started working on some serious performance improvements. now the union find is optimized, the broadphase add/remove overlapping pair was too slow. added a stl::set to keep track of overlapping pairs. this speeds up the set find/remove. work in progress.the SimpleBroadphase is broken. will be fixed tomorrow.

Did some tests with 3000 rigidbodies, works much smoother now :)
This commit is contained in:
ejcoumans
2006-09-19 02:59:30 +00:00
parent d47d23ea74
commit 8c023e764c
21 changed files with 242 additions and 130 deletions

View File

@@ -215,7 +215,7 @@ void AxisSweep3::RemoveHandle(unsigned short handle)
{
Handle* pHandle = GetHandle(handle);
RemoveOverlappingPairsContainingProxy(pHandle);
//RemoveOverlappingPairsContainingProxy(pHandle);
// compute current limit of edge arrays

View File

@@ -42,6 +42,9 @@ IMPLICIT_CONVEX_SHAPES_START_HERE,
CONCAVE_SHAPES_START_HERE,
//keep all the convex shapetype below here, for the check IsConvexShape in broadphase proxy!
TRIANGLE_MESH_SHAPE_PROXYTYPE,
///used for demo integration FAST/Swift collision library and Bullet
FAST_CONCAVE_MESH_PROXYTYPE,
EMPTY_SHAPE_PROXYTYPE,
STATIC_PLANE_PROXYTYPE,
CONCAVE_SHAPES_END_HERE,
@@ -124,17 +127,26 @@ struct BroadphasePair
}
}
BroadphasePair(BroadphaseProxy& proxy0,BroadphaseProxy& proxy1)
:
m_pProxy0(&proxy0),
m_pProxy1(&proxy1)
{
//keep them sorted, so the std::set operations work
if (&proxy0 < &proxy1)
{
m_pProxy0 = &proxy0;
m_pProxy1 = &proxy1;
}
else
{
m_pProxy0 = &proxy1;
m_pProxy1 = &proxy0;
}
for (int i=0;i<SIMPLE_MAX_ALGORITHMS;i++)
{
{
m_algorithms[i] = 0;
}
}
BroadphaseProxy* m_pProxy0;
BroadphaseProxy* m_pProxy1;
@@ -142,5 +154,14 @@ struct BroadphasePair
mutable CollisionAlgorithm* m_algorithms[SIMPLE_MAX_ALGORITHMS];
};
//comparison for set operation, see Solid DT_Encounter
inline bool operator<(const BroadphasePair& a, const BroadphasePair& b)
{
return a.m_pProxy0 < b.m_pProxy0 ||
(a.m_pProxy0 == b.m_pProxy0 && a.m_pProxy1 < b.m_pProxy1);
}
#endif //BROADPHASE_PROXY_H

View File

@@ -87,7 +87,7 @@ public:
virtual void ReleaseManifoldResult(ManifoldResult*)=0;
virtual void DispatchAllCollisionPairs(struct BroadphasePair* pairs,int numPairs,DispatcherInfo& dispatchInfo)=0;
virtual void DispatchAllCollisionPairs(OverlappingPairCache* pairCache,DispatcherInfo& dispatchInfo)=0;
virtual int GetNumManifolds() const = 0;

View File

@@ -24,26 +24,24 @@ subject to the following restrictions:
OverlappingPairCache::OverlappingPairCache(int maxOverlap):
m_blockedForChanges(false),
m_NumOverlapBroadphasePair(0),
//m_NumOverlapBroadphasePair(0),
m_maxOverlap(maxOverlap)
{
m_OverlappingPairs = new BroadphasePair[maxOverlap];
}
OverlappingPairCache::~OverlappingPairCache()
{
delete [] m_OverlappingPairs;
//todo/test: show we erase/delete data, or is it automatic
}
void OverlappingPairCache::RemoveOverlappingPair(BroadphasePair& pair)
{
CleanOverlappingPair(pair);
int index = &pair - &m_OverlappingPairs[0];
//remove efficiently, swap with the last
m_OverlappingPairs[index] = m_OverlappingPairs[m_NumOverlapBroadphasePair-1];
m_NumOverlapBroadphasePair--;
std::set<BroadphasePair>::iterator it = m_overlappingPairSet.find(pair);
assert(it != m_overlappingPairSet.end());
m_overlappingPairSet.erase(pair);
}
@@ -75,25 +73,22 @@ void OverlappingPairCache::AddOverlappingPair(BroadphaseProxy* proxy0,Broadphase
BroadphasePair pair(*proxy0,*proxy1);
m_OverlappingPairs[m_NumOverlapBroadphasePair] = pair;
m_overlappingPairSet.insert(pair);
#ifdef _DEBUG
/*
BroadphasePair& pr = (*newElem);
int i;
for (i=0;i<SIMPLE_MAX_ALGORITHMS;i++)
{
assert(!m_OverlappingPairs[m_NumOverlapBroadphasePair].m_algorithms[i]);
m_OverlappingPairs[m_NumOverlapBroadphasePair].m_algorithms[i] = 0;
//m_OverlappingPairs[m_NumOverlapBroadphasePair].m_algorithms[i] = 0;
}
*/
if (m_NumOverlapBroadphasePair >= m_maxOverlap)
{
//printf("Error: too many overlapping objects: m_NumOverlapBroadphasePair: %d\n",m_NumOverlapBroadphasePair);
#ifdef DEBUG
assert(0);
#endif
} else
{
m_NumOverlapBroadphasePair++;
}
#endif _DEBUG
}
@@ -104,27 +99,25 @@ void OverlappingPairCache::AddOverlappingPair(BroadphaseProxy* proxy0,Broadphase
///Also we can use a 2D bitmap, which can be useful for a future GPU implementation
BroadphasePair* OverlappingPairCache::FindPair(BroadphaseProxy* proxy0,BroadphaseProxy* proxy1)
{
BroadphasePair* foundPair = 0;
if (!NeedsCollision(proxy0,proxy1))
return 0;
int i;
for (i=m_NumOverlapBroadphasePair-1;i>=0;i--)
{
BroadphasePair& pair = m_OverlappingPairs[i];
if (((pair.m_pProxy0 == proxy0) && (pair.m_pProxy1 == proxy1)) ||
((pair.m_pProxy0 == proxy1) && (pair.m_pProxy1 == proxy0)))
{
foundPair = &pair;
return foundPair;
}
}
BroadphasePair tmpPair(*proxy0,*proxy1);
std::set<BroadphasePair>::iterator it = m_overlappingPairSet.find(tmpPair);
if ((it == m_overlappingPairSet.end()))
return 0;
return foundPair;
//assert(it != m_overlappingPairSet.end());
BroadphasePair* pair = &(*it);
return pair;
}
void OverlappingPairCache::CleanProxyFromPairs(BroadphaseProxy* proxy)
{
assert(0);
/*
for (int i=0;i<m_NumOverlapBroadphasePair;i++)
{
BroadphasePair& pair = m_OverlappingPairs[i];
@@ -134,11 +127,17 @@ void OverlappingPairCache::CleanProxyFromPairs(BroadphaseProxy* proxy)
CleanOverlappingPair(pair);
}
}
*/
}
void OverlappingPairCache::RemoveOverlappingPairsContainingProxy(BroadphaseProxy* proxy)
{
assert(0);
/*
int i;
for ( i=m_NumOverlapBroadphasePair-1;i>=0;i--)
{
BroadphasePair& pair = m_OverlappingPairs[i];
@@ -148,7 +147,23 @@ void OverlappingPairCache::RemoveOverlappingPairsContainingProxy(BroadphaseProxy
RemoveOverlappingPair(pair);
}
}
*/
}
void OverlappingPairCache::ProcessAllOverlappingPairs(OverlapCallback* callback)
{
std::set<BroadphasePair>::iterator it = m_overlappingPairSet.begin();
for (; !(it==m_overlappingPairSet.end());it++)
{
BroadphasePair& pair = (*it);
if (callback->ProcessOverlap(pair))
{
assert(0);
m_overlappingPairSet.erase(it);
}
}
}

View File

@@ -21,35 +21,33 @@ subject to the following restrictions:
#include "BroadphaseInterface.h"
#include "BroadphaseProxy.h"
#include "SimdPoint3.h"
#include <set>
struct OverlapCallback
{
//return true for deletion of the pair
virtual bool ProcessOverlap(BroadphasePair& pair) = 0;
};
///OverlappingPairCache maintains the objects with overlapping AABB
///Typically managed by the Broadphase, Axis3Sweep or SimpleBroadphase
class OverlappingPairCache : public BroadphaseInterface
{
BroadphasePair* m_OverlappingPairs;
int m_NumOverlapBroadphasePair;
//avoid brute-force finding all the time
std::set<BroadphasePair> m_overlappingPairSet;
int m_maxOverlap;
//during the dispatch, check that user doesn't destroy/create proxy
bool m_blockedForChanges;
public:
OverlappingPairCache(int maxOverlap);
virtual ~OverlappingPairCache();
int GetNumOverlappingPairs() const
{
return m_NumOverlapBroadphasePair;
}
BroadphasePair& GetOverlappingPair(int index)
{
return m_OverlappingPairs[index];
}
void ProcessAllOverlappingPairs(OverlapCallback*);
void RemoveOverlappingPair(BroadphasePair& pair);
@@ -58,8 +56,7 @@ class OverlappingPairCache : public BroadphaseInterface
void AddOverlappingPair(BroadphaseProxy* proxy0,BroadphaseProxy* proxy1);
BroadphasePair* FindPair(BroadphaseProxy* proxy0,BroadphaseProxy* proxy1);
void CleanProxyFromPairs(BroadphaseProxy* proxy);

View File

@@ -95,7 +95,27 @@ BroadphaseProxy* SimpleBroadphase::CreateProxy( const SimdVector3& min, const
return proxy;
}
class RemovingOverlapCallback : public OverlapCallback
{
virtual bool ProcessOverlap(BroadphasePair& pair)
{
assert(0);
}
};
class RemovePairContainingProxy
{
BroadphaseProxy* m_targetProxy;
virtual bool ProcessOverlap(BroadphasePair& pair)
{
SimpleBroadphaseProxy* proxy0 = static_cast<SimpleBroadphaseProxy*>(pair.m_pProxy0);
SimpleBroadphaseProxy* proxy1 = static_cast<SimpleBroadphaseProxy*>(pair.m_pProxy1);
return ((m_targetProxy == proxy0 || m_targetProxy == proxy1));
};
};
void SimpleBroadphase::DestroyProxy(BroadphaseProxy* proxyOrg)
{
@@ -109,7 +129,24 @@ void SimpleBroadphase::DestroyProxy(BroadphaseProxy* proxyOrg)
assert (index < m_maxProxies);
m_freeProxies[--m_firstFreeProxy] = index;
RemoveOverlappingPairsContainingProxy(proxyOrg);
//RemoveOverlappingPairsContainingProxy(proxyOrg);
assert(0);
//then remove non-overlapping ones
/*for (i=0;i<GetNumOverlappingPairs();i++)
{
BroadphasePair& pair = GetOverlappingPair(i);
SimpleBroadphaseProxy* proxy0 = GetSimpleProxyFromProxy(pair.m_pProxy0);
SimpleBroadphaseProxy* proxy1 = GetSimpleProxyFromProxy(pair.m_pProxy1);
if ((proxy0==proxyOrg) || (proxy1==proxyOrg))
{
RemoveOverlappingPair(pair);
}
}
*/
for (i=0;i<m_numProxies;i++)
@@ -172,6 +209,8 @@ void SimpleBroadphase::RefreshOverlappingPairs()
}
}
assert(0);
/*
//then remove non-overlapping ones
for (i=0;i<GetNumOverlappingPairs();i++)
{
@@ -185,7 +224,8 @@ void SimpleBroadphase::RefreshOverlappingPairs()
}
}
*/
}

View File

@@ -265,7 +265,72 @@ void CollisionDispatcher::ReleaseManifoldResult(ManifoldResult*)
}
void CollisionDispatcher::DispatchAllCollisionPairs(BroadphasePair* pairs,int numPairs,DispatcherInfo& dispatchInfo)
class CollisionPairCallback : public OverlapCallback
{
DispatcherInfo& m_dispatchInfo;
CollisionDispatcher* m_dispatcher;
int m_dispatcherId;
public:
CollisionPairCallback(DispatcherInfo& dispatchInfo,CollisionDispatcher* dispatcher,int dispatcherId)
:m_dispatchInfo(dispatchInfo),
m_dispatcher(dispatcher),
m_dispatcherId(dispatcherId)
{
}
virtual bool ProcessOverlap(BroadphasePair& pair)
{
if (m_dispatcherId>= 0)
{
//dispatcher will keep algorithms persistent in the collision pair
if (!pair.m_algorithms[m_dispatcherId])
{
pair.m_algorithms[m_dispatcherId] = m_dispatcher->FindAlgorithm(
*pair.m_pProxy0,
*pair.m_pProxy1);
}
if (pair.m_algorithms[m_dispatcherId])
{
if (m_dispatchInfo.m_dispatchFunc == DispatcherInfo::DISPATCH_DISCRETE)
{
pair.m_algorithms[m_dispatcherId]->ProcessCollision(pair.m_pProxy0,pair.m_pProxy1,m_dispatchInfo);
} else
{
float toi = pair.m_algorithms[m_dispatcherId]->CalculateTimeOfImpact(pair.m_pProxy0,pair.m_pProxy1,m_dispatchInfo);
if (m_dispatchInfo.m_timeOfImpact > toi)
m_dispatchInfo.m_timeOfImpact = toi;
}
}
} else
{
//non-persistent algorithm dispatcher
CollisionAlgorithm* algo = m_dispatcher->FindAlgorithm(
*pair.m_pProxy0,
*pair.m_pProxy1);
if (algo)
{
if (m_dispatchInfo.m_dispatchFunc == DispatcherInfo::DISPATCH_DISCRETE)
{
algo->ProcessCollision(pair.m_pProxy0,pair.m_pProxy1,m_dispatchInfo);
} else
{
float toi = algo->CalculateTimeOfImpact(pair.m_pProxy0,pair.m_pProxy1,m_dispatchInfo);
if (m_dispatchInfo.m_timeOfImpact > toi)
m_dispatchInfo.m_timeOfImpact = toi;
}
}
}
return false;
}
};
void CollisionDispatcher::DispatchAllCollisionPairs(OverlappingPairCache* pairCache,DispatcherInfo& dispatchInfo)
{
//m_blockedForChanges = true;
@@ -273,58 +338,9 @@ void CollisionDispatcher::DispatchAllCollisionPairs(BroadphasePair* pairs,int nu
int dispatcherId = GetUniqueId();
CollisionPairCallback collisionCallback(dispatchInfo,this,dispatcherId);
for (i=0;i<numPairs;i++)
{
BroadphasePair& pair = pairs[i];
if (dispatcherId>= 0)
{
//dispatcher will keep algorithms persistent in the collision pair
if (!pair.m_algorithms[dispatcherId])
{
pair.m_algorithms[dispatcherId] = FindAlgorithm(
*pair.m_pProxy0,
*pair.m_pProxy1);
}
if (pair.m_algorithms[dispatcherId])
{
if (dispatchInfo.m_dispatchFunc == DispatcherInfo::DISPATCH_DISCRETE)
{
pair.m_algorithms[dispatcherId]->ProcessCollision(pair.m_pProxy0,pair.m_pProxy1,dispatchInfo);
} else
{
float toi = pair.m_algorithms[dispatcherId]->CalculateTimeOfImpact(pair.m_pProxy0,pair.m_pProxy1,dispatchInfo);
if (dispatchInfo.m_timeOfImpact > toi)
dispatchInfo.m_timeOfImpact = toi;
}
}
} else
{
//non-persistent algorithm dispatcher
CollisionAlgorithm* algo = FindAlgorithm(
*pair.m_pProxy0,
*pair.m_pProxy1);
if (algo)
{
if (dispatchInfo.m_dispatchFunc == DispatcherInfo::DISPATCH_DISCRETE)
{
algo->ProcessCollision(pair.m_pProxy0,pair.m_pProxy1,dispatchInfo);
} else
{
float toi = algo->CalculateTimeOfImpact(pair.m_pProxy0,pair.m_pProxy1,dispatchInfo);
if (dispatchInfo.m_timeOfImpact > toi)
dispatchInfo.m_timeOfImpact = toi;
}
}
}
}
pairCache->ProcessAllOverlappingPairs(&collisionCallback);
//m_blockedForChanges = false;

View File

@@ -105,7 +105,7 @@ public:
virtual int GetUniqueId() { return RIGIDBODY_DISPATCHER;}
virtual void DispatchAllCollisionPairs(BroadphasePair* pairs,int numPairs,DispatcherInfo& dispatchInfo);
virtual void DispatchAllCollisionPairs(OverlappingPairCache* pairCache,DispatcherInfo& dispatchInfo);

View File

@@ -108,7 +108,7 @@ void CollisionWorld::PerformDiscreteCollisionDetection()
Dispatcher* dispatcher = GetDispatcher();
if (dispatcher)
dispatcher->DispatchAllCollisionPairs(&m_pairCache->GetOverlappingPair(0),m_pairCache->GetNumOverlappingPairs(),dispatchInfo);
dispatcher->DispatchAllCollisionPairs(m_pairCache,dispatchInfo);
}

View File

@@ -0,0 +1,81 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "SphereSphereCollisionAlgorithm.h"
#include "CollisionDispatch/CollisionDispatcher.h"
#include "CollisionShapes/SphereShape.h"
#include "CollisionDispatch/CollisionObject.h"
SphereSphereCollisionAlgorithm::SphereSphereCollisionAlgorithm(PersistentManifold* mf,const CollisionAlgorithmConstructionInfo& ci,BroadphaseProxy* proxy0,BroadphaseProxy* proxy1)
: CollisionAlgorithm(ci),
m_ownManifold(false),
m_manifoldPtr(mf)
{
if (!m_manifoldPtr && m_dispatcher->NeedsCollision(*proxy0,*proxy1))
{
m_manifoldPtr = m_dispatcher->GetNewManifold(proxy0->m_clientObject,proxy1->m_clientObject);
m_ownManifold = true;
}
}
SphereSphereCollisionAlgorithm::~SphereSphereCollisionAlgorithm()
{
if (m_ownManifold)
{
if (m_manifoldPtr)
m_dispatcher->ReleaseManifold(m_manifoldPtr);
}
}
void SphereSphereCollisionAlgorithm::ProcessCollision (BroadphaseProxy* proxy0,BroadphaseProxy* proxy1,const DispatcherInfo& dispatchInfo)
{
if (!m_manifoldPtr)
return;
CollisionObject* col0 = static_cast<CollisionObject*>(proxy0->m_clientObject);
CollisionObject* col1 = static_cast<CollisionObject*>(proxy1->m_clientObject);
SphereShape* sphere0 = (SphereShape*)col0->m_collisionShape;
SphereShape* sphere1 = (SphereShape*)col1->m_collisionShape;
SimdVector3 diff = col0->m_worldTransform.getOrigin()- col1->m_worldTransform.getOrigin();
float len = diff.length();
SimdScalar radius0 = sphere0->GetRadius();
SimdScalar radius1 = sphere1->GetRadius();
///iff distance positive, don't generate a new contact
if ( len > (radius0+radius1))
return;
///distance (negative means penetration)
SimdScalar dist = len - (radius0+radius1);
SimdVector3 normalOnSurfaceB = diff / len;
///point on A (worldspace)
SimdVector3 pos0 = col0->m_worldTransform.getOrigin() - radius0 * normalOnSurfaceB;
///point on B (worldspace)
SimdVector3 pos1 = col1->m_worldTransform.getOrigin() + radius1* normalOnSurfaceB;
/// report a contact. internally this will be kept persistent, and contact reduction is done
ManifoldResult* resultOut = m_dispatcher->GetNewManifoldResult(col0,col1,m_manifoldPtr);
resultOut->AddContactPoint(normalOnSurfaceB,pos1,dist);
m_dispatcher->ReleaseManifoldResult(resultOut);
}
float SphereSphereCollisionAlgorithm::CalculateTimeOfImpact(BroadphaseProxy* proxy0,BroadphaseProxy* proxy1,const DispatcherInfo& dispatchInfo)
{
//not yet
return 1.f;
}

View File

@@ -0,0 +1,54 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef SPHERE_SPHERE_COLLISION_ALGORITHM_H
#define SPHERE_SPHERE_COLLISION_ALGORITHM_H
#include "BroadphaseCollision/CollisionAlgorithm.h"
#include "BroadphaseCollision/BroadphaseProxy.h"
#include "CollisionDispatch/CollisionCreateFunc.h"
class PersistentManifold;
/// SphereSphereCollisionAlgorithm provides sphere-sphere collision detection.
/// Other features are frame-coherency (persistent data) and collision response.
/// Also provides the most basic sample for custom/user CollisionAlgorithm
class SphereSphereCollisionAlgorithm : public CollisionAlgorithm
{
bool m_ownManifold;
PersistentManifold* m_manifoldPtr;
public:
SphereSphereCollisionAlgorithm(const CollisionAlgorithmConstructionInfo& ci)
: CollisionAlgorithm(ci) {}
virtual void ProcessCollision (BroadphaseProxy* proxy0,BroadphaseProxy* proxy1,const DispatcherInfo& dispatchInfo);
virtual float CalculateTimeOfImpact(BroadphaseProxy* proxy0,BroadphaseProxy* proxy1,const DispatcherInfo& dispatchInfo);
SphereSphereCollisionAlgorithm(PersistentManifold* mf,const CollisionAlgorithmConstructionInfo& ci,BroadphaseProxy* proxy0,BroadphaseProxy* proxy1);
virtual ~SphereSphereCollisionAlgorithm();
struct CreateFunc :public CollisionAlgorithmCreateFunc
{
virtual CollisionAlgorithm* CreateCollisionAlgorithm(CollisionAlgorithmConstructionInfo& ci, BroadphaseProxy* proxy0,BroadphaseProxy* proxy1)
{
return new SphereSphereCollisionAlgorithm(0,ci,proxy0,proxy1);
}
};
};
#endif //SPHERE_SPHERE_COLLISION_ALGORITHM_H