Add MLCP constraint solver for multibody

This commit is contained in:
Jeongseok Lee
2018-08-02 22:53:30 -07:00
parent 7d38cab1aa
commit 89c6a83ae9
8 changed files with 1617 additions and 16 deletions

View File

@@ -31,15 +31,16 @@ SET(BulletDynamics_SRCS
Vehicle/btRaycastVehicle.cpp
Vehicle/btWheelInfo.cpp
Featherstone/btMultiBody.cpp
Featherstone/btMultiBodyConstraint.cpp
Featherstone/btMultiBodyConstraintSolver.cpp
Featherstone/btMultiBodyDynamicsWorld.cpp
Featherstone/btMultiBodyJointLimitConstraint.cpp
Featherstone/btMultiBodyConstraint.cpp
Featherstone/btMultiBodyPoint2Point.cpp
Featherstone/btMultiBodyFixedConstraint.cpp
Featherstone/btMultiBodySliderConstraint.cpp
Featherstone/btMultiBodyJointMotor.cpp
Featherstone/btMultiBodyGearConstraint.cpp
Featherstone/btMultiBodyJointLimitConstraint.cpp
Featherstone/btMultiBodyJointMotor.cpp
Featherstone/btMultiBodyMLCPConstraintSolver.cpp
Featherstone/btMultiBodyPoint2Point.cpp
Featherstone/btMultiBodySliderConstraint.cpp
MLCPSolvers/btDantzigLCP.cpp
MLCPSolvers/btMLCPSolver.cpp
MLCPSolvers/btLemkeAlgorithm.cpp
@@ -90,19 +91,19 @@ SET(Vehicle_HDRS
SET(Featherstone_HDRS
Featherstone/btMultiBody.h
Featherstone/btMultiBodyConstraint.h
Featherstone/btMultiBodyConstraintSolver.h
Featherstone/btMultiBodyDynamicsWorld.h
Featherstone/btMultiBodyFixedConstraint.h
Featherstone/btMultiBodyGearConstraint.h
Featherstone/btMultiBodyJointLimitConstraint.h
Featherstone/btMultiBodyJointMotor.h
Featherstone/btMultiBodyLink.h
Featherstone/btMultiBodyLinkCollider.h
Featherstone/btMultiBodySolverConstraint.h
Featherstone/btMultiBodyConstraint.h
Featherstone/btMultiBodyJointLimitConstraint.h
Featherstone/btMultiBodyConstraint.h
Featherstone/btMultiBodyMLCPConstraintSolver.h
Featherstone/btMultiBodyPoint2Point.h
Featherstone/btMultiBodyFixedConstraint.h
Featherstone/btMultiBodySliderConstraint.h
Featherstone/btMultiBodyJointMotor.h
Featherstone/btMultiBodyGearConstraint.h
Featherstone/btMultiBodySolverConstraint.h
)
SET(MLCPSolvers_HDRS

View File

@@ -0,0 +1,965 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2018 Google Inc. http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "BulletDynamics/Featherstone/btMultiBodyMLCPConstraintSolver.h"
#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
#include "BulletDynamics/Featherstone/btMultiBodyLinkCollider.h"
#include "BulletDynamics/Featherstone/btMultiBodyConstraint.h"
#include "BulletDynamics/MLCPSolvers/btMLCPSolverInterface.h"
#define DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
static bool interleaveContactAndFriction = false;
struct btJointNode
{
int jointIndex; // pointer to enclosing dxJoint object
int otherBodyIndex; // *other* body this joint is connected to
int nextJointNodeIndex; //-1 for null
int constraintRowIndex;
};
// Helper function to compute a delta velocity in the constraint space.
static btScalar computeDeltaVelocityInConstraintSpace(
const btVector3& angularDeltaVelocity,
const btVector3& contactNormal,
btScalar invMass,
const btVector3& angularJacobian,
const btVector3& linearJacobian)
{
return angularDeltaVelocity.dot(angularJacobian) + contactNormal.dot(linearJacobian) * invMass;
}
// Faster version of computeDeltaVelocityInConstraintSpace that can be used when contactNormal and linearJacobian are
// identical.
static btScalar computeDeltaVelocityInConstraintSpace(
const btVector3& angularDeltaVelocity,
btScalar invMass,
const btVector3& angularJacobian)
{
return angularDeltaVelocity.dot(angularJacobian) + invMass;
}
// Helper function to compute a delta velocity in the constraint space.
static btScalar computeDeltaVelocityInConstraintSpace(const btScalar* deltaVelocity, const btScalar* jacobian, int size)
{
btScalar result = 0;
for (int i = 0; i < size; ++i)
result += deltaVelocity[i] * jacobian[i];
return result;
}
static btScalar computeConstraintMatrixDiagElementMultiBody(
const btAlignedObjectArray<btSolverBody>& solverBodyPool,
const btMultiBodyJacobianData& data,
const btMultiBodySolverConstraint& constraint)
{
btScalar ret = 0;
const btMultiBody* multiBodyA = constraint.m_multiBodyA;
const btMultiBody* multiBodyB = constraint.m_multiBodyB;
if (multiBodyA)
{
const btScalar* jacA = &data.m_jacobians[constraint.m_jacAindex];
const btScalar* deltaA = &data.m_deltaVelocitiesUnitImpulse[constraint.m_jacAindex];
const int ndofA = multiBodyA->getNumDofs() + 6;
ret += computeDeltaVelocityInConstraintSpace(deltaA, jacA, ndofA);
}
else
{
const int solverBodyIdA = constraint.m_solverBodyIdA;
assert(solverBodyIdA != -1);
const btSolverBody* solverBodyA = &solverBodyPool[solverBodyIdA];
const btScalar invMassA = solverBodyA->m_originalBody ? solverBodyA->m_originalBody->getInvMass() : 0.0;
ret += computeDeltaVelocityInConstraintSpace(
constraint.m_relpos1CrossNormal,
invMassA,
constraint.m_angularComponentA);
}
if (multiBodyB)
{
const btScalar* jacB = &data.m_jacobians[constraint.m_jacBindex];
const btScalar* deltaB = &data.m_deltaVelocitiesUnitImpulse[constraint.m_jacBindex];
const int ndofB = multiBodyB->getNumDofs() + 6;
ret += computeDeltaVelocityInConstraintSpace(deltaB, jacB, ndofB);
}
else
{
const int solverBodyIdB = constraint.m_solverBodyIdB;
assert(solverBodyIdB != -1);
const btSolverBody* solverBodyB = &solverBodyPool[solverBodyIdB];
const btScalar invMassB = solverBodyB->m_originalBody ? solverBodyB->m_originalBody->getInvMass() : 0.0;
ret += computeDeltaVelocityInConstraintSpace(
constraint.m_relpos1CrossNormal, invMassB,
constraint.m_angularComponentA);
}
return ret;
}
static btScalar computeConstraintMatrixOffDiagElementMultiBody(
const btAlignedObjectArray<btSolverBody>& solverBodyPool,
const btMultiBodyJacobianData& data,
const btMultiBodySolverConstraint& constraint,
const btMultiBodySolverConstraint& offDiagConstraint)
{
btScalar offDiagA = btScalar(0);
const btMultiBody* multiBodyA = constraint.m_multiBodyA;
const btMultiBody* multiBodyB = constraint.m_multiBodyB;
const btMultiBody* offDiagMultiBodyA = offDiagConstraint.m_multiBodyA;
const btMultiBody* offDiagMultiBodyB = offDiagConstraint.m_multiBodyB;
// Assumed at least one system is multibody
assert(multiBodyA || multiBodyB);
assert(offDiagMultiBodyA || offDiagMultiBodyB);
if (offDiagMultiBodyA)
{
const btScalar* offDiagJacA = &data.m_jacobians[offDiagConstraint.m_jacAindex];
if (offDiagMultiBodyA == multiBodyA)
{
const int ndofA = multiBodyA->getNumDofs() + 6;
const btScalar* deltaA = &data.m_deltaVelocitiesUnitImpulse[constraint.m_jacAindex];
offDiagA += computeDeltaVelocityInConstraintSpace(deltaA, offDiagJacA, ndofA);
}
else if (offDiagMultiBodyA == multiBodyB)
{
const int ndofB = multiBodyB->getNumDofs() + 6;
const btScalar* deltaB = &data.m_deltaVelocitiesUnitImpulse[constraint.m_jacBindex];
offDiagA += computeDeltaVelocityInConstraintSpace(deltaB, offDiagJacA, ndofB);
}
}
else
{
const int solverBodyIdA = constraint.m_solverBodyIdA;
const int solverBodyIdB = constraint.m_solverBodyIdB;
const int offDiagSolverBodyIdA = offDiagConstraint.m_solverBodyIdA;
assert(offDiagSolverBodyIdA != -1);
if (offDiagSolverBodyIdA == solverBodyIdA)
{
assert(solverBodyIdA != -1);
const btSolverBody* solverBodyA = &solverBodyPool[solverBodyIdA];
const btScalar invMassA = solverBodyA->m_originalBody ? solverBodyA->m_originalBody->getInvMass() : 0.0;
offDiagA += computeDeltaVelocityInConstraintSpace(
offDiagConstraint.m_relpos1CrossNormal,
offDiagConstraint.m_contactNormal1,
invMassA, constraint.m_angularComponentA,
constraint.m_contactNormal1);
}
else if (offDiagSolverBodyIdA == solverBodyIdB)
{
assert(solverBodyIdB != -1);
const btSolverBody* solverBodyB = &solverBodyPool[solverBodyIdB];
const btScalar invMassB = solverBodyB->m_originalBody ? solverBodyB->m_originalBody->getInvMass() : 0.0;
offDiagA += computeDeltaVelocityInConstraintSpace(
offDiagConstraint.m_relpos1CrossNormal,
offDiagConstraint.m_contactNormal1,
invMassB,
constraint.m_angularComponentB,
constraint.m_contactNormal2);
}
}
if (offDiagMultiBodyB)
{
const btScalar* offDiagJacB = &data.m_jacobians[offDiagConstraint.m_jacBindex];
if (offDiagMultiBodyB == multiBodyA)
{
const int ndofA = multiBodyA->getNumDofs() + 6;
const btScalar* deltaA = &data.m_deltaVelocitiesUnitImpulse[constraint.m_jacAindex];
offDiagA += computeDeltaVelocityInConstraintSpace(deltaA, offDiagJacB, ndofA);
}
else if (offDiagMultiBodyB == multiBodyB)
{
const int ndofB = multiBodyB->getNumDofs() + 6;
const btScalar* deltaB = &data.m_deltaVelocitiesUnitImpulse[constraint.m_jacBindex];
offDiagA += computeDeltaVelocityInConstraintSpace(deltaB, offDiagJacB, ndofB);
}
}
else
{
const int solverBodyIdA = constraint.m_solverBodyIdA;
const int solverBodyIdB = constraint.m_solverBodyIdB;
const int offDiagSolverBodyIdB = offDiagConstraint.m_solverBodyIdB;
assert(offDiagSolverBodyIdB != -1);
if (offDiagSolverBodyIdB == solverBodyIdA)
{
assert(solverBodyIdA != -1);
const btSolverBody* solverBodyA = &solverBodyPool[solverBodyIdA];
const btScalar invMassA = solverBodyA->m_originalBody ? solverBodyA->m_originalBody->getInvMass() : 0.0;
offDiagA += computeDeltaVelocityInConstraintSpace(
offDiagConstraint.m_relpos2CrossNormal,
offDiagConstraint.m_contactNormal2,
invMassA, constraint.m_angularComponentA,
constraint.m_contactNormal1);
}
else if (offDiagSolverBodyIdB == solverBodyIdB)
{
assert(solverBodyIdB != -1);
const btSolverBody* solverBodyB = &solverBodyPool[solverBodyIdB];
const btScalar invMassB = solverBodyB->m_originalBody ? solverBodyB->m_originalBody->getInvMass() : 0.0;
offDiagA += computeDeltaVelocityInConstraintSpace(
offDiagConstraint.m_relpos2CrossNormal,
offDiagConstraint.m_contactNormal2,
invMassB, constraint.m_angularComponentB,
constraint.m_contactNormal2);
}
}
return offDiagA;
}
void btMultiBodyMLCPConstraintSolver::createMLCPFast(const btContactSolverInfo& infoGlobal)
{
createMLCPFastRigidBody(infoGlobal);
createMLCPFastMultiBody(infoGlobal);
}
void btMultiBodyMLCPConstraintSolver::createMLCPFastRigidBody(const btContactSolverInfo& infoGlobal)
{
int numContactRows = interleaveContactAndFriction ? 3 : 1;
int numConstraintRows = m_allConstraintPtrArray.size();
if (numConstraintRows == 0)
return;
int n = numConstraintRows;
{
BT_PROFILE("init b (rhs)");
m_b.resize(numConstraintRows);
m_bSplit.resize(numConstraintRows);
m_b.setZero();
m_bSplit.setZero();
for (int i = 0; i < numConstraintRows; i++)
{
btScalar jacDiag = m_allConstraintPtrArray[i]->m_jacDiagABInv;
if (!btFuzzyZero(jacDiag))
{
btScalar rhs = m_allConstraintPtrArray[i]->m_rhs;
btScalar rhsPenetration = m_allConstraintPtrArray[i]->m_rhsPenetration;
m_b[i] = rhs / jacDiag;
m_bSplit[i] = rhsPenetration / jacDiag;
}
}
}
// btScalar* w = 0;
// int nub = 0;
m_lo.resize(numConstraintRows);
m_hi.resize(numConstraintRows);
{
BT_PROFILE("init lo/ho");
for (int i = 0; i < numConstraintRows; i++)
{
if (0) //m_limitDependencies[i]>=0)
{
m_lo[i] = -BT_INFINITY;
m_hi[i] = BT_INFINITY;
}
else
{
m_lo[i] = m_allConstraintPtrArray[i]->m_lowerLimit;
m_hi[i] = m_allConstraintPtrArray[i]->m_upperLimit;
}
}
}
//
int m = m_allConstraintPtrArray.size();
int numBodies = m_tmpSolverBodyPool.size();
btAlignedObjectArray<int> bodyJointNodeArray;
{
BT_PROFILE("bodyJointNodeArray.resize");
bodyJointNodeArray.resize(numBodies, -1);
}
btAlignedObjectArray<btJointNode> jointNodeArray;
{
BT_PROFILE("jointNodeArray.reserve");
jointNodeArray.reserve(2 * m_allConstraintPtrArray.size());
}
btMatrixXu& J3 = m_scratchJ3;
{
BT_PROFILE("J3.resize");
J3.resize(2 * m, 8);
}
btMatrixXu& JinvM3 = m_scratchJInvM3;
{
BT_PROFILE("JinvM3.resize/setZero");
JinvM3.resize(2 * m, 8);
JinvM3.setZero();
J3.setZero();
}
int cur = 0;
int rowOffset = 0;
btAlignedObjectArray<int>& ofs = m_scratchOfs;
{
BT_PROFILE("ofs resize");
ofs.resize(0);
ofs.resizeNoInitialize(m_allConstraintPtrArray.size());
}
{
BT_PROFILE("Compute J and JinvM");
int c = 0;
int numRows = 0;
for (int i = 0; i < m_allConstraintPtrArray.size(); i += numRows, c++)
{
ofs[c] = rowOffset;
int sbA = m_allConstraintPtrArray[i]->m_solverBodyIdA;
int sbB = m_allConstraintPtrArray[i]->m_solverBodyIdB;
btRigidBody* orgBodyA = m_tmpSolverBodyPool[sbA].m_originalBody;
btRigidBody* orgBodyB = m_tmpSolverBodyPool[sbB].m_originalBody;
numRows = i < m_tmpSolverNonContactConstraintPool.size() ? m_tmpConstraintSizesPool[c].m_numConstraintRows : numContactRows;
if (orgBodyA)
{
{
int slotA = -1;
//find free jointNode slot for sbA
slotA = jointNodeArray.size();
jointNodeArray.expand(); //NonInitializing();
int prevSlot = bodyJointNodeArray[sbA];
bodyJointNodeArray[sbA] = slotA;
jointNodeArray[slotA].nextJointNodeIndex = prevSlot;
jointNodeArray[slotA].jointIndex = c;
jointNodeArray[slotA].constraintRowIndex = i;
jointNodeArray[slotA].otherBodyIndex = orgBodyB ? sbB : -1;
}
for (int row = 0; row < numRows; row++, cur++)
{
btVector3 normalInvMass = m_allConstraintPtrArray[i + row]->m_contactNormal1 * orgBodyA->getInvMass();
btVector3 relPosCrossNormalInvInertia = m_allConstraintPtrArray[i + row]->m_relpos1CrossNormal * orgBodyA->getInvInertiaTensorWorld();
for (int r = 0; r < 3; r++)
{
J3.setElem(cur, r, m_allConstraintPtrArray[i + row]->m_contactNormal1[r]);
J3.setElem(cur, r + 4, m_allConstraintPtrArray[i + row]->m_relpos1CrossNormal[r]);
JinvM3.setElem(cur, r, normalInvMass[r]);
JinvM3.setElem(cur, r + 4, relPosCrossNormalInvInertia[r]);
}
J3.setElem(cur, 3, 0);
JinvM3.setElem(cur, 3, 0);
J3.setElem(cur, 7, 0);
JinvM3.setElem(cur, 7, 0);
}
}
else
{
cur += numRows;
}
if (orgBodyB)
{
{
int slotB = -1;
//find free jointNode slot for sbA
slotB = jointNodeArray.size();
jointNodeArray.expand(); //NonInitializing();
int prevSlot = bodyJointNodeArray[sbB];
bodyJointNodeArray[sbB] = slotB;
jointNodeArray[slotB].nextJointNodeIndex = prevSlot;
jointNodeArray[slotB].jointIndex = c;
jointNodeArray[slotB].otherBodyIndex = orgBodyA ? sbA : -1;
jointNodeArray[slotB].constraintRowIndex = i;
}
for (int row = 0; row < numRows; row++, cur++)
{
btVector3 normalInvMassB = m_allConstraintPtrArray[i + row]->m_contactNormal2 * orgBodyB->getInvMass();
btVector3 relPosInvInertiaB = m_allConstraintPtrArray[i + row]->m_relpos2CrossNormal * orgBodyB->getInvInertiaTensorWorld();
for (int r = 0; r < 3; r++)
{
J3.setElem(cur, r, m_allConstraintPtrArray[i + row]->m_contactNormal2[r]);
J3.setElem(cur, r + 4, m_allConstraintPtrArray[i + row]->m_relpos2CrossNormal[r]);
JinvM3.setElem(cur, r, normalInvMassB[r]);
JinvM3.setElem(cur, r + 4, relPosInvInertiaB[r]);
}
J3.setElem(cur, 3, 0);
JinvM3.setElem(cur, 3, 0);
J3.setElem(cur, 7, 0);
JinvM3.setElem(cur, 7, 0);
}
}
else
{
cur += numRows;
}
rowOffset += numRows;
}
}
//compute JinvM = J*invM.
const btScalar* JinvM = JinvM3.getBufferPointer();
const btScalar* Jptr = J3.getBufferPointer();
{
BT_PROFILE("m_A.resize");
m_A.resize(n, n);
}
{
BT_PROFILE("m_A.setZero");
m_A.setZero();
}
int c = 0;
{
int numRows = 0;
BT_PROFILE("Compute A");
for (int i = 0; i < m_allConstraintPtrArray.size(); i += numRows, c++)
{
int row__ = ofs[c];
int sbA = m_allConstraintPtrArray[i]->m_solverBodyIdA;
int sbB = m_allConstraintPtrArray[i]->m_solverBodyIdB;
// btRigidBody* orgBodyA = m_tmpSolverBodyPool[sbA].m_originalBody;
// btRigidBody* orgBodyB = m_tmpSolverBodyPool[sbB].m_originalBody;
numRows = i < m_tmpSolverNonContactConstraintPool.size() ? m_tmpConstraintSizesPool[c].m_numConstraintRows : numContactRows;
const btScalar* JinvMrow = JinvM + 2 * 8 * (size_t)row__;
{
int startJointNodeA = bodyJointNodeArray[sbA];
while (startJointNodeA >= 0)
{
int j0 = jointNodeArray[startJointNodeA].jointIndex;
int cr0 = jointNodeArray[startJointNodeA].constraintRowIndex;
if (j0 < c)
{
int numRowsOther = cr0 < m_tmpSolverNonContactConstraintPool.size() ? m_tmpConstraintSizesPool[j0].m_numConstraintRows : numContactRows;
size_t ofsother = (m_allConstraintPtrArray[cr0]->m_solverBodyIdB == sbA) ? 8 * numRowsOther : 0;
//printf("%d joint i %d and j0: %d: ",count++,i,j0);
m_A.multiplyAdd2_p8r(JinvMrow,
Jptr + 2 * 8 * (size_t)ofs[j0] + ofsother, numRows, numRowsOther, row__, ofs[j0]);
}
startJointNodeA = jointNodeArray[startJointNodeA].nextJointNodeIndex;
}
}
{
int startJointNodeB = bodyJointNodeArray[sbB];
while (startJointNodeB >= 0)
{
int j1 = jointNodeArray[startJointNodeB].jointIndex;
int cj1 = jointNodeArray[startJointNodeB].constraintRowIndex;
if (j1 < c)
{
int numRowsOther = cj1 < m_tmpSolverNonContactConstraintPool.size() ? m_tmpConstraintSizesPool[j1].m_numConstraintRows : numContactRows;
size_t ofsother = (m_allConstraintPtrArray[cj1]->m_solverBodyIdB == sbB) ? 8 * numRowsOther : 0;
m_A.multiplyAdd2_p8r(JinvMrow + 8 * (size_t)numRows,
Jptr + 2 * 8 * (size_t)ofs[j1] + ofsother, numRows, numRowsOther, row__, ofs[j1]);
}
startJointNodeB = jointNodeArray[startJointNodeB].nextJointNodeIndex;
}
}
}
{
BT_PROFILE("compute diagonal");
// compute diagonal blocks of m_A
int row__ = 0;
int numJointRows = m_allConstraintPtrArray.size();
int jj = 0;
for (; row__ < numJointRows;)
{
//int sbA = m_allConstraintPtrArray[row__]->m_solverBodyIdA;
int sbB = m_allConstraintPtrArray[row__]->m_solverBodyIdB;
// btRigidBody* orgBodyA = m_tmpSolverBodyPool[sbA].m_originalBody;
btRigidBody* orgBodyB = m_tmpSolverBodyPool[sbB].m_originalBody;
const unsigned int infom = row__ < m_tmpSolverNonContactConstraintPool.size() ? m_tmpConstraintSizesPool[jj].m_numConstraintRows : numContactRows;
const btScalar* JinvMrow = JinvM + 2 * 8 * (size_t)row__;
const btScalar* Jrow = Jptr + 2 * 8 * (size_t)row__;
m_A.multiply2_p8r(JinvMrow, Jrow, infom, infom, row__, row__);
if (orgBodyB)
{
m_A.multiplyAdd2_p8r(JinvMrow + 8 * (size_t)infom, Jrow + 8 * (size_t)infom, infom, infom, row__, row__);
}
row__ += infom;
jj++;
}
}
}
if (1)
{
// add cfm to the diagonal of m_A
for (int i = 0; i < m_A.rows(); ++i)
{
m_A.setElem(i, i, m_A(i, i) + infoGlobal.m_globalCfm / infoGlobal.m_timeStep);
}
}
///fill the upper triangle of the matrix, to make it symmetric
{
BT_PROFILE("fill the upper triangle ");
m_A.copyLowerToUpperTriangle();
}
{
BT_PROFILE("resize/init x");
m_x.resize(numConstraintRows);
m_xSplit.resize(numConstraintRows);
if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
{
for (int i = 0; i < m_allConstraintPtrArray.size(); i++)
{
const btSolverConstraint& c = *m_allConstraintPtrArray[i];
m_x[i] = c.m_appliedImpulse;
m_xSplit[i] = c.m_appliedPushImpulse;
}
}
else
{
m_x.setZero();
m_xSplit.setZero();
}
}
}
void btMultiBodyMLCPConstraintSolver::createMLCPFastMultiBody(const btContactSolverInfo& infoGlobal)
{
const int multiBodyNumConstraints = m_multiBodyAllConstraintPtrArray.size();
if (multiBodyNumConstraints == 0)
return;
// 1. Compute b
{
BT_PROFILE("init b (rhs)");
m_multiBodyB.resize(multiBodyNumConstraints);
m_multiBodyB.setZero();
for (int i = 0; i < multiBodyNumConstraints; ++i)
{
const btMultiBodySolverConstraint& constraint = *m_multiBodyAllConstraintPtrArray[i];
const btScalar jacDiag = constraint.m_jacDiagABInv;
if (!btFuzzyZero(jacDiag))
{
// Note that rhsPenetration is currently always zero because the split impulse hasn't been implemented for multibody yet.
const btScalar rhs = constraint.m_rhs;
m_multiBodyB[i] = rhs / jacDiag;
}
}
}
// 2. Compute lo and hi
{
BT_PROFILE("init lo/ho");
m_multiBodyLo.resize(multiBodyNumConstraints);
m_multiBodyHi.resize(multiBodyNumConstraints);
for (int i = 0; i < multiBodyNumConstraints; ++i)
{
const btMultiBodySolverConstraint& constraint = *m_multiBodyAllConstraintPtrArray[i];
m_multiBodyLo[i] = constraint.m_lowerLimit;
m_multiBodyHi[i] = constraint.m_upperLimit;
}
}
// 3. Construct A matrix by using the impulse testing
{
BT_PROFILE("Compute A");
{
BT_PROFILE("m_A.resize");
m_multiBodyA.resize(multiBodyNumConstraints, multiBodyNumConstraints);
}
for (int i = 0; i < multiBodyNumConstraints; ++i)
{
// Compute the diagonal of A, which is A(i, i)
const btMultiBodySolverConstraint& constraint = *m_multiBodyAllConstraintPtrArray[i];
const btScalar diagA = computeConstraintMatrixDiagElementMultiBody(m_tmpSolverBodyPool, m_data, constraint);
m_multiBodyA.setElem(i, i, diagA);
// Computes the off-diagonals of A:
// a. The rest of i-th row of A, from A(i, i+1) to A(i, n)
// b. The rest of i-th column of A, from A(i+1, i) to A(n, i)
for (int j = i + 1; j < multiBodyNumConstraints; ++j)
{
const btMultiBodySolverConstraint& offDiagConstraint = *m_multiBodyAllConstraintPtrArray[j];
const btScalar offDiagA = computeConstraintMatrixOffDiagElementMultiBody(m_tmpSolverBodyPool, m_data, constraint, offDiagConstraint);
// Set the off-diagonal values of A. Note that A is symmetric.
m_multiBodyA.setElem(i, j, offDiagA);
m_multiBodyA.setElem(j, i, offDiagA);
}
}
}
// Add CFM to the diagonal of m_A
for (int i = 0; i < m_multiBodyA.rows(); ++i)
{
m_multiBodyA.setElem(i, i, m_multiBodyA(i, i) + infoGlobal.m_globalCfm / infoGlobal.m_timeStep);
}
// 4. Initialize x
{
BT_PROFILE("resize/init x");
m_multiBodyX.resize(multiBodyNumConstraints);
if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
{
for (int i = 0; i < multiBodyNumConstraints; ++i)
{
const btMultiBodySolverConstraint& constraint = *m_multiBodyAllConstraintPtrArray[i];
m_multiBodyX[i] = constraint.m_appliedImpulse;
}
}
else
{
m_multiBodyX.setZero();
}
}
}
bool btMultiBodyMLCPConstraintSolver::solveMLCP(const btContactSolverInfo& infoGlobal)
{
bool result = true;
if (m_A.rows() != 0)
{
// If using split impulse, we solve 2 separate (M)LCPs
if (infoGlobal.m_splitImpulse)
{
const btMatrixXu Acopy = m_A;
const btAlignedObjectArray<int> limitDependenciesCopy = m_limitDependencies;
// TODO(JS): Do we really need these copies when solveMLCP takes them as const?
result = m_solver->solveMLCP(m_A, m_b, m_x, m_lo, m_hi, m_limitDependencies, infoGlobal.m_numIterations);
if (result)
result = m_solver->solveMLCP(Acopy, m_bSplit, m_xSplit, m_lo, m_hi, limitDependenciesCopy, infoGlobal.m_numIterations);
}
else
{
result = m_solver->solveMLCP(m_A, m_b, m_x, m_lo, m_hi, m_limitDependencies, infoGlobal.m_numIterations);
}
}
if (!result)
return false;
if (m_multiBodyA.rows() != 0)
{
result = m_solver->solveMLCP(m_multiBodyA, m_multiBodyB, m_multiBodyX, m_multiBodyLo, m_multiBodyHi, m_multiBodyLimitDependencies, infoGlobal.m_numIterations);
}
return result;
}
btScalar btMultiBodyMLCPConstraintSolver::solveGroupCacheFriendlySetup(
btCollisionObject** bodies,
int numBodies,
btPersistentManifold** manifoldPtr,
int numManifolds,
btTypedConstraint** constraints,
int numConstraints,
const btContactSolverInfo& infoGlobal,
btIDebugDraw* debugDrawer)
{
// 1. Setup for rigid-bodies
btMultiBodyConstraintSolver::solveGroupCacheFriendlySetup(
bodies, numBodies, manifoldPtr, numManifolds, constraints, numConstraints, infoGlobal, debugDrawer);
// 2. Setup for multi-bodies
// a. Collect all different kinds of constraint as pointers into one array, m_allConstraintPtrArray
// b. Set the index array for frictional contact constraints, m_limitDependencies
{
BT_PROFILE("gather constraint data");
int dindex = 0;
const int numRigidBodyConstraints = m_tmpSolverNonContactConstraintPool.size() + m_tmpSolverContactConstraintPool.size() + m_tmpSolverContactFrictionConstraintPool.size();
const int numMultiBodyConstraints = m_multiBodyNonContactConstraints.size() + m_multiBodyNormalContactConstraints.size() + m_multiBodyFrictionContactConstraints.size();
m_allConstraintPtrArray.resize(0);
m_multiBodyAllConstraintPtrArray.resize(0);
// i. Setup for rigid bodies
m_limitDependencies.resize(numRigidBodyConstraints);
for (int i = 0; i < m_tmpSolverNonContactConstraintPool.size(); ++i)
{
m_allConstraintPtrArray.push_back(&m_tmpSolverNonContactConstraintPool[i]);
m_limitDependencies[dindex++] = -1;
}
int firstContactConstraintOffset = dindex;
// The btSequentialImpulseConstraintSolver moves all friction constraints at the very end, we can also interleave them instead
if (interleaveContactAndFriction)
{
for (int i = 0; i < m_tmpSolverContactConstraintPool.size(); i++)
{
const int numFrictionPerContact = m_tmpSolverContactConstraintPool.size() == m_tmpSolverContactFrictionConstraintPool.size() ? 1 : 2;
m_allConstraintPtrArray.push_back(&m_tmpSolverContactConstraintPool[i]);
m_limitDependencies[dindex++] = -1;
m_allConstraintPtrArray.push_back(&m_tmpSolverContactFrictionConstraintPool[i * numFrictionPerContact]);
int findex = (m_tmpSolverContactFrictionConstraintPool[i * numFrictionPerContact].m_frictionIndex * (1 + numFrictionPerContact));
m_limitDependencies[dindex++] = findex + firstContactConstraintOffset;
if (numFrictionPerContact == 2)
{
m_allConstraintPtrArray.push_back(&m_tmpSolverContactFrictionConstraintPool[i * numFrictionPerContact + 1]);
m_limitDependencies[dindex++] = findex + firstContactConstraintOffset;
}
}
}
else
{
for (int i = 0; i < m_tmpSolverContactConstraintPool.size(); i++)
{
m_allConstraintPtrArray.push_back(&m_tmpSolverContactConstraintPool[i]);
m_limitDependencies[dindex++] = -1;
}
for (int i = 0; i < m_tmpSolverContactFrictionConstraintPool.size(); i++)
{
m_allConstraintPtrArray.push_back(&m_tmpSolverContactFrictionConstraintPool[i]);
m_limitDependencies[dindex++] = m_tmpSolverContactFrictionConstraintPool[i].m_frictionIndex + firstContactConstraintOffset;
}
}
if (!m_allConstraintPtrArray.size())
{
m_A.resize(0, 0);
m_b.resize(0);
m_x.resize(0);
m_lo.resize(0);
m_hi.resize(0);
}
// ii. Setup for multibodies
dindex = 0;
m_multiBodyLimitDependencies.resize(numMultiBodyConstraints);
for (int i = 0; i < m_multiBodyNonContactConstraints.size(); ++i)
{
m_multiBodyAllConstraintPtrArray.push_back(&m_multiBodyNonContactConstraints[i]);
m_multiBodyLimitDependencies[dindex++] = -1;
}
firstContactConstraintOffset = dindex;
// The btSequentialImpulseConstraintSolver moves all friction constraints at the very end, we can also interleave them instead
if (interleaveContactAndFriction)
{
for (int i = 0; i < m_multiBodyNormalContactConstraints.size(); ++i)
{
const int numtiBodyNumFrictionPerContact = m_multiBodyNormalContactConstraints.size() == m_multiBodyFrictionContactConstraints.size() ? 1 : 2;
m_multiBodyAllConstraintPtrArray.push_back(&m_multiBodyNormalContactConstraints[i]);
m_multiBodyLimitDependencies[dindex++] = -1;
btMultiBodySolverConstraint& frictionContactConstraint1 = m_multiBodyFrictionContactConstraints[i * numtiBodyNumFrictionPerContact];
m_multiBodyAllConstraintPtrArray.push_back(&frictionContactConstraint1);
const int findex = (frictionContactConstraint1.m_frictionIndex * (1 + numtiBodyNumFrictionPerContact)) + firstContactConstraintOffset;
m_multiBodyLimitDependencies[dindex++] = findex;
if (numtiBodyNumFrictionPerContact == 2)
{
btMultiBodySolverConstraint& frictionContactConstraint2 = m_multiBodyFrictionContactConstraints[i * numtiBodyNumFrictionPerContact + 1];
m_multiBodyAllConstraintPtrArray.push_back(&frictionContactConstraint2);
m_multiBodyLimitDependencies[dindex++] = findex;
}
}
}
else
{
for (int i = 0; i < m_multiBodyNormalContactConstraints.size(); ++i)
{
m_multiBodyAllConstraintPtrArray.push_back(&m_multiBodyNormalContactConstraints[i]);
m_multiBodyLimitDependencies[dindex++] = -1;
}
for (int i = 0; i < m_multiBodyFrictionContactConstraints.size(); ++i)
{
m_multiBodyAllConstraintPtrArray.push_back(&m_multiBodyFrictionContactConstraints[i]);
m_multiBodyLimitDependencies[dindex++] = m_multiBodyFrictionContactConstraints[i].m_frictionIndex + firstContactConstraintOffset;
}
}
if (!m_multiBodyAllConstraintPtrArray.size())
{
m_multiBodyA.resize(0, 0);
m_multiBodyB.resize(0);
m_multiBodyX.resize(0);
m_multiBodyLo.resize(0);
m_multiBodyHi.resize(0);
}
}
// Construct MLCP terms
{
BT_PROFILE("createMLCPFast");
createMLCPFast(infoGlobal);
}
return btScalar(0);
}
btScalar btMultiBodyMLCPConstraintSolver::solveGroupCacheFriendlyIterations(btCollisionObject** bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer)
{
bool result = true;
{
BT_PROFILE("solveMLCP");
result = solveMLCP(infoGlobal);
}
// Fallback to btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyIterations if the solution isn't valid.
if (!result)
{
m_fallback++;
return btMultiBodyConstraintSolver::solveGroupCacheFriendlyIterations(bodies, numBodies, manifoldPtr, numManifolds, constraints, numConstraints, infoGlobal, debugDrawer);
}
{
BT_PROFILE("process MLCP results");
for (int i = 0; i < m_allConstraintPtrArray.size(); ++i)
{
const btSolverConstraint& c = *m_allConstraintPtrArray[i];
const btScalar deltaImpulse = m_x[i] - c.m_appliedImpulse;
c.m_appliedImpulse = m_x[i];
int sbA = c.m_solverBodyIdA;
int sbB = c.m_solverBodyIdB;
btSolverBody& solverBodyA = m_tmpSolverBodyPool[sbA];
btSolverBody& solverBodyB = m_tmpSolverBodyPool[sbB];
solverBodyA.internalApplyImpulse(c.m_contactNormal1 * solverBodyA.internalGetInvMass(), c.m_angularComponentA, deltaImpulse);
solverBodyB.internalApplyImpulse(c.m_contactNormal2 * solverBodyB.internalGetInvMass(), c.m_angularComponentB, deltaImpulse);
if (infoGlobal.m_splitImpulse)
{
const btScalar deltaPushImpulse = m_xSplit[i] - c.m_appliedPushImpulse;
solverBodyA.internalApplyPushImpulse(c.m_contactNormal1 * solverBodyA.internalGetInvMass(), c.m_angularComponentA, deltaPushImpulse);
solverBodyB.internalApplyPushImpulse(c.m_contactNormal2 * solverBodyB.internalGetInvMass(), c.m_angularComponentB, deltaPushImpulse);
c.m_appliedPushImpulse = m_xSplit[i];
}
}
for (int i = 0; i < m_multiBodyAllConstraintPtrArray.size(); ++i)
{
btMultiBodySolverConstraint& c = *m_multiBodyAllConstraintPtrArray[i];
const btScalar deltaImpulse = m_multiBodyX[i] - c.m_appliedImpulse;
c.m_appliedImpulse = m_multiBodyX[i];
btMultiBody* multiBodyA = c.m_multiBodyA;
if (multiBodyA)
{
const int ndofA = multiBodyA->getNumDofs() + 6;
applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex], deltaImpulse, c.m_deltaVelAindex, ndofA);
#ifdef DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
//note: update of the actual velocities (below) in the multibody does not have to happen now since m_deltaVelocities can be applied after all iterations
//it would make the multibody solver more like the regular one with m_deltaVelocities being equivalent to btSolverBody::m_deltaLinearVelocity/m_deltaAngularVelocity
multiBodyA->applyDeltaVeeMultiDof2(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex], deltaImpulse);
#endif // DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
}
else
{
const int sbA = c.m_solverBodyIdA;
btSolverBody& solverBodyA = m_tmpSolverBodyPool[sbA];
solverBodyA.internalApplyImpulse(c.m_contactNormal1 * solverBodyA.internalGetInvMass(), c.m_angularComponentA, deltaImpulse);
}
btMultiBody* multiBodyB = c.m_multiBodyB;
if (multiBodyB)
{
const int ndofB = multiBodyB->getNumDofs() + 6;
applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex], deltaImpulse, c.m_deltaVelBindex, ndofB);
#ifdef DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
//note: update of the actual velocities (below) in the multibody does not have to happen now since m_deltaVelocities can be applied after all iterations
//it would make the multibody solver more like the regular one with m_deltaVelocities being equivalent to btSolverBody::m_deltaLinearVelocity/m_deltaAngularVelocity
multiBodyB->applyDeltaVeeMultiDof2(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex], deltaImpulse);
#endif // DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
}
else
{
const int sbB = c.m_solverBodyIdB;
btSolverBody& solverBodyB = m_tmpSolverBodyPool[sbB];
solverBodyB.internalApplyImpulse(c.m_contactNormal2 * solverBodyB.internalGetInvMass(), c.m_angularComponentB, deltaImpulse);
}
}
}
return btScalar(0);
}
btMultiBodyMLCPConstraintSolver::btMultiBodyMLCPConstraintSolver(btMLCPSolverInterface* solver)
: m_solver(solver), m_fallback(0)
{
// Do nothing
}
btMultiBodyMLCPConstraintSolver::~btMultiBodyMLCPConstraintSolver()
{
// Do nothing
}
void btMultiBodyMLCPConstraintSolver::setMLCPSolver(btMLCPSolverInterface* solver)
{
m_solver = solver;
}
int btMultiBodyMLCPConstraintSolver::getNumFallbacks() const
{
return m_fallback;
}
void btMultiBodyMLCPConstraintSolver::setNumFallbacks(int num)
{
m_fallback = num;
}
btConstraintSolverType btMultiBodyMLCPConstraintSolver::getSolverType() const
{
return BT_MLCP_SOLVER;
}

View File

@@ -0,0 +1,187 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2018 Google Inc. http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_MULTIBODY_MLCP_CONSTRAINT_SOLVER_H
#define BT_MULTIBODY_MLCP_CONSTRAINT_SOLVER_H
#include "LinearMath/btMatrixX.h"
#include "LinearMath/btThreads.h"
#include "BulletDynamics/Featherstone/btMultiBodyConstraintSolver.h"
class btMLCPSolverInterface;
class btMultiBody;
class btMultiBodyMLCPConstraintSolver : public btMultiBodyConstraintSolver
{
protected:
/// \name MLCP Formulation for Rigid Bodies
/// \{
/// A matrix in the MLCP formulation
btMatrixXu m_A;
/// b vector in the MLCP formulation.
btVectorXu m_b;
/// Constraint impulse, which is an output of MLCP solving.
btVectorXu m_x;
/// Lower bound of constraint impulse, \c m_x.
btVectorXu m_lo;
/// Upper bound of constraint impulse, \c m_x.
btVectorXu m_hi;
/// \}
/// \name Cache Variables for Split Impulse for Rigid Bodies
/// When using 'split impulse' we solve two separate (M)LCPs
/// \{
/// Split impulse Cache vector corresponding to \c m_b.
btVectorXu m_bSplit;
/// Split impulse cache vector corresponding to \c m_x.
btVectorXu m_xSplit;
/// \}
/// \name MLCP Formulation for Multibodies
/// \{
/// A matrix in the MLCP formulation
btMatrixXu m_multiBodyA;
/// b vector in the MLCP formulation.
btVectorXu m_multiBodyB;
/// Constraint impulse, which is an output of MLCP solving.
btVectorXu m_multiBodyX;
/// Lower bound of constraint impulse, \c m_x.
btVectorXu m_multiBodyLo;
/// Upper bound of constraint impulse, \c m_x.
btVectorXu m_multiBodyHi;
/// \}
/// Indices of normal contact constraint associated with frictional contact constraint for rigid bodies.
///
/// This is used by the MLCP solver to update the upper bounds of frictional contact impulse given intermediate
/// normal contact impulse. For example, i-th element represents the index of a normal constraint that is
/// accosiated with i-th frictional contact constraint if i-th constraint is a frictional contact constraint.
/// Otherwise, -1.
btAlignedObjectArray<int> m_limitDependencies;
/// Indices of normal contact constraint associated with frictional contact constraint for multibodies.
///
/// This is used by the MLCP solver to update the upper bounds of frictional contact impulse given intermediate
/// normal contact impulse. For example, i-th element represents the index of a normal constraint that is
/// accosiated with i-th frictional contact constraint if i-th constraint is a frictional contact constraint.
/// Otherwise, -1.
btAlignedObjectArray<int> m_multiBodyLimitDependencies;
/// Array of all the rigid body constraints
btAlignedObjectArray<btSolverConstraint*> m_allConstraintPtrArray;
/// Array of all the multibody constraints
btAlignedObjectArray<btMultiBodySolverConstraint*> m_multiBodyAllConstraintPtrArray;
/// MLCP solver
btMLCPSolverInterface* m_solver;
/// Count of fallbacks of using btSequentialImpulseConstraintSolver, which happens when the MLCP solver fails.
int m_fallback;
/// \name MLCP Scratch Variables
/// The following scratch variables are not stateful -- contents are cleared prior to each use.
/// They are only cached here to avoid extra memory allocations and deallocations and to ensure
/// that multiple instances of the solver can be run in parallel.
///
/// \{
/// Cache variable for constraint Jacobian matrix.
btMatrixXu m_scratchJ3;
/// Cache variable for constraint Jacobian times inverse mass matrix.
btMatrixXu m_scratchJInvM3;
/// Cache variable for offsets.
btAlignedObjectArray<int> m_scratchOfs;
/// \}
/// Constructs MLCP terms, which are \c m_A, \c m_b, \c m_lo, and \c m_hi.
virtual void createMLCPFast(const btContactSolverInfo& infoGlobal);
/// Constructs MLCP terms for constraints of two rigid bodies
void createMLCPFastRigidBody(const btContactSolverInfo& infoGlobal);
/// Constructs MLCP terms for constraints of two multi-bodies or one rigid body and one multibody
void createMLCPFastMultiBody(const btContactSolverInfo& infoGlobal);
/// Solves MLCP and returns the success
virtual bool solveMLCP(const btContactSolverInfo& infoGlobal);
// Documentation inherited
btScalar solveGroupCacheFriendlySetup(
btCollisionObject** bodies,
int numBodies,
btPersistentManifold** manifoldPtr,
int numManifolds,
btTypedConstraint** constraints,
int numConstraints,
const btContactSolverInfo& infoGlobal,
btIDebugDraw* debugDrawer) BT_OVERRIDE;
// Documentation inherited
btScalar solveGroupCacheFriendlyIterations(
btCollisionObject** bodies,
int numBodies,
btPersistentManifold** manifoldPtr,
int numManifolds,
btTypedConstraint** constraints,
int numConstraints,
const btContactSolverInfo& infoGlobal,
btIDebugDraw* debugDrawer) BT_OVERRIDE;
public:
BT_DECLARE_ALIGNED_ALLOCATOR()
/// Constructor
///
/// \param[in] solver MLCP solver. Assumed it's not null.
/// \param[in] maxLCPSize Maximum size of LCP to solve using MLCP solver. If the MLCP size exceeds this number, sequaltial impulse method will be used.
explicit btMultiBodyMLCPConstraintSolver(btMLCPSolverInterface* solver);
/// Destructor
virtual ~btMultiBodyMLCPConstraintSolver();
/// Sets MLCP solver. Assumed it's not null.
void setMLCPSolver(btMLCPSolverInterface* solver);
/// Returns the number of fallbacks of using btSequentialImpulseConstraintSolver, which happens when the MLCP
/// solver fails.
int getNumFallbacks() const;
/// Sets the number of fallbacks. This function may be used to reset the number to zero.
void setNumFallbacks(int num);
/// Returns the constraint solver type.
virtual btConstraintSolverType getSolverType() const;
};
#endif // BT_MULTIBODY_MLCP_CONSTRAINT_SOLVER_H