Merge pull request #2030 from erwincoumans/master
some fixes in inverse dynamics, PyBullet example comparing explicit pd, stable pd control, position control (constraint)
This commit is contained in:
@@ -202,8 +202,16 @@ int btMultiBodyTreeCreator::createFromBtMultiBody(const btMultiBody *btmb, const
|
||||
link.parent_r_parent_body_ref(2) = bt_link.m_eVector[2];
|
||||
break;
|
||||
case btMultibodyLink::eSpherical:
|
||||
bt_id_error_message("spherical joints not implemented\n");
|
||||
return -1;
|
||||
|
||||
link.joint_type = SPHERICAL;
|
||||
link.parent_r_parent_body_ref(0) = bt_link.m_eVector[0];
|
||||
link.parent_r_parent_body_ref(1) = bt_link.m_eVector[1];
|
||||
link.parent_r_parent_body_ref(2) = bt_link.m_eVector[2];
|
||||
// random unit vector
|
||||
link.body_axis_of_motion(0) = 0;
|
||||
link.body_axis_of_motion(1) = 0;
|
||||
link.body_axis_of_motion(2) = 1;
|
||||
break;
|
||||
case btMultibodyLink::ePlanar:
|
||||
bt_id_error_message("planar joints not implemented\n");
|
||||
return -1;
|
||||
|
||||
@@ -31,13 +31,17 @@ static btVector4 colors[4] =
|
||||
|
||||
static btVector4 selectColor2()
|
||||
{
|
||||
#ifdef BT_THREADSAFE
|
||||
static btSpinMutex sMutex;
|
||||
sMutex.lock();
|
||||
#endif
|
||||
static int curColor = 0;
|
||||
btVector4 color = colors[curColor];
|
||||
curColor++;
|
||||
curColor &= 3;
|
||||
#ifdef BT_THREADSAFE
|
||||
sMutex.unlock();
|
||||
#endif
|
||||
return color;
|
||||
}
|
||||
|
||||
|
||||
@@ -436,7 +436,7 @@ void SimpleOpenGL2Renderer::updateTexture(int textureIndex, const unsigned char*
|
||||
}
|
||||
|
||||
b3Assert(glGetError() == GL_NO_ERROR);
|
||||
glGenerateMipmap(GL_TEXTURE_2D);
|
||||
//glGenerateMipmap(GL_TEXTURE_2D);
|
||||
b3Assert(glGetError() == GL_NO_ERROR);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -9756,7 +9756,7 @@ bool PhysicsServerCommandProcessor::processCalculateInverseKinematicsCommand(con
|
||||
numDofs, clientCmd.m_calculateInverseKinematicsArguments.m_endEffectorLinkIndex,
|
||||
&q_new[0], ikMethod, &jacobian_linear[0], &jacobian_angular[0], jacSize * 2, targetDampCoeff);
|
||||
}
|
||||
serverCmd.m_inverseKinematicsResultArgs.m_bodyUniqueId = clientCmd.m_calculateInverseDynamicsArguments.m_bodyUniqueId;
|
||||
serverCmd.m_inverseKinematicsResultArgs.m_bodyUniqueId = clientCmd.m_calculateInverseKinematicsArguments.m_bodyUniqueId;
|
||||
for (int i = 0; i < numDofs; i++)
|
||||
{
|
||||
serverCmd.m_inverseKinematicsResultArgs.m_jointPositions[i] = q_new[i];
|
||||
|
||||
@@ -1,26 +1,49 @@
|
||||
|
||||
import pybullet as p
|
||||
from pdControllerExplicit import PDControllerExplicit
|
||||
from pdControllerExplicit import PDControllerStable
|
||||
|
||||
import time
|
||||
|
||||
|
||||
useMaximalCoordinates=False
|
||||
p.connect(p.GUI)
|
||||
pole = p.loadURDF("cartpole.urdf", useMaximalCoordinates=useMaximalCoordinates)
|
||||
for i in range (p.getNumJoints(pole)):
|
||||
pole = p.loadURDF("cartpole.urdf", [0,0,0], useMaximalCoordinates=useMaximalCoordinates)
|
||||
pole2 = p.loadURDF("cartpole.urdf", [0,1,0], useMaximalCoordinates=useMaximalCoordinates)
|
||||
pole3 = p.loadURDF("cartpole.urdf", [0,2,0], useMaximalCoordinates=useMaximalCoordinates)
|
||||
pole4 = p.loadURDF("cartpole.urdf", [0,3,0], useMaximalCoordinates=useMaximalCoordinates)
|
||||
|
||||
exPD = PDControllerExplicit(p)
|
||||
sPD = PDControllerStable(p)
|
||||
|
||||
|
||||
for i in range (p.getNumJoints(pole2)):
|
||||
#disable default constraint-based motors
|
||||
p.setJointMotorControl2(pole,i,p.POSITION_CONTROL,targetPosition=0,force=0)
|
||||
print("joint",i,"=",p.getJointInfo(pole,i))
|
||||
p.setJointMotorControl2(pole2,i,p.POSITION_CONTROL,targetPosition=0,force=0)
|
||||
p.setJointMotorControl2(pole3,i,p.POSITION_CONTROL,targetPosition=0,force=0)
|
||||
p.setJointMotorControl2(pole4,i,p.POSITION_CONTROL,targetPosition=0,force=0)
|
||||
|
||||
#print("joint",i,"=",p.getJointInfo(pole2,i))
|
||||
|
||||
|
||||
timeStepId = p.addUserDebugParameter("timeStep",0.001,0.1,0.01)
|
||||
desiredPosCartId = p.addUserDebugParameter("desiredPosCart",-10,10,2)
|
||||
desiredVelCartId = p.addUserDebugParameter("desiredVelCart",-10,10,0)
|
||||
kpCartId = p.addUserDebugParameter("kpCart",0,500,300)
|
||||
kpCartId = p.addUserDebugParameter("kpCart",0,500,1300)
|
||||
kdCartId = p.addUserDebugParameter("kdCart",0,300,150)
|
||||
maxForceCartId = p.addUserDebugParameter("maxForceCart",0,5000,1000)
|
||||
|
||||
textColor = [1,1,1]
|
||||
shift = 0.05
|
||||
p.addUserDebugText("explicit PD", [shift,0,.1],textColor,parentObjectUniqueId=pole,parentLinkIndex=1)
|
||||
p.addUserDebugText("explicit PD plugin", [shift,0,-.1],textColor,parentObjectUniqueId=pole2,parentLinkIndex=1)
|
||||
p.addUserDebugText("stablePD", [shift,0,.1],textColor,parentObjectUniqueId=pole4,parentLinkIndex=1)
|
||||
p.addUserDebugText("position constraint", [shift,0,-.1],textColor,parentObjectUniqueId=pole3,parentLinkIndex=1)
|
||||
|
||||
desiredPosPoleId = p.addUserDebugParameter("desiredPosPole",-10,10,0)
|
||||
desiredVelPoleId = p.addUserDebugParameter("desiredVelPole",-10,10,0)
|
||||
kpPoleId = p.addUserDebugParameter("kpPole",0,500,200)
|
||||
kpPoleId = p.addUserDebugParameter("kpPole",0,500,1200)
|
||||
kdPoleId = p.addUserDebugParameter("kdPole",0,300,100)
|
||||
maxForcePoleId = p.addUserDebugParameter("maxForcePole",0,5000,1000)
|
||||
|
||||
@@ -29,34 +52,50 @@ pd = p.loadPlugin("pdControlPlugin")
|
||||
|
||||
p.setGravity(0,0,-10)
|
||||
|
||||
useRealTimeSim = True
|
||||
useRealTimeSim = False
|
||||
|
||||
p.setRealTimeSimulation(useRealTimeSim)
|
||||
|
||||
p.setTimeStep(0.001)
|
||||
timeStep = 0.001
|
||||
|
||||
|
||||
while p.isConnected():
|
||||
if (pd>=0):
|
||||
p.getCameraImage(320,200)
|
||||
timeStep = p.readUserDebugParameter(timeStepId)
|
||||
p.setTimeStep(timeStep)
|
||||
|
||||
desiredPosCart = p.readUserDebugParameter(desiredPosCartId)
|
||||
desiredVelCart = p.readUserDebugParameter(desiredVelCartId)
|
||||
kpCart = p.readUserDebugParameter(kpCartId)
|
||||
kdCart = p.readUserDebugParameter(kdCartId)
|
||||
maxForceCart = p.readUserDebugParameter(maxForceCartId)
|
||||
link = 0
|
||||
p.setJointMotorControl2(bodyUniqueId=pole,jointIndex=link,controlMode=p.PD_CONTROL,targetPosition=desiredPosCart,targetVelocity=desiredVelCart,force=maxForceCart, positionGain=kpCart, velocityGain=kdCart)
|
||||
|
||||
desiredPosPole = p.readUserDebugParameter(desiredPosPoleId)
|
||||
desiredVelPole = p.readUserDebugParameter(desiredVelPoleId)
|
||||
kpPole = p.readUserDebugParameter(kpPoleId)
|
||||
kdPole = p.readUserDebugParameter(kdPoleId)
|
||||
maxForcePole = p.readUserDebugParameter(maxForcePoleId)
|
||||
link = 1
|
||||
p.setJointMotorControl2(bodyUniqueId=pole,jointIndex=link,controlMode=p.PD_CONTROL,targetPosition=desiredPosPole,targetVelocity=desiredVelPole,force=maxForcePole, positionGain=kpPole, velocityGain=kdPole)
|
||||
|
||||
taus = exPD.computePD(pole, [0,1], [desiredPosCart,desiredPosPole],[desiredVelCart,desiredVelPole], [kpCart,kpPole], [kdCart,kdPole],[maxForceCart,maxForcePole], timeStep)
|
||||
p.setJointMotorControlArray(pole, [0,1], controlMode=p.TORQUE_CONTROL, forces=taus)
|
||||
|
||||
if (pd>=0):
|
||||
link = 0
|
||||
p.setJointMotorControl2(bodyUniqueId=pole2,jointIndex=link,controlMode=p.PD_CONTROL,targetPosition=desiredPosCart,targetVelocity=desiredVelCart,force=maxForceCart, positionGain=kpCart, velocityGain=kdCart)
|
||||
link = 1
|
||||
p.setJointMotorControl2(bodyUniqueId=pole2,jointIndex=link,controlMode=p.PD_CONTROL,targetPosition=desiredPosPole,targetVelocity=desiredVelPole,force=maxForcePole, positionGain=kpPole, velocityGain=kdPole)
|
||||
|
||||
|
||||
|
||||
|
||||
taus = sPD.computePD(pole4, [0,1], [desiredPosCart,desiredPosPole],[desiredVelCart,desiredVelPole], [kpCart,kpPole], [kdCart,kdPole],[maxForceCart,maxForcePole], timeStep)
|
||||
p.setJointMotorControlArray(pole4, [0,1], controlMode=p.TORQUE_CONTROL, forces=taus)
|
||||
|
||||
p.setJointMotorControl2(pole3,0, p.POSITION_CONTROL, targetPosition=desiredPosCart, targetVelocity=desiredVelCart, positionGain=timeStep*(kpCart/150.), velocityGain=0.5, force=maxForceCart)
|
||||
p.setJointMotorControl2(pole3,1, p.POSITION_CONTROL, targetPosition=desiredPosPole, targetVelocity=desiredVelPole, positionGain=timeStep*(kpPole/150.), velocityGain=0.5, force=maxForcePole)
|
||||
|
||||
if (not useRealTimeSim):
|
||||
p.stepSimulation()
|
||||
time.sleep(1./240.)
|
||||
time.sleep(timeStep)
|
||||
|
||||
|
||||
|
||||
67
examples/pybullet/examples/pdControllerExplicit.py
Normal file
67
examples/pybullet/examples/pdControllerExplicit.py
Normal file
@@ -0,0 +1,67 @@
|
||||
import numpy as np
|
||||
|
||||
class PDControllerExplicit(object):
|
||||
def __init__(self, pb):
|
||||
self._pb = pb
|
||||
|
||||
def computePD(self, bodyUniqueId, jointIndices, desiredPositions, desiredVelocities, kps, kds, maxForces, timeStep):
|
||||
numJoints = self._pb.getNumJoints(bodyUniqueId)
|
||||
jointStates = self._pb.getJointStates(bodyUniqueId, jointIndices)
|
||||
q1 = []
|
||||
qdot1 = []
|
||||
for i in range (numJoints):
|
||||
q1.append(jointStates[i][0])
|
||||
qdot1.append(jointStates[i][1])
|
||||
q = np.array(q1)
|
||||
qdot=np.array(qdot1)
|
||||
qdes = np.array(desiredPositions)
|
||||
qdotdes = np.array(desiredVelocities)
|
||||
qError = qdes - q
|
||||
qdotError = qdotdes - qdot
|
||||
Kp = np.diagflat(kps)
|
||||
Kd = np.diagflat(kds)
|
||||
forces = Kp.dot(qError) + Kd.dot(qdotError)
|
||||
maxF = np.array(maxForces)
|
||||
forces = np.clip(forces, -maxF , maxF )
|
||||
return forces
|
||||
|
||||
|
||||
class PDControllerStable(object):
|
||||
def __init__(self, pb):
|
||||
self._pb = pb
|
||||
|
||||
def computePD(self, bodyUniqueId, jointIndices, desiredPositions, desiredVelocities, kps, kds, maxForces, timeStep):
|
||||
numJoints = self._pb.getNumJoints(bodyUniqueId)
|
||||
jointStates = self._pb.getJointStates(bodyUniqueId, jointIndices)
|
||||
q1 = []
|
||||
qdot1 = []
|
||||
zeroAccelerations = []
|
||||
for i in range (numJoints):
|
||||
q1.append(jointStates[i][0])
|
||||
qdot1.append(jointStates[i][1])
|
||||
zeroAccelerations.append(0)
|
||||
q = np.array(q1)
|
||||
qdot=np.array(qdot1)
|
||||
qdes = np.array(desiredPositions)
|
||||
qdotdes = np.array(desiredVelocities)
|
||||
qError = qdes - q
|
||||
qdotError = qdotdes - qdot
|
||||
Kp = np.diagflat(kps)
|
||||
Kd = np.diagflat(kds)
|
||||
p = Kp.dot(qError)
|
||||
d = Kd.dot(qdotError)
|
||||
forces = p + d
|
||||
|
||||
M1 = self._pb.calculateMassMatrix(bodyUniqueId,q1)
|
||||
M2 = np.array(M1)
|
||||
M = (M2 + Kd * timeStep)
|
||||
c1 = self._pb.calculateInverseDynamics(bodyUniqueId, q1, qdot1, zeroAccelerations)
|
||||
c = np.array(c1)
|
||||
A = M
|
||||
b = -c + p + d
|
||||
qddot = np.linalg.solve(A, b)
|
||||
tau = p + d - Kd.dot(qddot) * timeStep
|
||||
maxF = np.array(maxForces)
|
||||
forces = np.clip(tau, -maxF , maxF )
|
||||
#print("c=",c)
|
||||
return tau
|
||||
@@ -22,6 +22,19 @@ subject to the following restrictions:
|
||||
class btMinkowskiSumShape;
|
||||
#include "LinearMath/btIDebugDraw.h"
|
||||
|
||||
#ifdef BT_USE_DOUBLE_PRECISION
|
||||
#define MAX_ITERATIONS 64
|
||||
#define MAX_EPSILON (SIMD_EPSILON * 10)
|
||||
#else
|
||||
#define MAX_ITERATIONS 32
|
||||
#define MAX_EPSILON btScalar(0.0001)
|
||||
#endif
|
||||
///Typically the conservative advancement reaches solution in a few iterations, clip it to 32 for degenerate cases.
|
||||
///See discussion about this here http://continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=565
|
||||
//will need to digg deeper to make the algorithm more robust
|
||||
//since, a large epsilon can cause an early termination with false
|
||||
//positive results (ray intersections that shouldn't be there)
|
||||
|
||||
/// btConvexCast is an interface for Casting
|
||||
class btConvexCast
|
||||
{
|
||||
@@ -44,7 +57,9 @@ public:
|
||||
CastResult()
|
||||
: m_fraction(btScalar(BT_LARGE_FLOAT)),
|
||||
m_debugDrawer(0),
|
||||
m_allowedPenetration(btScalar(0))
|
||||
m_allowedPenetration(btScalar(0)),
|
||||
m_subSimplexCastMaxIterations(MAX_ITERATIONS),
|
||||
m_subSimplexCastEpsilon(MAX_EPSILON)
|
||||
{
|
||||
}
|
||||
|
||||
@@ -57,6 +72,10 @@ public:
|
||||
btScalar m_fraction; //input and output
|
||||
btIDebugDraw* m_debugDrawer;
|
||||
btScalar m_allowedPenetration;
|
||||
|
||||
int m_subSimplexCastMaxIterations;
|
||||
btScalar m_subSimplexCastEpsilon;
|
||||
|
||||
};
|
||||
|
||||
/// cast a convex against another convex object
|
||||
|
||||
@@ -31,8 +31,8 @@ bool btGjkEpaPenetrationDepthSolver::calcPenDepth(btSimplexSolverInterface& simp
|
||||
(void)simplexSolver;
|
||||
|
||||
btVector3 guessVectors[] = {
|
||||
btVector3(transformB.getOrigin() - transformA.getOrigin()).normalized(),
|
||||
btVector3(transformA.getOrigin() - transformB.getOrigin()).normalized(),
|
||||
btVector3(transformB.getOrigin() - transformA.getOrigin()).safeNormalize(),
|
||||
btVector3(transformA.getOrigin() - transformB.getOrigin()).safeNormalize(),
|
||||
btVector3(0, 0, 1),
|
||||
btVector3(0, 1, 0),
|
||||
btVector3(1, 0, 0),
|
||||
|
||||
@@ -28,13 +28,7 @@ btSubsimplexConvexCast::btSubsimplexConvexCast(const btConvexShape* convexA, con
|
||||
{
|
||||
}
|
||||
|
||||
///Typically the conservative advancement reaches solution in a few iterations, clip it to 32 for degenerate cases.
|
||||
///See discussion about this here http://continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=565
|
||||
#ifdef BT_USE_DOUBLE_PRECISION
|
||||
#define MAX_ITERATIONS 64
|
||||
#else
|
||||
#define MAX_ITERATIONS 32
|
||||
#endif
|
||||
|
||||
bool btSubsimplexConvexCast::calcTimeOfImpact(
|
||||
const btTransform& fromA,
|
||||
const btTransform& toA,
|
||||
@@ -60,7 +54,7 @@ bool btSubsimplexConvexCast::calcTimeOfImpact(
|
||||
btVector3 supVertexA = fromA(m_convexA->localGetSupportingVertex(-r * fromA.getBasis()));
|
||||
btVector3 supVertexB = fromB(m_convexB->localGetSupportingVertex(r * fromB.getBasis()));
|
||||
v = supVertexA - supVertexB;
|
||||
int maxIter = MAX_ITERATIONS;
|
||||
int maxIter = result.m_subSimplexCastMaxIterations;
|
||||
|
||||
btVector3 n;
|
||||
n.setValue(btScalar(0.), btScalar(0.), btScalar(0.));
|
||||
@@ -69,20 +63,12 @@ bool btSubsimplexConvexCast::calcTimeOfImpact(
|
||||
|
||||
btScalar dist2 = v.length2();
|
||||
|
||||
#ifdef BT_USE_DOUBLE_PRECISION
|
||||
btScalar epsilon = SIMD_EPSILON * 10;
|
||||
#else
|
||||
//todo: epsilon kept for backward compatibility of unit tests.
|
||||
//will need to digg deeper to make the algorithm more robust
|
||||
//since, a large epsilon can cause an early termination with false
|
||||
//positive results (ray intersections that shouldn't be there)
|
||||
btScalar epsilon = btScalar(0.0001);
|
||||
#endif //BT_USE_DOUBLE_PRECISION
|
||||
|
||||
|
||||
btVector3 w, p;
|
||||
btScalar VdotR;
|
||||
|
||||
while ((dist2 > epsilon) && maxIter--)
|
||||
while ((dist2 > result.m_subSimplexCastEpsilon) && maxIter--)
|
||||
{
|
||||
supVertexA = interpolatedTransA(m_convexA->localGetSupportingVertex(-v * interpolatedTransA.getBasis()));
|
||||
supVertexB = interpolatedTransB(m_convexB->localGetSupportingVertex(v * interpolatedTransB.getBasis()));
|
||||
|
||||
@@ -764,6 +764,12 @@ void btHingeConstraint::getInfo2InternalUsingFrameOffset(btConstraintInfo2* info
|
||||
btVector3 ax1A = trA.getBasis().getColumn(2);
|
||||
btVector3 ax1B = trB.getBasis().getColumn(2);
|
||||
btVector3 ax1 = ax1A * factA + ax1B * factB;
|
||||
if (ax1.length2()<SIMD_EPSILON)
|
||||
{
|
||||
factA=0.f;
|
||||
factB=1.f;
|
||||
ax1 = ax1A * factA + ax1B * factB;
|
||||
}
|
||||
ax1.normalize();
|
||||
// fill first 3 rows
|
||||
// we want: velA + wA x relA == velB + wB x relB
|
||||
|
||||
@@ -134,6 +134,15 @@ public:
|
||||
return m_baseCollider;
|
||||
}
|
||||
|
||||
const btMultiBodyLinkCollider *getLinkCollider(int index) const
|
||||
{
|
||||
if (index >= 0 && index < getNumLinks())
|
||||
{
|
||||
return getLink(index).m_collider;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
btMultiBodyLinkCollider *getLinkCollider(int index)
|
||||
{
|
||||
if (index >= 0 && index < getNumLinks())
|
||||
|
||||
@@ -281,6 +281,8 @@ int MultiBodyTree::addBody(int body_index, int parent_index, JointType joint_typ
|
||||
break;
|
||||
case FLOATING:
|
||||
break;
|
||||
case SPHERICAL:
|
||||
break;
|
||||
default:
|
||||
bt_id_error_message("unknown joint type %d\n", joint_type);
|
||||
return -1;
|
||||
@@ -437,6 +439,16 @@ int MultiBodyTree::finalize()
|
||||
rigid_body.m_Jac_JT(1) = 0.0;
|
||||
rigid_body.m_Jac_JT(2) = 0.0;
|
||||
break;
|
||||
case SPHERICAL:
|
||||
// NOTE/TODO: this is not really correct.
|
||||
// the Jacobians should be 3x3 matrices here !
|
||||
rigid_body.m_Jac_JR(0) = 0.0;
|
||||
rigid_body.m_Jac_JR(1) = 0.0;
|
||||
rigid_body.m_Jac_JR(2) = 0.0;
|
||||
rigid_body.m_Jac_JT(0) = 0.0;
|
||||
rigid_body.m_Jac_JT(1) = 0.0;
|
||||
rigid_body.m_Jac_JT(2) = 0.0;
|
||||
break;
|
||||
case FLOATING:
|
||||
// NOTE/TODO: this is not really correct.
|
||||
// the Jacobians should be 3x3 matrices here !
|
||||
|
||||
@@ -28,6 +28,9 @@ int MultiBodyTree::InitCache::addBody(const int body_index, const int parent_ind
|
||||
// does not add a degree of freedom
|
||||
// m_num_dofs+=0;
|
||||
break;
|
||||
case SPHERICAL:
|
||||
m_num_dofs += 3;
|
||||
break;
|
||||
case FLOATING:
|
||||
m_num_dofs += 6;
|
||||
break;
|
||||
|
||||
@@ -926,7 +926,7 @@ int btConvexHullInternal::Rational64::compare(const Rational64& b) const
|
||||
"decb %%bh\n\t" // now bx=0x0000 if difference is zero, 0xff01 if it is negative, 0x0001 if it is positive (i.e., same sign as difference)
|
||||
"shll $16, %%ebx\n\t" // ebx has same sign as difference
|
||||
: "=&b"(result), [tmp] "=&r"(tmp), "=a"(dummy)
|
||||
: "a"(denominator), [bn] "g"(b.numerator), [tn] "g"(numerator), [bd] "g"(b.denominator)
|
||||
: "a"(m_denominator), [bn] "g"(b.m_numerator), [tn] "g"(m_numerator), [bd] "g"(b.m_denominator)
|
||||
: "%rdx", "cc");
|
||||
return result ? result ^ sign // if sign is +1, only bit 0 of result is inverted, which does not change the sign of result (and cannot result in zero)
|
||||
// if sign is -1, all bits of result are inverted, which changes the sign of result (and again cannot result in zero)
|
||||
|
||||
Reference in New Issue
Block a user