started working on some serious performance improvements. now the union find is optimized, the broadphase add/remove overlapping pair was too slow. added a stl::set to keep track of overlapping pairs. this speeds up the set find/remove. work in progress.the SimpleBroadphase is broken. will be fixed tomorrow.

Did some tests with 3000 rigidbodies, works much smoother now :)
This commit is contained in:
ejcoumans
2006-09-19 02:59:30 +00:00
parent d47d23ea74
commit 8c023e764c
21 changed files with 242 additions and 130 deletions

View File

@@ -265,7 +265,72 @@ void CollisionDispatcher::ReleaseManifoldResult(ManifoldResult*)
}
void CollisionDispatcher::DispatchAllCollisionPairs(BroadphasePair* pairs,int numPairs,DispatcherInfo& dispatchInfo)
class CollisionPairCallback : public OverlapCallback
{
DispatcherInfo& m_dispatchInfo;
CollisionDispatcher* m_dispatcher;
int m_dispatcherId;
public:
CollisionPairCallback(DispatcherInfo& dispatchInfo,CollisionDispatcher* dispatcher,int dispatcherId)
:m_dispatchInfo(dispatchInfo),
m_dispatcher(dispatcher),
m_dispatcherId(dispatcherId)
{
}
virtual bool ProcessOverlap(BroadphasePair& pair)
{
if (m_dispatcherId>= 0)
{
//dispatcher will keep algorithms persistent in the collision pair
if (!pair.m_algorithms[m_dispatcherId])
{
pair.m_algorithms[m_dispatcherId] = m_dispatcher->FindAlgorithm(
*pair.m_pProxy0,
*pair.m_pProxy1);
}
if (pair.m_algorithms[m_dispatcherId])
{
if (m_dispatchInfo.m_dispatchFunc == DispatcherInfo::DISPATCH_DISCRETE)
{
pair.m_algorithms[m_dispatcherId]->ProcessCollision(pair.m_pProxy0,pair.m_pProxy1,m_dispatchInfo);
} else
{
float toi = pair.m_algorithms[m_dispatcherId]->CalculateTimeOfImpact(pair.m_pProxy0,pair.m_pProxy1,m_dispatchInfo);
if (m_dispatchInfo.m_timeOfImpact > toi)
m_dispatchInfo.m_timeOfImpact = toi;
}
}
} else
{
//non-persistent algorithm dispatcher
CollisionAlgorithm* algo = m_dispatcher->FindAlgorithm(
*pair.m_pProxy0,
*pair.m_pProxy1);
if (algo)
{
if (m_dispatchInfo.m_dispatchFunc == DispatcherInfo::DISPATCH_DISCRETE)
{
algo->ProcessCollision(pair.m_pProxy0,pair.m_pProxy1,m_dispatchInfo);
} else
{
float toi = algo->CalculateTimeOfImpact(pair.m_pProxy0,pair.m_pProxy1,m_dispatchInfo);
if (m_dispatchInfo.m_timeOfImpact > toi)
m_dispatchInfo.m_timeOfImpact = toi;
}
}
}
return false;
}
};
void CollisionDispatcher::DispatchAllCollisionPairs(OverlappingPairCache* pairCache,DispatcherInfo& dispatchInfo)
{
//m_blockedForChanges = true;
@@ -273,58 +338,9 @@ void CollisionDispatcher::DispatchAllCollisionPairs(BroadphasePair* pairs,int nu
int dispatcherId = GetUniqueId();
CollisionPairCallback collisionCallback(dispatchInfo,this,dispatcherId);
for (i=0;i<numPairs;i++)
{
BroadphasePair& pair = pairs[i];
if (dispatcherId>= 0)
{
//dispatcher will keep algorithms persistent in the collision pair
if (!pair.m_algorithms[dispatcherId])
{
pair.m_algorithms[dispatcherId] = FindAlgorithm(
*pair.m_pProxy0,
*pair.m_pProxy1);
}
if (pair.m_algorithms[dispatcherId])
{
if (dispatchInfo.m_dispatchFunc == DispatcherInfo::DISPATCH_DISCRETE)
{
pair.m_algorithms[dispatcherId]->ProcessCollision(pair.m_pProxy0,pair.m_pProxy1,dispatchInfo);
} else
{
float toi = pair.m_algorithms[dispatcherId]->CalculateTimeOfImpact(pair.m_pProxy0,pair.m_pProxy1,dispatchInfo);
if (dispatchInfo.m_timeOfImpact > toi)
dispatchInfo.m_timeOfImpact = toi;
}
}
} else
{
//non-persistent algorithm dispatcher
CollisionAlgorithm* algo = FindAlgorithm(
*pair.m_pProxy0,
*pair.m_pProxy1);
if (algo)
{
if (dispatchInfo.m_dispatchFunc == DispatcherInfo::DISPATCH_DISCRETE)
{
algo->ProcessCollision(pair.m_pProxy0,pair.m_pProxy1,dispatchInfo);
} else
{
float toi = algo->CalculateTimeOfImpact(pair.m_pProxy0,pair.m_pProxy1,dispatchInfo);
if (dispatchInfo.m_timeOfImpact > toi)
dispatchInfo.m_timeOfImpact = toi;
}
}
}
}
pairCache->ProcessAllOverlappingPairs(&collisionCallback);
//m_blockedForChanges = false;