdaAccumulatedImpulse and last_lambda pointers rather
|
||||
// than copying the data. we must make sure lambdaAccumulatedImpulse is properly
|
||||
// returned to the caller
|
||||
memcpy (last_lambda,lambda,m*sizeof(float));
|
||||
memcpy (last_lambda,lambdaAccumulatedImpulse,numConstraintRows*sizeof(float));
|
||||
|
||||
for (int i=0; i<m; i++) {
|
||||
// @@@ potential optimization: we could pre-sort J and iMJ, thereby
|
||||
for (int i=0; i<numConstraintRows; i++) {
|
||||
// @@@ potential optimization: we could pre-sort JconstraintAxis and iMJ, thereby
|
||||
// linearizing access to those arrays. hmmm, this does not seem
|
||||
// like a win, but we should think carefully about our memory
|
||||
// access pattern.
|
||||
|
||||
int index = order[i].index;
|
||||
J_ptr = J + index*12;
|
||||
J_ptr = JconstraintAxis + index*12;
|
||||
iMJ_ptr = iMJ + index*12;
|
||||
|
||||
// set the limits for this constraint. note that 'hicopy' is used.
|
||||
@@ -372,70 +375,72 @@ void btSorLcpSolver::SOR_LCP(int m, int nb, dRealMutablePtr J, int *jb,
|
||||
// direct LCP solving method, since that method only performs this
|
||||
// limit adjustment once per time step, whereas this method performs
|
||||
// once per iteration per constraint row.
|
||||
// the constraints are ordered so that all lambda[] values needed have
|
||||
// the constraints are ordered so that all lambdaAccumulatedImpulse[] values needed have
|
||||
// already been computed.
|
||||
if (findex[index] >= 0) {
|
||||
hi[index] = btFabs (hicopy[index] * lambda[findex[index]]);
|
||||
lo[index] = -hi[index];
|
||||
higherLimit[index] = btFabs (hicopy[index] * lambdaAccumulatedImpulse[findex[index]]);
|
||||
lowerLimit[index] = -higherLimit[index];
|
||||
}
|
||||
|
||||
int b1 = jb[index*2];
|
||||
int b2 = jb[index*2+1];
|
||||
float delta = rhs[index] - lambda[index]*Ad[index];
|
||||
dRealMutablePtr fc_ptr = invMforce + 6*b1;
|
||||
|
||||
dRealMutablePtr deltaVelocity = invMforce + 6*b1;
|
||||
|
||||
float deltaAppliedImpulse = rhs[index] - lambdaAccumulatedImpulse[index]*Ad[index];
|
||||
|
||||
// @@@ potential optimization: SIMD-ize this and the b2 >= 0 case
|
||||
delta -=fc_ptr[0] * J_ptr[0] + fc_ptr[1] * J_ptr[1] +
|
||||
fc_ptr[2] * J_ptr[2] + fc_ptr[3] * J_ptr[3] +
|
||||
fc_ptr[4] * J_ptr[4] + fc_ptr[5] * J_ptr[5];
|
||||
deltaAppliedImpulse -=deltaVelocity[0] * J_ptr[0] + deltaVelocity[1] * J_ptr[1] +
|
||||
deltaVelocity[2] * J_ptr[2] + deltaVelocity[3] * J_ptr[3] +
|
||||
deltaVelocity[4] * J_ptr[4] + deltaVelocity[5] * J_ptr[5];
|
||||
// @@@ potential optimization: handle 1-body constraints in a separate
|
||||
// loop to avoid the cost of test & jump?
|
||||
if (b2 >= 0) {
|
||||
fc_ptr = invMforce + 6*b2;
|
||||
delta -=fc_ptr[0] * J_ptr[6] + fc_ptr[1] * J_ptr[7] +
|
||||
fc_ptr[2] * J_ptr[8] + fc_ptr[3] * J_ptr[9] +
|
||||
fc_ptr[4] * J_ptr[10] + fc_ptr[5] * J_ptr[11];
|
||||
deltaVelocity = invMforce + 6*b2;
|
||||
deltaAppliedImpulse -=deltaVelocity[0] * J_ptr[6] + deltaVelocity[1] * J_ptr[7] +
|
||||
deltaVelocity[2] * J_ptr[8] + deltaVelocity[3] * J_ptr[9] +
|
||||
deltaVelocity[4] * J_ptr[10] + deltaVelocity[5] * J_ptr[11];
|
||||
}
|
||||
|
||||
// compute lambda and clamp it to [lo,hi].
|
||||
// compute lambdaAccumulatedImpulse and clamp it to [lowerLimit,higherLimit].
|
||||
// @@@ potential optimization: does SSE have clamping instructions
|
||||
// to save test+jump penalties here?
|
||||
float new_lambda = lambda[index] + delta;
|
||||
if (new_lambda < lo[index]) {
|
||||
delta = lo[index]-lambda[index];
|
||||
lambda[index] = lo[index];
|
||||
float sum = lambdaAccumulatedImpulse[index] + deltaAppliedImpulse;
|
||||
if (sum < lowerLimit[index]) {
|
||||
deltaAppliedImpulse = lowerLimit[index]-lambdaAccumulatedImpulse[index];
|
||||
lambdaAccumulatedImpulse[index] = lowerLimit[index];
|
||||
}
|
||||
else if (new_lambda > hi[index]) {
|
||||
delta = hi[index]-lambda[index];
|
||||
lambda[index] = hi[index];
|
||||
else if (sum > higherLimit[index]) {
|
||||
deltaAppliedImpulse = higherLimit[index]-lambdaAccumulatedImpulse[index];
|
||||
lambdaAccumulatedImpulse[index] = higherLimit[index];
|
||||
}
|
||||
else {
|
||||
lambda[index] = new_lambda;
|
||||
lambdaAccumulatedImpulse[index] = sum;
|
||||
}
|
||||
|
||||
//@@@ a trick that may or may not help
|
||||
//float ramp = (1-((float)(iteration+1)/(float)num_iterations));
|
||||
//delta *= ramp;
|
||||
//deltaAppliedImpulse *= ramp;
|
||||
|
||||
// update invMforce.
|
||||
// @@@ potential optimization: SIMD for this and the b2 >= 0 case
|
||||
fc_ptr = invMforce + 6*b1;
|
||||
fc_ptr[0] += delta * iMJ_ptr[0];
|
||||
fc_ptr[1] += delta * iMJ_ptr[1];
|
||||
fc_ptr[2] += delta * iMJ_ptr[2];
|
||||
fc_ptr[3] += delta * iMJ_ptr[3];
|
||||
fc_ptr[4] += delta * iMJ_ptr[4];
|
||||
fc_ptr[5] += delta * iMJ_ptr[5];
|
||||
deltaVelocity = invMforce + 6*b1;
|
||||
deltaVelocity[0] += deltaAppliedImpulse * iMJ_ptr[0];
|
||||
deltaVelocity[1] += deltaAppliedImpulse * iMJ_ptr[1];
|
||||
deltaVelocity[2] += deltaAppliedImpulse * iMJ_ptr[2];
|
||||
deltaVelocity[3] += deltaAppliedImpulse * iMJ_ptr[3];
|
||||
deltaVelocity[4] += deltaAppliedImpulse * iMJ_ptr[4];
|
||||
deltaVelocity[5] += deltaAppliedImpulse * iMJ_ptr[5];
|
||||
// @@@ potential optimization: handle 1-body constraints in a separate
|
||||
// loop to avoid the cost of test & jump?
|
||||
if (b2 >= 0) {
|
||||
fc_ptr = invMforce + 6*b2;
|
||||
fc_ptr[0] += delta * iMJ_ptr[6];
|
||||
fc_ptr[1] += delta * iMJ_ptr[7];
|
||||
fc_ptr[2] += delta * iMJ_ptr[8];
|
||||
fc_ptr[3] += delta * iMJ_ptr[9];
|
||||
fc_ptr[4] += delta * iMJ_ptr[10];
|
||||
fc_ptr[5] += delta * iMJ_ptr[11];
|
||||
deltaVelocity = invMforce + 6*b2;
|
||||
deltaVelocity[0] += deltaAppliedImpulse * iMJ_ptr[6];
|
||||
deltaVelocity[1] += deltaAppliedImpulse * iMJ_ptr[7];
|
||||
deltaVelocity[2] += deltaAppliedImpulse * iMJ_ptr[8];
|
||||
deltaVelocity[3] += deltaAppliedImpulse * iMJ_ptr[9];
|
||||
deltaVelocity[4] += deltaAppliedImpulse * iMJ_ptr[10];
|
||||
deltaVelocity[5] += deltaAppliedImpulse * iMJ_ptr[11];
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -443,10 +448,7 @@ void btSorLcpSolver::SOR_LCP(int m, int nb, dRealMutablePtr J, int *jb,
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
void btSorLcpSolver::SolveInternal1 (
|
||||
float global_cfm,
|
||||
float global_erp,
|
||||
const btAlignedObjectArray<btOdeSolverBody*> &body, int nb,
|
||||
void btSorLcpSolver::SolveInternal1 (const btAlignedObjectArray<btOdeSolverBody*> &body, int nb,
|
||||
btAlignedObjectArray<btOdeJoint*> &joint,
|
||||
int nj, const btContactSolverInfo& solverInfo,
|
||||
btStackAlloc* stackAlloc)
|
||||
@@ -475,16 +477,16 @@ void btSorLcpSolver::SolveInternal1 (
|
||||
|
||||
// for all bodies, compute the inertia tensor and its inverse in the global
|
||||
// frame, and compute the rotational force and add it to the torque
|
||||
// accumulator. I and invI are a vertical stack of 3x4 matrices, one per body.
|
||||
// accumulator. I and inverseInertiaWorld are a vertical stack of 3x4 matrices, one per body.
|
||||
dRealAllocaArray (I,3*4*nb);
|
||||
dRealAllocaArray (invI,3*4*nb);
|
||||
dRealAllocaArray (inverseInertiaWorld,3*4*nb);
|
||||
/* for (i=0; i<nb; i++) {
|
||||
dMatrix3 tmp;
|
||||
// compute inertia tensor in global frame
|
||||
dMULTIPLY2_333 (tmp,body[i]->m_I,body[i]->m_R);
|
||||
// compute inverse inertia tensor in global frame
|
||||
dMULTIPLY2_333 (tmp,body[i]->m_invI,body[i]->m_R);
|
||||
dMULTIPLY0_333 (invI+i*12,body[i]->m_R,tmp);
|
||||
dMULTIPLY0_333 (inverseInertiaWorld+i*12,body[i]->m_R,tmp);
|
||||
// compute rotational force
|
||||
dCROSS (body[i]->m_tacc,-=,body[i]->getAngularVelocity(),tmp);
|
||||
}
|
||||
@@ -497,7 +499,7 @@ void btSorLcpSolver::SolveInternal1 (
|
||||
|
||||
// compute inverse inertia tensor in global frame
|
||||
dMULTIPLY2_333 (tmp,body[i]->m_invI,body[i]->m_R);
|
||||
dMULTIPLY0_333 (invI+i*12,body[i]->m_R,tmp);
|
||||
dMULTIPLY0_333 (inverseInertiaWorld+i*12,body[i]->m_R,tmp);
|
||||
// compute rotational force
|
||||
// dMULTIPLY0_331 (tmp,I+i*12,body[i]->m_angularVelocity);
|
||||
// dCROSS (body[i]->m_tacc,-=,body[i]->m_angularVelocity,tmp);
|
||||
@@ -506,16 +508,16 @@ void btSorLcpSolver::SolveInternal1 (
|
||||
|
||||
|
||||
|
||||
// get joint information (m = total constraint dimension, nub = number of unbounded variables).
|
||||
// joints with m=0 are inactive and are removed from the joints array
|
||||
// get joint information (numConstraintRows = total constraint dimension, nub = number of unbounded variables).
|
||||
// joints with numConstraintRows=0 are inactive and are removed from the joints array
|
||||
// entirely, so that the code that follows does not consider them.
|
||||
//@@@ do we really need to save all the info1's
|
||||
btOdeJoint::Info1 *info = (btOdeJoint::Info1*) ALLOCA (nj*sizeof(btOdeJoint::Info1));
|
||||
|
||||
for (i=0, j=0; j<nj; j++) { // i=dest, j=src
|
||||
joint[j]->GetInfo1 (info+i);
|
||||
dIASSERT (info[i].m >= 0 && info[i].m <= 6 && info[i].nub >= 0 && info[i].nub <= info[i].m);
|
||||
if (info[i].m > 0) {
|
||||
dIASSERT (info[i].m_numConstraintRows >= 0 && info[i].m_numConstraintRows <= 6 && info[i].nub >= 0 && info[i].nub <= info[i].m_numConstraintRows);
|
||||
if (info[i].m_numConstraintRows > 0) {
|
||||
joint[i] = joint[j];
|
||||
i++;
|
||||
}
|
||||
@@ -523,34 +525,34 @@ void btSorLcpSolver::SolveInternal1 (
|
||||
nj = i;
|
||||
|
||||
// create the row offset array
|
||||
int m = 0;
|
||||
int *ofs = (int*) ALLOCA (nj*sizeof(int));
|
||||
int numConstraintRows = 0;
|
||||
int *constraintRowOffsets = (int*) ALLOCA (nj*sizeof(int));
|
||||
for (i=0; i<nj; i++) {
|
||||
ofs[i] = m;
|
||||
m += info[i].m;
|
||||
constraintRowOffsets[i] = numConstraintRows;
|
||||
numConstraintRows += info[i].m_numConstraintRows;
|
||||
}
|
||||
|
||||
// if there are constraints, compute the constraint force
|
||||
dRealAllocaArray (J,m*12);
|
||||
int *jb = (int*) ALLOCA (m*2*sizeof(int));
|
||||
if (m > 0) {
|
||||
dRealAllocaArray (JconstraintAxis,numConstraintRows*12);
|
||||
int *jb = (int*) ALLOCA (numConstraintRows*2*sizeof(int));
|
||||
if (numConstraintRows > 0) {
|
||||
// create a constraint equation right hand side vector `c', a constraint
|
||||
// force mixing vector `cfm', and LCP low and high bound vectors, and an
|
||||
// 'findex' vector.
|
||||
dRealAllocaArray (c,m);
|
||||
dRealAllocaArray (cfm,m);
|
||||
dRealAllocaArray (lo,m);
|
||||
dRealAllocaArray (hi,m);
|
||||
dRealAllocaArray (c_rhs,numConstraintRows);
|
||||
dRealAllocaArray (cfm,numConstraintRows);
|
||||
dRealAllocaArray (lowerLimit,numConstraintRows);
|
||||
dRealAllocaArray (higherLimit,numConstraintRows);
|
||||
|
||||
int *findex = (int*) ALLOCA (m*sizeof(int));
|
||||
int *findex = (int*) ALLOCA (numConstraintRows*sizeof(int));
|
||||
|
||||
dSetZero1 (c,m);
|
||||
dSetValue1 (cfm,m,global_cfm);
|
||||
dSetValue1 (lo,m,-dInfinity);
|
||||
dSetValue1 (hi,m, dInfinity);
|
||||
for (i=0; i<m; i++) findex[i] = -1;
|
||||
dSetZero1 (c_rhs,numConstraintRows);
|
||||
dSetValue1 (cfm,numConstraintRows,solverInfo.m_globalCfm);
|
||||
dSetValue1 (lowerLimit,numConstraintRows,-dInfinity);
|
||||
dSetValue1 (higherLimit,numConstraintRows, dInfinity);
|
||||
for (i=0; i<numConstraintRows; i++) findex[i] = -1;
|
||||
|
||||
// get jacobian data from constraints. an m*12 matrix will be created
|
||||
// get jacobian data from constraints. an numConstraintRows*12 matrix will be created
|
||||
// to store the two jacobian blocks from each constraint. it has this
|
||||
// format:
|
||||
//
|
||||
@@ -563,30 +565,30 @@ void btSorLcpSolver::SolveInternal1 (
|
||||
// (lll) = linear jacobian data
|
||||
// (aaa) = angular jacobian data
|
||||
//
|
||||
dSetZero1 (J,m*12);
|
||||
dSetZero1 (JconstraintAxis,numConstraintRows*12);
|
||||
btOdeJoint::Info2 Jinfo;
|
||||
Jinfo.rowskip = 12;
|
||||
Jinfo.fps = stepsize1;
|
||||
Jinfo.erp = global_erp;
|
||||
Jinfo.erp = solverInfo.m_erp;
|
||||
for (i=0; i<nj; i++) {
|
||||
Jinfo.J1l = J + ofs[i]*12;
|
||||
Jinfo.J1a = Jinfo.J1l + 3;
|
||||
Jinfo.J2l = Jinfo.J1l + 6;
|
||||
Jinfo.J2a = Jinfo.J1l + 9;
|
||||
Jinfo.c = c + ofs[i];
|
||||
Jinfo.cfm = cfm + ofs[i];
|
||||
Jinfo.lo = lo + ofs[i];
|
||||
Jinfo.hi = hi + ofs[i];
|
||||
Jinfo.findex = findex + ofs[i];
|
||||
Jinfo.m_J1linearAxis = JconstraintAxis + constraintRowOffsets[i]*12;
|
||||
Jinfo.m_J1angularAxis = Jinfo.m_J1linearAxis + 3;
|
||||
Jinfo.m_J2linearAxis = Jinfo.m_J1linearAxis + 6;
|
||||
Jinfo.m_J2angularAxis = Jinfo.m_J1linearAxis + 9;
|
||||
Jinfo.m_constraintError = c_rhs + constraintRowOffsets[i];
|
||||
Jinfo.cfm = cfm + constraintRowOffsets[i];
|
||||
Jinfo.m_lowerLimit = lowerLimit + constraintRowOffsets[i];
|
||||
Jinfo.m_higherLimit = higherLimit + constraintRowOffsets[i];
|
||||
Jinfo.findex = findex + constraintRowOffsets[i];
|
||||
joint[i]->GetInfo2 (&Jinfo);
|
||||
|
||||
if (Jinfo.c[0] > solverInfo.m_maxErrorReduction)
|
||||
Jinfo.c[0] = solverInfo.m_maxErrorReduction;
|
||||
if (Jinfo.m_constraintError[0] > solverInfo.m_maxErrorReduction)
|
||||
Jinfo.m_constraintError[0] = solverInfo.m_maxErrorReduction;
|
||||
|
||||
// adjust returned findex values for global index numbering
|
||||
for (j=0; j<info[i].m; j++) {
|
||||
if (findex[ofs[i] + j] >= 0)
|
||||
findex[ofs[i] + j] += ofs[i];
|
||||
for (j=0; j<info[i].m_numConstraintRows; j++) {
|
||||
if (findex[constraintRowOffsets[i] + j] >= 0)
|
||||
findex[constraintRowOffsets[i] + j] += constraintRowOffsets[i];
|
||||
}
|
||||
}
|
||||
|
||||
@@ -595,13 +597,13 @@ void btSorLcpSolver::SolveInternal1 (
|
||||
for (i=0; i<nj; i++) {
|
||||
int b1 = (joint[i]->node[0].body) ? (joint[i]->node[0].body->m_odeTag) : -1;
|
||||
int b2 = (joint[i]->node[1].body) ? (joint[i]->node[1].body->m_odeTag) : -1;
|
||||
for (j=0; j<info[i].m; j++) {
|
||||
for (j=0; j<info[i].m_numConstraintRows; j++) {
|
||||
jb_ptr[0] = b1;
|
||||
jb_ptr[1] = b2;
|
||||
jb_ptr += 2;
|
||||
}
|
||||
}
|
||||
dIASSERT (jb_ptr == jb+2*m);
|
||||
dIASSERT (jb_ptr == jb+2*numConstraintRows);
|
||||
|
||||
// compute the right hand side `rhs'
|
||||
dRealAllocaArray (tmp1,nb*6);
|
||||
@@ -610,47 +612,48 @@ void btSorLcpSolver::SolveInternal1 (
|
||||
btScalar body_invMass = body[i]->m_invMass;
|
||||
for (j=0; j<3; j++)
|
||||
tmp1[i*6+j] = body[i]->m_facc[j] * body_invMass + body[i]->m_linearVelocity[j] * stepsize1;
|
||||
dMULTIPLY0_331NEW (tmp1 + i*6 + 3,=,invI + i*12,body[i]->m_tacc);
|
||||
dMULTIPLY0_331NEW (tmp1 + i*6 + 3,=,inverseInertiaWorld + i*12,body[i]->m_tacc);
|
||||
for (j=0; j<3; j++)
|
||||
tmp1[i*6+3+j] += body[i]->m_angularVelocity[j] * stepsize1;
|
||||
}
|
||||
|
||||
// put J*tmp1 into rhs
|
||||
dRealAllocaArray (rhs,m);
|
||||
multiply_J (m,J,jb,tmp1,rhs);
|
||||
// put JconstraintAxis*tmp1 into rhs
|
||||
dRealAllocaArray (rhs,numConstraintRows);
|
||||
multiply_J (numConstraintRows,JconstraintAxis,jb,tmp1,rhs);
|
||||
|
||||
// complete rhs
|
||||
for (i=0; i<m; i++) rhs[i] = c[i]*stepsize1 - rhs[i];
|
||||
for (i=0; i<numConstraintRows; i++)
|
||||
rhs[i] = c_rhs[i]*stepsize1 - rhs[i];
|
||||
|
||||
// scale CFM
|
||||
for (i=0; i<m; i++)
|
||||
for (i=0; i<numConstraintRows; i++)
|
||||
cfm[i] *= stepsize1;
|
||||
|
||||
// load lambda from the value saved on the previous iteration
|
||||
dRealAllocaArray (lambda,m);
|
||||
// load lambdaAccumulatedImpulse from the value saved on the previous iteration
|
||||
dRealAllocaArray (lambdaAccumulatedImpulse,numConstraintRows);
|
||||
#ifdef WARM_STARTING
|
||||
dSetZero1 (lambda,m); //@@@ shouldn't be necessary
|
||||
dSetZero1 (lambdaAccumulatedImpulse,numConstraintRows); //@@@ shouldn't be necessary
|
||||
for (i=0; i<nj; i++) {
|
||||
memcpy (lambda+ofs[i],joint[i]->lambda,info[i].m * sizeof(btScalar));
|
||||
memcpy (lambdaAccumulatedImpulse+constraintRowOffsets[i],joint[i]->lambdaAccumulatedImpulse,info[i].numConstraintRows * sizeof(btScalar));
|
||||
}
|
||||
#endif
|
||||
|
||||
// solve the LCP problem and get lambda and invM*constraint_force
|
||||
// solve the LCP problem and get lambdaAccumulatedImpulse and invM*constraint_force
|
||||
dRealAllocaArray (cforce,nb*6);
|
||||
|
||||
/// SOR_LCP
|
||||
SOR_LCP (m,nb,J,jb,body,invI,lambda,cforce,rhs,lo,hi,cfm,findex,numIter,sOr,stackAlloc);
|
||||
SOR_LCP (numConstraintRows,nb,JconstraintAxis,jb,body,inverseInertiaWorld,lambdaAccumulatedImpulse,cforce,rhs,lowerLimit,higherLimit,cfm,findex,numIter,sOr,stackAlloc);
|
||||
|
||||
#ifdef WARM_STARTING
|
||||
// save lambda for the next iteration
|
||||
// save lambdaAccumulatedImpulse for the next iteration
|
||||
//@@@ note that this doesn't work for contact joints yet, as they are
|
||||
// recreated every iteration
|
||||
for (i=0; i<nj; i++) {
|
||||
memcpy (joint[i]->lambda,lambda+ofs[i],info[i].m * sizeof(btScalar));
|
||||
memcpy (joint[i]->lambdaAccumulatedImpulse,lambdaAccumulatedImpulse+constraintRowOffsets[i],info[i].numConstraintRows * sizeof(btScalar));
|
||||
}
|
||||
#endif
|
||||
|
||||
// note that the SOR method overwrites rhs and J at this point, so
|
||||
// note that the SOR method overwrites rhs and JconstraintAxis at this point, so
|
||||
// they should not be used again.
|
||||
// add stepsize * cforce to the body velocity
|
||||
for (i=0; i<nb; i++) {
|
||||
@@ -677,7 +680,7 @@ void btSorLcpSolver::SolveInternal1 (
|
||||
{
|
||||
body[i]->m_tacc[j] *= solverInfo.m_timeStep;
|
||||
}
|
||||
dMULTIPLY0_331NEW(angvel,+=,invI + i*12,body[i]->m_tacc);
|
||||
dMULTIPLY0_331NEW(angvel,+=,inverseInertiaWorld + i*12,body[i]->m_tacc);
|
||||
body[i]->m_angularVelocity = angvel;
|
||||
}
|
||||
//stackAlloc->endBlock(saBlock);//Remo: 10.10.2007
|
||||
|
||||
@@ -39,9 +39,7 @@ public:
|
||||
dRand2_seed = 0;
|
||||
}
|
||||
|
||||
void SolveInternal1 (float global_cfm,
|
||||
float global_erp,
|
||||
const btAlignedObjectArray<btOdeSolverBody*> &body, int nb,
|
||||
void SolveInternal1 (const btAlignedObjectArray<btOdeSolverBody*> &body, int nb,
|
||||
btAlignedObjectArray<btOdeJoint*> &joint,
|
||||
int nj, const btContactSolverInfo& solverInfo,
|
||||
btStackAlloc* stackAlloc
|
||||
|
||||
Reference in New Issue
Block a user