add simpler ARS implementation, thanks to Alexis Jacq and Hadelin de Ponteves
(will add save/restore of policy and rendering movies through command-line arguments soon)
This commit is contained in:
142
examples/pybullet/gym/pybullet_envs/ARS/ars.py
Normal file
142
examples/pybullet/gym/pybullet_envs/ARS/ars.py
Normal file
@@ -0,0 +1,142 @@
|
||||
# AI 2018
|
||||
|
||||
# Importing the libraries
|
||||
import os
|
||||
import numpy as np
|
||||
import gym
|
||||
from gym import wrappers
|
||||
import pybullet_envs
|
||||
|
||||
# Setting the Hyper Parameters
|
||||
|
||||
class Hp():
|
||||
|
||||
def __init__(self):
|
||||
self.nb_steps = 1000
|
||||
self.episode_length = 1000
|
||||
self.learning_rate = 0.02
|
||||
self.nb_directions = 16
|
||||
self.nb_best_directions = 16
|
||||
assert self.nb_best_directions <= self.nb_directions
|
||||
self.noise = 0.03
|
||||
self.seed = 1
|
||||
self.env_name = 'HalfCheetahBulletEnv-v0'
|
||||
|
||||
# Normalizing the states
|
||||
|
||||
class Normalizer():
|
||||
|
||||
def __init__(self, nb_inputs):
|
||||
self.n = np.zeros(nb_inputs)
|
||||
self.mean = np.zeros(nb_inputs)
|
||||
self.mean_diff = np.zeros(nb_inputs)
|
||||
self.var = np.zeros(nb_inputs)
|
||||
|
||||
def observe(self, x):
|
||||
self.n += 1.
|
||||
last_mean = self.mean.copy()
|
||||
self.mean += (x - self.mean) / self.n
|
||||
self.mean_diff += (x - last_mean) * (x - self.mean)
|
||||
self.var = (self.mean_diff / self.n).clip(min = 1e-2)
|
||||
|
||||
def normalize(self, inputs):
|
||||
obs_mean = self.mean
|
||||
obs_std = np.sqrt(self.var)
|
||||
return (inputs - obs_mean) / obs_std
|
||||
|
||||
# Building the AI
|
||||
|
||||
class Policy():
|
||||
|
||||
def __init__(self, input_size, output_size):
|
||||
self.theta = np.zeros((output_size, input_size))
|
||||
print("self.theta=",self.theta)
|
||||
def evaluate(self, input, delta = None, direction = None):
|
||||
if direction is None:
|
||||
return np.clip(self.theta.dot(input), -1.0, 1.0)
|
||||
elif direction == "positive":
|
||||
return np.clip((self.theta + hp.noise*delta).dot(input), -1.0, 1.0)
|
||||
else:
|
||||
return np.clip((self.theta - hp.noise*delta).dot(input), -1.0, 1.0)
|
||||
|
||||
def sample_deltas(self):
|
||||
return [np.random.randn(*self.theta.shape) for _ in range(hp.nb_directions)]
|
||||
|
||||
def update(self, rollouts, sigma_r):
|
||||
step = np.zeros(self.theta.shape)
|
||||
for r_pos, r_neg, d in rollouts:
|
||||
step += (r_pos - r_neg) * d
|
||||
self.theta += hp.learning_rate / (hp.nb_best_directions * sigma_r) * step
|
||||
|
||||
# Exploring the policy on one specific direction and over one episode
|
||||
|
||||
def explore(env, normalizer, policy, direction = None, delta = None):
|
||||
state = env.reset()
|
||||
done = False
|
||||
num_plays = 0.
|
||||
sum_rewards = 0
|
||||
while not done and num_plays < hp.episode_length:
|
||||
normalizer.observe(state)
|
||||
state = normalizer.normalize(state)
|
||||
action = policy.evaluate(state, delta, direction)
|
||||
state, reward, done, _ = env.step(action)
|
||||
reward = max(min(reward, 1), -1)
|
||||
sum_rewards += reward
|
||||
num_plays += 1
|
||||
return sum_rewards
|
||||
|
||||
# Training the AI
|
||||
|
||||
def train(env, policy, normalizer, hp):
|
||||
|
||||
for step in range(hp.nb_steps):
|
||||
|
||||
# Initializing the perturbations deltas and the positive/negative rewards
|
||||
deltas = policy.sample_deltas()
|
||||
positive_rewards = [0] * hp.nb_directions
|
||||
negative_rewards = [0] * hp.nb_directions
|
||||
|
||||
# Getting the positive rewards in the positive directions
|
||||
for k in range(hp.nb_directions):
|
||||
positive_rewards[k] = explore(env, normalizer, policy, direction = "positive", delta = deltas[k])
|
||||
|
||||
# Getting the negative rewards in the negative/opposite directions
|
||||
for k in range(hp.nb_directions):
|
||||
negative_rewards[k] = explore(env, normalizer, policy, direction = "negative", delta = deltas[k])
|
||||
|
||||
# Gathering all the positive/negative rewards to compute the standard deviation of these rewards
|
||||
all_rewards = np.array(positive_rewards + negative_rewards)
|
||||
sigma_r = all_rewards.std()
|
||||
|
||||
# Sorting the rollouts by the max(r_pos, r_neg) and selecting the best directions
|
||||
scores = {k:max(r_pos, r_neg) for k,(r_pos,r_neg) in enumerate(zip(positive_rewards, negative_rewards))}
|
||||
order = sorted(scores.keys(), key = lambda x:scores[x])[:hp.nb_best_directions]
|
||||
rollouts = [(positive_rewards[k], negative_rewards[k], deltas[k]) for k in order]
|
||||
|
||||
# Updating our policy
|
||||
policy.update(rollouts, sigma_r)
|
||||
|
||||
# Printing the final reward of the policy after the update
|
||||
reward_evaluation = explore(env, normalizer, policy)
|
||||
print('Step:', step, 'Reward:', reward_evaluation)
|
||||
|
||||
# Running the main code
|
||||
|
||||
def mkdir(base, name):
|
||||
path = os.path.join(base, name)
|
||||
if not os.path.exists(path):
|
||||
os.makedirs(path)
|
||||
return path
|
||||
work_dir = mkdir('exp', 'brs')
|
||||
monitor_dir = mkdir(work_dir, 'monitor')
|
||||
|
||||
hp = Hp()
|
||||
np.random.seed(hp.seed)
|
||||
env = gym.make(hp.env_name)
|
||||
# env.render(mode = "human")
|
||||
#env = wrappers.Monitor(env, monitor_dir, force = True)
|
||||
nb_inputs = env.observation_space.shape[0]
|
||||
nb_outputs = env.action_space.shape[0]
|
||||
policy = Policy(nb_inputs, nb_outputs)
|
||||
normalizer = Normalizer(nb_inputs)
|
||||
train(env, policy, normalizer, hp)
|
||||
Reference in New Issue
Block a user