Implement basic evoluationary algorithm.

This commit is contained in:
Benelot
2016-09-11 22:25:22 +02:00
parent d9a2113b28
commit 88edbf8524
3 changed files with 536 additions and 191 deletions

View File

@@ -1,6 +1,6 @@
/*
Bullet Continuous Collision Detection and Physics Library Copyright (c) 2007 Erwin Coumans
Motor Demo
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2015 Google Inc. http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
@@ -13,7 +13,6 @@ subject to the following restrictions:
3. This notice may not be removed or altered from any source distribution.
*/
#include "NN3DWalkers.h"
#include <map>
@@ -28,22 +27,12 @@ class btCollisionDispatcher;
class btConstraintSolver;
struct btCollisionAlgorithmCreateFunc;
class btDefaultCollisionConfiguration;
class NNWalker;
#include "../CommonInterfaces/CommonRigidBodyBase.h"
#include "../CommonInterfaces/CommonParameterInterface.h"
//TODO: Maybe add pointworldToLocal and AxisWorldToLocal etc. to a helper class
//TODO: How to detect perpetually interpenetrating btRigidBodies? (Maybe contactpoints can tell us something)
btVector3 getPointWorldToLocal(btTransform localObjectCenterOfMassTransform, btVector3 point);
btVector3 getPointLocalToWorld(btTransform localObjectCenterOfMassTransform, btVector3 point);
btVector3 getAxisLocalToWorld(btTransform localObjectCenterOfMassTransform, btVector3 axis);
btVector3 getAxisWorldToLocal(btTransform localObjectCenterOfMassTransform, btVector3 axis);
btTransform getTransformLocalToWorld(btTransform localObjectCenterOfMassTransform, btTransform transform);
btTransform getTransformWorldToLocal(btTransform localObjectCenterOfMassTransform, btTransform transform);
#include "../Utils/b3ReferenceFrameHelper.hpp"
static btScalar gRootBodyRadius = 0.25f;
static btScalar gRootBodyHeight = 0.1f;
@@ -52,6 +41,63 @@ static btScalar gLegLength = 0.45f;
static btScalar gForeLegLength = 0.75f;
static btScalar gForeLegRadius = 0.08f;
#ifndef SIMD_PI_4
#define SIMD_PI_4 0.5 * SIMD_HALF_PI
#endif
#ifndef SIMD_PI_8
#define SIMD_PI_8 0.25 * SIMD_HALF_PI
#endif
#ifndef RANDOM_MOVEMENT
#define RANDOM_MOVEMENT false
#endif
#ifndef RANDOMIZE_DIMENSIONS
#define RANDOMIZE_DIMENSIONS false
#endif
#ifndef NUM_WALKERS
#define NUM_WALKERS 50
#endif
#ifndef NUM_PARALLEL_EVALUATIONS
#define NUM_PARALLEL_EVALUATIONS 1
#endif
#ifndef EVALUATION_TIME
#define EVALUATION_TIME 10 // s
#endif
#ifndef REAP_QTY
#define REAP_QTY 0.3f // number of walkers reaped based on their bad performance
#endif
#ifndef SOW_CROSSOVER_QTY
#define SOW_CROSSOVER_QTY 0.2f // this means REAP_QTY-SOW_CROSSOVER_QTY = NEW_RANDOM_BREED_QTY
#endif
#ifndef SOW_ELITE_QTY
#define SOW_ELITE_QTY 0.2f // number of walkers kept using an elitist strategy
#endif
#ifndef SOW_MUTATION_QTY
#define SOW_MUTATION_QTY 0.5f // SOW_ELITE_QTY + SOW_MUTATION_QTY + REAP_QTY = 1
#endif
#ifndef MUTATION_RATE
#define MUTATION_RATE 0.5f // the mutation rate of for the walker with the worst performance
#endif
#ifndef SOW_ELITE_PARTNER
#define SOW_ELITE_PARTNER 0.8f
#endif
#define NUM_LEGS 6
#define BODYPART_COUNT (2 * NUM_LEGS + 1)
#define JOINT_COUNT (BODYPART_COUNT - 1)
#define DRAW_INTERPENETRATIONS false
void* GROUND_ID = (void*)1;
class NN3DWalkersExample : public CommonRigidBodyBase
@@ -60,23 +106,24 @@ class NN3DWalkersExample : public CommonRigidBodyBase
btScalar m_targetAccumulator;
btScalar m_targetFrequency;
btScalar m_motorStrength;
int m_evaluationsQty;
int m_nextReaped;
btAlignedObjectArray<class NNWalker*> m_walkers;
btAlignedObjectArray<class NNWalker*> m_walkersInPopulation;
public:
NN3DWalkersExample(struct GUIHelperInterface* helper)
:CommonRigidBodyBase(helper), m_Time(0),m_motorStrength(0.5f),m_targetFrequency(3),m_targetAccumulator(0)
:CommonRigidBodyBase(helper), m_Time(0),m_motorStrength(0.5f),m_targetFrequency(3),m_targetAccumulator(0),m_evaluationsQty(0),m_nextReaped(0)
{
}
void initPhysics();
virtual void exitPhysics();
virtual ~NN3DWalkersExample()
{
}
void initPhysics();
virtual void exitPhysics();
void spawnWalker(const btVector3& startOffset, bool bFixed);
@@ -84,43 +131,7 @@ public:
void setMotorTargets(btScalar deltaTime);
bool detectCollisions(){
bool collisionDetected = false;
if(m_dynamicsWorld){
m_dynamicsWorld->performDiscreteCollisionDetection(); // let the collisions be calculated
}
int numManifolds = m_dynamicsWorld->getDispatcher()->getNumManifolds();
for (int i=0;i<numManifolds;i++)
{
btPersistentManifold* contactManifold = m_dynamicsWorld->getDispatcher()->getManifoldByIndexInternal(i);
const btCollisionObject* obA = contactManifold->getBody0();
const btCollisionObject* obB = contactManifold->getBody1();
if(obA->getUserPointer() != GROUND_ID && obB->getUserPointer() != GROUND_ID){
int numContacts = contactManifold->getNumContacts();
for (int j=0;j<numContacts;j++)
{
collisionDetected = true;
btManifoldPoint& pt = contactManifold->getContactPoint(j);
if (pt.getDistance()<0.f)
{
const btVector3& ptA = pt.getPositionWorldOnA();
const btVector3& ptB = pt.getPositionWorldOnB();
const btVector3& normalOnB = pt.m_normalWorldOnB;
if(m_dynamicsWorld->getDebugDrawer()){
m_dynamicsWorld->getDebugDrawer()->drawSphere(pt.getPositionWorldOnA(), 0.1, btVector3(0., 0., 1.));
m_dynamicsWorld->getDebugDrawer()->drawSphere(pt.getPositionWorldOnB(), 0.1, btVector3(0., 0., 1.));
}
}
}
}
}
return collisionDetected;
}
bool detectCollisions();
void resetCamera()
{
@@ -132,35 +143,52 @@ public:
}
virtual void renderScene();
// Evaluation
void update(const double timeSinceLastTick);
void updateEvaluations(const double timeSinceLastTick);
void scheduleEvaluations();
// Reaper
void rateEvaluations();
void reap();
void sow();
void crossover(NNWalker* mother, NNWalker* father, NNWalker* offspring);
void mutate(NNWalker* mutant, float mutationRate);
NNWalker* getRandomElite();
NNWalker* getRandomNonElite();
NNWalker* getNextReaped();
};
static NN3DWalkersExample* nn3DWalkers = NULL;
#ifndef SIMD_PI_4
#define SIMD_PI_4 0.5 * SIMD_HALF_PI
#endif
#ifndef SIMD_PI_8
#define SIMD_PI_8 0.25 * SIMD_HALF_PI
#endif
bool RANDOM_MOVEMENT = false;
bool RANDOM_DIMENSIONS = false;
#define NUM_LEGS 6
#define BODYPART_COUNT (2 * NUM_LEGS + 1)
#define JOINT_COUNT (BODYPART_COUNT - 1)
class NNWalker
{
btDynamicsWorld* m_ownerWorld;
btCollisionShape* m_shapes[BODYPART_COUNT];
btRigidBody* m_bodies[BODYPART_COUNT];
btTransform m_bodyRelativeTransforms[BODYPART_COUNT];
btTypedConstraint* m_joints[JOINT_COUNT];
std::map<void*,int> m_bodyTouchSensorIndexMap;
bool m_touchSensors[BODYPART_COUNT];
float m_sensoryMotorWeights[BODYPART_COUNT*JOINT_COUNT];
btScalar m_sensoryMotorWeights[BODYPART_COUNT*JOINT_COUNT];
bool m_inEvaluation;
btScalar m_evaluationTime;
bool m_reaped;
btVector3 m_startPosition;
btRigidBody* localCreateRigidBody (btScalar mass, const btTransform& startTransform, btCollisionShape* shape)
{
@@ -179,17 +207,24 @@ class NNWalker
public:
NNWalker(btDynamicsWorld* ownerWorld, const btVector3& positionOffset, bool bFixed)
: m_ownerWorld (ownerWorld)
{
btVector3 vUp(0, 1, 0); // up in local reference frame
void randomizeSensoryMotorWeights(){
//initialize random weights
for(int i = 0;i < BODYPART_COUNT;i++){
for(int j = 0;j < JOINT_COUNT;j++){
m_sensoryMotorWeights[i+j*BODYPART_COUNT] = ((double) rand() / (RAND_MAX))*2.0f-1.0f;
}
}
}
NNWalker(btDynamicsWorld* ownerWorld, const btVector3& positionOffset, bool bFixed)
: m_ownerWorld (ownerWorld), m_inEvaluation(false), m_evaluationTime(0), m_reaped(false)
{
btVector3 vUp(0, 1, 0); // up in local reference frame
NN3DWalkersExample* nnWalkersDemo = (NN3DWalkersExample*)m_ownerWorld->getWorldUserInfo();
randomizeSensoryMotorWeights();
//
// Setup geometry
@@ -203,18 +238,21 @@ public:
//
// Setup rigid bodies
float rootAboveGroundHeight = gForeLegLength;
btScalar rootAboveGroundHeight = gForeLegLength;
btTransform bodyOffset; bodyOffset.setIdentity();
bodyOffset.setOrigin(positionOffset);
// root body
btVector3 localRootBodyPosition = btVector3(btScalar(0.), btScalar(rootAboveGroundHeight), btScalar(0.)); // root body position in local reference frame
btVector3 localRootBodyPosition = btVector3(btScalar(0.), rootAboveGroundHeight, btScalar(0.)); // root body position in local reference frame
btTransform transform;
transform.setIdentity();
transform.setOrigin(localRootBodyPosition);
btTransform originTransform = transform;
m_bodies[0] = localCreateRigidBody(btScalar(bFixed?0.:1.), bodyOffset*transform, m_shapes[0]);
m_ownerWorld->addRigidBody(m_bodies[0]);
m_bodyRelativeTransforms[0] = btTransform();
m_bodies[0]->setUserPointer(this);
m_bodyTouchSensorIndexMap.insert(std::pair<void*,int>(m_bodies[0], 0));
@@ -224,7 +262,7 @@ public:
btTransform localA, localB, localC;
// legs
for ( i=0; i<NUM_LEGS; i++)
for (i = 0; i < NUM_LEGS; i++)
{
float footAngle = 2 * SIMD_PI * i / NUM_LEGS; // legs are uniformly distributed around the root body
float footYUnitPosition = sin(footAngle); // y position of the leg on the unit circle
@@ -239,6 +277,7 @@ public:
btVector3 kneeAxis = legDirection.cross(vUp);
transform.setRotation(btQuaternion(kneeAxis, SIMD_HALF_PI));
m_bodies[1+2*i] = localCreateRigidBody(btScalar(1.), bodyOffset*transform, m_shapes[1+2*i]);
m_bodyRelativeTransforms[1+2*i] = transform;
m_bodies[1+2*i]->setUserPointer(this);
m_bodyTouchSensorIndexMap.insert(std::pair<void*,int>(m_bodies[1+2*i],1+2*i));
@@ -246,13 +285,14 @@ public:
transform.setIdentity();
transform.setOrigin(btVector3(btScalar(footXUnitPosition*(gRootBodyRadius+gLegLength)), btScalar(rootAboveGroundHeight-0.5*gForeLegLength), btScalar(footYUnitPosition*(gRootBodyRadius+gLegLength))));
m_bodies[2+2*i] = localCreateRigidBody(btScalar(1.), bodyOffset*transform, m_shapes[2+2*i]);
m_bodyRelativeTransforms[2+2*i] = transform;
m_bodies[2+2*i]->setUserPointer(this);
m_bodyTouchSensorIndexMap.insert(std::pair<void*,int>(m_bodies[2+2*i],2+2*i));
// hip joints
localA.setIdentity(); localB.setIdentity();
localA.getBasis().setEulerZYX(0,-footAngle,0); localA.setOrigin(btVector3(btScalar(footXUnitPosition*gRootBodyRadius), btScalar(0.), btScalar(footYUnitPosition*gRootBodyRadius)));
localB = getTransformWorldToLocal(m_bodies[1+2*i]->getWorldTransform(), getTransformLocalToWorld(m_bodies[0]->getWorldTransform(),localA));
localB = b3ReferenceFrameHelper::getTransformWorldToLocal(m_bodies[1+2*i]->getWorldTransform(), b3ReferenceFrameHelper::getTransformLocalToWorld(m_bodies[0]->getWorldTransform(),localA));
hingeC = new btHingeConstraint(*m_bodies[0], *m_bodies[1+2*i], localA, localB);
hingeC->setLimit(btScalar(-0.75 * SIMD_PI_4), btScalar(SIMD_PI_8));
//hingeC->setLimit(btScalar(-0.1), btScalar(0.1));
@@ -261,8 +301,8 @@ public:
// knee joints
localA.setIdentity(); localB.setIdentity(); localC.setIdentity();
localA.getBasis().setEulerZYX(0,-footAngle,0); localA.setOrigin(btVector3(btScalar(footXUnitPosition*(gRootBodyRadius+gLegLength)), btScalar(0.), btScalar(footYUnitPosition*(gRootBodyRadius+gLegLength))));
localB = getTransformWorldToLocal(m_bodies[1+2*i]->getWorldTransform(), getTransformLocalToWorld(m_bodies[0]->getWorldTransform(),localA));
localC = getTransformWorldToLocal(m_bodies[2+2*i]->getWorldTransform(), getTransformLocalToWorld(m_bodies[0]->getWorldTransform(),localA));
localB = b3ReferenceFrameHelper::getTransformWorldToLocal(m_bodies[1+2*i]->getWorldTransform(), b3ReferenceFrameHelper::getTransformLocalToWorld(m_bodies[0]->getWorldTransform(),localA));
localC = b3ReferenceFrameHelper::getTransformWorldToLocal(m_bodies[2+2*i]->getWorldTransform(), b3ReferenceFrameHelper::getTransformLocalToWorld(m_bodies[0]->getWorldTransform(),localA));
hingeC = new btHingeConstraint(*m_bodies[1+2*i], *m_bodies[2+2*i], localB, localC);
//hingeC->setLimit(btScalar(-0.01), btScalar(0.01));
hingeC->setLimit(btScalar(-SIMD_PI_8), btScalar(0.2));
@@ -272,16 +312,16 @@ public:
m_ownerWorld->addConstraint(m_joints[2*i], true); // connect thigh bone with root
if(nn3DWalkers->detectCollisions()){ // if thigh bone causes collision, remove it again
if(nnWalkersDemo->detectCollisions()){ // if thigh bone causes collision, remove it again
m_ownerWorld->removeRigidBody(m_bodies[1+2*i]);
m_ownerWorld->removeConstraint(m_joints[2*i]); // disconnect thigh bone from root
}
else{
m_ownerWorld->addRigidBody(m_bodies[2+2*i]); // add shin bone
m_ownerWorld->addConstraint(m_joints[1+2*i], true); // connect shin bone with thig
m_ownerWorld->addConstraint(m_joints[1+2*i], true); // connect shin bone with thigh
if(nn3DWalkers->detectCollisions()){ // if shin bone causes collision, remove it again
if(nnWalkersDemo->detectCollisions()){ // if shin bone causes collision, remove it again
m_ownerWorld->removeRigidBody(m_bodies[2+2*i]);
m_ownerWorld->removeConstraint(m_joints[1+2*i]); // disconnect shin bone from thigh
}
@@ -296,6 +336,8 @@ public:
//m_bodies[i]->setSleepingThresholds(1.6, 2.5);
m_bodies[i]->setSleepingThresholds(0.5f, 0.5f);
}
removeFromWorld(); // it should not yet be in the world
}
virtual ~NNWalker ()
@@ -321,7 +363,9 @@ public:
}
}
btTypedConstraint** getJoints() {return &m_joints[0];}
btTypedConstraint** getJoints() {
return &m_joints[0];
}
void setTouchSensor(void* bodyPointer){
m_touchSensors[m_bodyTouchSensorIndexMap.at(bodyPointer)] = true;
@@ -333,26 +377,119 @@ public:
}
}
bool getTouchSensor(int i){ return m_touchSensors[i];}
bool getTouchSensor(int i){
return m_touchSensors[i];
}
const float* getSensoryMotorWeights() const {
btScalar* getSensoryMotorWeights() {
return m_sensoryMotorWeights;
}
void addToWorld() {
int i;
// add all bodies and shapes
for ( i = 0; i < BODYPART_COUNT; ++i)
{
m_ownerWorld->addRigidBody(m_bodies[i]);
}
// add all constraints
for ( i = 0; i < JOINT_COUNT; ++i)
{
m_ownerWorld->addConstraint(m_joints[i], true); // important! If you add constraints back, you must set bullet physics to disable collision between constrained bodies
}
m_startPosition = getPosition();
}
void removeFromWorld(){
int i;
// Remove all constraints
for ( i = 0; i < JOINT_COUNT; ++i)
{
m_ownerWorld->removeConstraint(m_joints[i]);
}
// Remove all bodies and shapes
for ( i = 0; i < BODYPART_COUNT; ++i)
{
m_ownerWorld->removeRigidBody(m_bodies[i]);
}
}
btVector3 getPosition() const {
btVector3 finalPosition(0,0,0);
for(int i = 0; i < BODYPART_COUNT;i++)
{
//b3Printf(" position (%f,%f,%f)",m_bodies[i]->getCenterOfMassPosition().x(),m_bodies[i]->getCenterOfMassPosition().y(),m_bodies[i]->getCenterOfMassPosition().z());
finalPosition += m_bodies[i]->getCenterOfMassPosition();
}
finalPosition /= BODYPART_COUNT;
return finalPosition;
}
btScalar getDistanceFitness() const
{
btScalar distance = 0;
distance = (getPosition() - m_startPosition).length2();
return distance;
}
btScalar getFitness() const
{
return getDistanceFitness(); // for now it is only distance
}
void resetAt(btVector3 position) {
btTransform resetPosition(btQuaternion(), position);
for (int i = 0; i < BODYPART_COUNT; ++i)
{
m_bodies[i]->setWorldTransform(resetPosition*m_bodyRelativeTransforms[i]);
if(m_bodies[i]->getMotionState()){
m_bodies[i]->getMotionState()->setWorldTransform(resetPosition*m_bodyRelativeTransforms[i]);
}
m_bodies[i]->clearForces();
m_bodies[i]->setAngularVelocity(btVector3(0,0,0));
m_bodies[i]->setLinearVelocity(btVector3(0,0,0));
}
clearTouchSensors();
}
double getEvaluationTime() const {
return m_evaluationTime;
}
void setEvaluationTime(double evaluationTime) {
m_evaluationTime = evaluationTime;
}
bool isInEvaluation() const {
return m_inEvaluation;
}
void setInEvaluation(bool inEvaluation) {
m_inEvaluation = inEvaluation;
}
bool isReaped() const {
return m_reaped;
}
void setReaped(bool reaped) {
m_reaped = reaped;
}
};
void evaluationUpdatePreTickCallback(btDynamicsWorld *world, btScalar timeStep);
void legMotorPreTickCallback (btDynamicsWorld *world, btScalar timeStep)
{
NN3DWalkersExample* motorDemo = (NN3DWalkersExample*)world->getWorldUserInfo();
motorDemo->setMotorTargets(timeStep);
nn3DWalkers->detectCollisions();
}
bool legContactProcessedCallback(btManifoldPoint& cp,
void* body0, void* body1)
bool legContactProcessedCallback(btManifoldPoint& cp, void* body0, void* body1)
{
btCollisionObject* o1 = static_cast<btCollisionObject*>(body0);
btCollisionObject* o2 = static_cast<btCollisionObject*>(body1);
@@ -378,8 +515,6 @@ bool legContactProcessedCallback(btManifoldPoint& cp,
return false;
}
void NN3DWalkersExample::initPhysics()
{
gContactProcessedCallback = legContactProcessedCallback;
@@ -392,7 +527,7 @@ void NN3DWalkersExample::initPhysics()
createEmptyDynamicsWorld();
m_dynamicsWorld->setInternalTickCallback(legMotorPreTickCallback,this,true);
m_dynamicsWorld->setInternalTickCallback(evaluationUpdatePreTickCallback, this, true);
m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
m_targetFrequency = 3;
@@ -487,91 +622,78 @@ void NN3DWalkersExample::initPhysics()
ground->setUserPointer(GROUND_ID);
}
for(int i = 0; i < 5 ; i++){
for(int j = 0; j < 5; j++){
for(int i = 0; i < NUM_WALKERS ; i++){
if(RANDOMIZE_DIMENSIONS){
float maxDimension = 0.2f;
if(RANDOM_DIMENSIONS){
// randomize the dimensions
gRootBodyRadius = ((double) rand() / (RAND_MAX)) * (maxDimension-0.01f) + 0.01f;
gRootBodyHeight = ((double) rand() / (RAND_MAX)) * (maxDimension-0.01f) + 0.01f;
gLegRadius = ((double) rand() / (RAND_MAX)) * (maxDimension-0.01f) + 0.01f;
gLegLength = ((double) rand() / (RAND_MAX)) * (maxDimension-0.01f) + 0.01f;
gForeLegLength = ((double) rand() / (RAND_MAX)) * (maxDimension-0.01f) + 0.01f;
gForeLegRadius = ((double) rand() / (RAND_MAX)) * (maxDimension-0.01f) + 0.01f;
}
// Spawn one walker
btVector3 spacing(10.0f,0.8f,10.0f);
btVector3 startOffset(spacing * btVector3(i,0,j));
spawnWalker(startOffset, false);
// randomize the dimensions
gRootBodyRadius = ((double) rand() / (RAND_MAX)) * (maxDimension-0.01f) + 0.01f;
gRootBodyHeight = ((double) rand() / (RAND_MAX)) * (maxDimension-0.01f) + 0.01f;
gLegRadius = ((double) rand() / (RAND_MAX)) * (maxDimension-0.01f) + 0.01f;
gLegLength = ((double) rand() / (RAND_MAX)) * (maxDimension-0.01f) + 0.01f;
gForeLegLength = ((double) rand() / (RAND_MAX)) * (maxDimension-0.01f) + 0.01f;
gForeLegRadius = ((double) rand() / (RAND_MAX)) * (maxDimension-0.01f) + 0.01f;
}
}
m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld);
// Spawn one walker
btVector3 offset(0,0,0);
spawnWalker(offset, false);
}
}
void NN3DWalkersExample::spawnWalker(const btVector3& startOffset, bool bFixed)
{
NNWalker* walker = new NNWalker(m_dynamicsWorld, startOffset, bFixed);
m_walkers.push_back(walker);
m_walkersInPopulation.push_back(walker);
}
void NN3DWalkersExample::setMotorTargets(btScalar deltaTime)
bool NN3DWalkersExample::detectCollisions()
{
bool collisionDetected = false;
if(m_dynamicsWorld){
m_dynamicsWorld->performDiscreteCollisionDetection(); // let the collisions be calculated
}
float ms = deltaTime*1000000.;
float minFPS = 1000000.f/60.f;
if (ms > minFPS)
ms = minFPS;
m_Time += ms;
m_targetAccumulator +=ms;
if(m_targetAccumulator >= 1000000.0f /((double)m_targetFrequency))
int numManifolds = m_dynamicsWorld->getDispatcher()->getNumManifolds();
for (int i = 0;i < numManifolds;i++)
{
m_targetAccumulator = 0;
//
// set per-frame sinusoidal position targets using angular motor (hacky?)
//
for (int r=0; r<m_walkers.size(); r++)
{
for (int i=0; i<2*NUM_LEGS; i++)
btPersistentManifold* contactManifold = m_dynamicsWorld->getDispatcher()->getManifoldByIndexInternal(i);
const btCollisionObject* obA = contactManifold->getBody0();
const btCollisionObject* obB = contactManifold->getBody1();
if(obA->getUserPointer() != GROUND_ID && obB->getUserPointer() != GROUND_ID){
int numContacts = contactManifold->getNumContacts();
for (int j=0;j<numContacts;j++)
{
btScalar targetAngle = 0;
btHingeConstraint* hingeC = static_cast<btHingeConstraint*>(m_walkers[r]->getJoints()[i]);
collisionDetected = true;
btManifoldPoint& pt = contactManifold->getContactPoint(j);
if (pt.getDistance()<0.f)
{
const btVector3& ptA = pt.getPositionWorldOnA();
const btVector3& ptB = pt.getPositionWorldOnB();
const btVector3& normalOnB = pt.m_normalWorldOnB;
if(RANDOM_MOVEMENT){
targetAngle = ((double) rand() / (RAND_MAX));//0.5 * (1 + sin(2 * SIMD_PI * fTargetPercent+ i* SIMD_PI/NUM_LEGS));
}
else{
// accumulate sensor inputs with weights
for(int j = 0; j < JOINT_COUNT;j++){
targetAngle += m_walkers[r]->getSensoryMotorWeights()[i+j*BODYPART_COUNT] * m_walkers[r]->getTouchSensor(i);
if(!DRAW_INTERPENETRATIONS){
return collisionDetected;
}
// apply the activation function
targetAngle = (tanh(targetAngle)+1.0f)*0.5f;
if(m_dynamicsWorld->getDebugDrawer()){
m_dynamicsWorld->getDebugDrawer()->drawSphere(pt.getPositionWorldOnA(), 0.1, btVector3(0., 0., 1.));
m_dynamicsWorld->getDebugDrawer()->drawSphere(pt.getPositionWorldOnB(), 0.1, btVector3(0., 0., 1.));
}
}
btScalar targetLimitAngle = hingeC->getLowerLimit() + targetAngle * (hingeC->getUpperLimit() - hingeC->getLowerLimit());
btScalar currentAngle = hingeC->getHingeAngle();
btScalar angleError = targetLimitAngle - currentAngle;
btScalar desiredAngularVel = 1000000.f * angleError/ms;
hingeC->enableAngularMotor(true, desiredAngularVel, m_motorStrength);
}
// clear sensor signals after usage
m_walkers[r]->clearTouchSensors();
}
}
return collisionDetected;
}
bool NN3DWalkersExample::keyboardCallback(int key, int state)
{
//TODO: Redesign the button setups
switch (key)
{
case '[':
@@ -589,8 +711,6 @@ bool NN3DWalkersExample::keyboardCallback(int key, int state)
return false;
}
void NN3DWalkersExample::exitPhysics()
{
@@ -598,9 +718,9 @@ void NN3DWalkersExample::exitPhysics()
int i;
for (i=0;i<m_walkers.size();i++)
for (i = 0;i < m_walkersInPopulation.size();i++)
{
NNWalker* walker = m_walkers[i];
NNWalker* walker = m_walkersInPopulation[i];
delete walker;
}
@@ -616,39 +736,208 @@ void NN3DWalkersExample::renderScene()
debugDraw(m_dynamicsWorld->getDebugDrawer()->getDebugMode());
}
class CommonExampleInterface* ET_NN3DWalkersCreateFunc(struct CommonExampleOptions& options)
class CommonExampleInterface* ET_NN3DWalkersCreateFunc(struct CommonExampleOptions& options)
{
nn3DWalkers = new NN3DWalkersExample(options.m_guiHelper);
return nn3DWalkers;
}
btVector3 getPointWorldToLocal( btTransform localObjectCenterOfMassTransform, btVector3 point) {
return localObjectCenterOfMassTransform.inverse() * point; // transforms the point from the world frame into the local frame
bool fitnessComparator (const NNWalker* a, const NNWalker* b)
{
return a->getFitness() > b->getFitness();
}
btVector3 getPointLocalToWorld( btTransform localObjectCenterOfMassTransform, btVector3 point) {
return localObjectCenterOfMassTransform * point; // transforms the point from the world frame into the local frame
void NN3DWalkersExample::rateEvaluations(){
m_walkersInPopulation.quickSort(fitnessComparator); // Sort walkers by fitness
b3Printf("Best performing walker: %f meters", btSqrt(m_walkersInPopulation[0]->getDistanceFitness()));
for(int i = 0; i < m_walkersInPopulation.size();i++){
m_walkersInPopulation[i]->setEvaluationTime(0);
}
m_nextReaped = 0;
}
btVector3 getAxisWorldToLocal(btTransform localObjectCenterOfMassTransform, btVector3 axis) {
btTransform local1 = localObjectCenterOfMassTransform.inverse(); // transforms the axis from the local frame into the world frame
btVector3 zero(0,0,0);
local1.setOrigin(zero);
return local1 * axis;
void NN3DWalkersExample::reap() {
int reaped = 0;
for(int i = m_walkersInPopulation.size()-1;i >=(m_walkersInPopulation.size()-1)*(1-REAP_QTY); i--){ // reap a certain percentage
m_walkersInPopulation[i]->setReaped(true);
reaped++;
b3Printf("%i Walker(s) reaped.",reaped);
}
}
btVector3 getAxisLocalToWorld(btTransform localObjectCenterOfMassTransform, btVector3 axis) {
btTransform local1 = localObjectCenterOfMassTransform; // transforms the axis from the local frame into the world frame
btVector3 zero(0,0,0);
local1.setOrigin(zero);
return local1 * axis;
NNWalker* NN3DWalkersExample::getRandomElite(){
return m_walkersInPopulation[((m_walkersInPopulation.size()-1) * SOW_ELITE_QTY) * (rand()/RAND_MAX)];
}
btTransform getTransformWorldToLocal(btTransform localObjectCenterOfMassTransform, btTransform transform) {
return localObjectCenterOfMassTransform.inverse() * transform; // transforms the axis from the local frame into the world frame
NNWalker* NN3DWalkersExample::getRandomNonElite(){
return m_walkersInPopulation[(m_walkersInPopulation.size()-1) * SOW_ELITE_QTY + (m_walkersInPopulation.size()-1) * (1.0f-SOW_ELITE_QTY) * (rand()/RAND_MAX)];
}
btTransform getTransformLocalToWorld(btTransform localObjectCenterOfMassTransform, btTransform transform) {
return localObjectCenterOfMassTransform * transform; // transforms the axis from the local frame into the world frame
NNWalker* NN3DWalkersExample::getNextReaped() {
if((m_walkersInPopulation.size()-1) - m_nextReaped >= (m_walkersInPopulation.size()-1) * (1-REAP_QTY)){
m_nextReaped++;
}
// if(m_walkersInPopulation[(m_walkersInPopulation.size()-1) - m_nextReaped+1]->isReaped()){
return m_walkersInPopulation[(m_walkersInPopulation.size()-1) - m_nextReaped+1];
// }
// else{
// return NULL; // we did it wrongly
// }
}
void NN3DWalkersExample::sow() {
int sow = 0;
for(int i = 0; i < m_walkersInPopulation.size() * (SOW_CROSSOVER_QTY);i++){ // create number of new crossover creatures
sow++;
b3Printf("%i Walker(s) sown.",sow);
NNWalker* mother = getRandomElite(); // Get elite partner (father)
NNWalker* father = (SOW_ELITE_PARTNER < rand()/RAND_MAX)?getRandomElite():getRandomNonElite(); //Get elite or random partner (mother)
NNWalker* offspring = getNextReaped();
crossover(mother,father, offspring);
}
for(int i = m_walkersInPopulation.size()*SOW_ELITE_QTY; i < m_walkersInPopulation.size()*(SOW_ELITE_QTY+SOW_MUTATION_QTY);i++){ // create mutants
mutate(m_walkersInPopulation[i], MUTATION_RATE / m_walkersInPopulation.size() * SOW_MUTATION_QTY * (i-m_walkersInPopulation.size()*SOW_ELITE_QTY));
}
for(int i = 0; i < m_walkersInPopulation.size() * (REAP_QTY-SOW_CROSSOVER_QTY);i++){
sow++;
b3Printf("%i Walker(s) sown.",sow);
NNWalker* reaped = getNextReaped();
reaped->setReaped(false);
reaped->randomizeSensoryMotorWeights();
}
}
void NN3DWalkersExample::crossover(NNWalker* mother, NNWalker* father, NNWalker* child) {
for(int i = 0; i < BODYPART_COUNT*JOINT_COUNT;i++){
btScalar random = ((double) rand() / (RAND_MAX));
if(random >= 0.5f){
child->getSensoryMotorWeights()[i] = mother->getSensoryMotorWeights()[i];
}
else
{
child->getSensoryMotorWeights()[i] = father->getSensoryMotorWeights()[i];
}
}
}
void NN3DWalkersExample::mutate(NNWalker* mutant, float mutationRate) {
for(int i = 0; i < BODYPART_COUNT*JOINT_COUNT;i++){
btScalar random = ((double) rand() / (RAND_MAX));
if(random >= mutationRate){
mutant->getSensoryMotorWeights()[i] = ((double) rand() / (RAND_MAX))*2.0f-1.0f;
}
}
}
void evaluationUpdatePreTickCallback(btDynamicsWorld *world, btScalar timeStep) {
NN3DWalkersExample* nnWalkersDemo = (NN3DWalkersExample*)world->getWorldUserInfo();
nnWalkersDemo->update(timeStep);
}
void NN3DWalkersExample::update(const double timeSinceLastTick) {
updateEvaluations(timeSinceLastTick); /**!< We update all evaluations that are in the loop */
scheduleEvaluations(); /**!< Start new evaluations and finish the old ones. */
}
void NN3DWalkersExample::updateEvaluations(const btScalar timeSinceLastTick) {
btScalar delta = timeSinceLastTick;
float minFPS = 1.f/60.f;
if (delta > minFPS){
delta = minFPS;
}
m_Time += delta;
m_targetAccumulator += delta;
for(int i = 0; i < m_walkersInPopulation.size();i++) // evaluation time passes
{
if(m_walkersInPopulation[i]->isInEvaluation()){
m_walkersInPopulation[i]->setEvaluationTime(m_walkersInPopulation[i]->getEvaluationTime()+delta); // increase evaluation time
btVector3 walkerPosition = m_walkersInPopulation[i]->getPosition();
char performance[10];
sprintf(performance, "%.2f m", btSqrt(m_walkersInPopulation[i]->getDistanceFitness()));
m_guiHelper->drawText3D(performance,walkerPosition.x(),walkerPosition.y()+1,walkerPosition.z(),3);
}
}
if(m_targetAccumulator >= 1.0f /((double)m_targetFrequency))
{
m_targetAccumulator = 0;
for (int r=0; r<m_walkersInPopulation.size(); r++)
{
if(m_walkersInPopulation[r]->isInEvaluation())
{
for (int i = 0; i < 2*NUM_LEGS; i++)
{
btScalar targetAngle = 0;
btHingeConstraint* hingeC = static_cast<btHingeConstraint*>(m_walkersInPopulation[r]->getJoints()[i]);
if(RANDOM_MOVEMENT){
targetAngle = ((double) rand() / (RAND_MAX));
}
else{ // neural network movement
// accumulate sensor inputs with weights
for(int j = 0; j < JOINT_COUNT;j++){
targetAngle += m_walkersInPopulation[r]->getSensoryMotorWeights()[i+j*BODYPART_COUNT] * m_walkersInPopulation[r]->getTouchSensor(i);
}
// apply the activation function
targetAngle = (tanh(targetAngle)+1.0f)*0.5f;
}
btScalar targetLimitAngle = hingeC->getLowerLimit() + targetAngle * (hingeC->getUpperLimit() - hingeC->getLowerLimit());
btScalar currentAngle = hingeC->getHingeAngle();
btScalar angleError = targetLimitAngle - currentAngle;
btScalar desiredAngularVel = angleError/delta;
hingeC->enableAngularMotor(true, desiredAngularVel, m_motorStrength);
}
// clear sensor signals after usage
m_walkersInPopulation[r]->clearTouchSensors();
}
}
}
}
void NN3DWalkersExample::scheduleEvaluations() {
for(int i = 0; i < m_walkersInPopulation.size();i++){
if(m_walkersInPopulation[i]->isInEvaluation() && m_walkersInPopulation[i]->getEvaluationTime() >= EVALUATION_TIME){ /**!< tear down evaluations */
b3Printf("An evaluation finished at %f s. Distance: %f m", m_Time, btSqrt(m_walkersInPopulation[i]->getDistanceFitness()));
m_walkersInPopulation[i]->setInEvaluation(false);
m_walkersInPopulation[i]->removeFromWorld();
m_evaluationsQty--;
}
if(m_evaluationsQty < NUM_PARALLEL_EVALUATIONS && !m_walkersInPopulation[i]->isInEvaluation() && m_walkersInPopulation[i]->getEvaluationTime() == 0){ /**!< Setup the new evaluations */
b3Printf("An evaluation started at %f s.",m_Time);
m_evaluationsQty++;
m_walkersInPopulation[i]->setInEvaluation(true);
m_walkersInPopulation[i]->resetAt(btVector3(0,0,0));
m_walkersInPopulation[i]->addToWorld();
m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld);
}
}
if(m_evaluationsQty == 0){ // if there are no more evaluations possible
rateEvaluations(); // rate evaluations by sorting them based on their fitness
reap(); // reap worst performing walkers
sow(); // crossover & mutate and sow new walkers
b3Printf("### A new generation started. ###");
}
}

View File

@@ -1,6 +1,6 @@
/*
Bullet Continuous Collision Detection and Physics Library Copyright (c) 2007 Erwin Coumans
Motor Demo
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2015 Google Inc. http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.