started working on some serious performance improvements. now the union find is optimized, the broadphase add/remove overlapping pair was too slow. added a stl::set to keep track of overlapping pairs. this speeds up the set find/remove. work in progress.the SimpleBroadphase is broken. will be fixed tomorrow.

Did some tests with 3000 rigidbodies, works much smoother now :)
This commit is contained in:
ejcoumans
2006-09-19 02:59:30 +00:00
parent d47d23ea74
commit 8c023e764c
21 changed files with 242 additions and 130 deletions

View File

@@ -1,81 +0,0 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "SphereSphereCollisionAlgorithm.h"
#include "CollisionDispatch/CollisionDispatcher.h"
#include "CollisionShapes/SphereShape.h"
#include "CollisionDispatch/CollisionObject.h"
SphereSphereCollisionAlgorithm::SphereSphereCollisionAlgorithm(PersistentManifold* mf,const CollisionAlgorithmConstructionInfo& ci,BroadphaseProxy* proxy0,BroadphaseProxy* proxy1)
: CollisionAlgorithm(ci),
m_ownManifold(false),
m_manifoldPtr(mf)
{
if (!m_manifoldPtr && m_dispatcher->NeedsCollision(*proxy0,*proxy1))
{
m_manifoldPtr = m_dispatcher->GetNewManifold(proxy0->m_clientObject,proxy1->m_clientObject);
m_ownManifold = true;
}
}
SphereSphereCollisionAlgorithm::~SphereSphereCollisionAlgorithm()
{
if (m_ownManifold)
{
if (m_manifoldPtr)
m_dispatcher->ReleaseManifold(m_manifoldPtr);
}
}
void SphereSphereCollisionAlgorithm::ProcessCollision (BroadphaseProxy* proxy0,BroadphaseProxy* proxy1,const DispatcherInfo& dispatchInfo)
{
if (!m_manifoldPtr)
return;
CollisionObject* col0 = static_cast<CollisionObject*>(proxy0->m_clientObject);
CollisionObject* col1 = static_cast<CollisionObject*>(proxy1->m_clientObject);
SphereShape* sphere0 = (SphereShape*)col0->m_collisionShape;
SphereShape* sphere1 = (SphereShape*)col1->m_collisionShape;
SimdVector3 diff = col0->m_worldTransform.getOrigin()- col1->m_worldTransform.getOrigin();
float len = diff.length();
SimdScalar radius0 = sphere0->GetRadius();
SimdScalar radius1 = sphere1->GetRadius();
///iff distance positive, don't generate a new contact
if ( len > (radius0+radius1))
return;
///distance (negative means penetration)
SimdScalar dist = len - (radius0+radius1);
SimdVector3 normalOnSurfaceB = diff / len;
///point on A (worldspace)
SimdVector3 pos0 = col0->m_worldTransform.getOrigin() - radius0 * normalOnSurfaceB;
///point on B (worldspace)
SimdVector3 pos1 = col1->m_worldTransform.getOrigin() + radius1* normalOnSurfaceB;
/// report a contact. internally this will be kept persistent, and contact reduction is done
ManifoldResult* resultOut = m_dispatcher->GetNewManifoldResult(col0,col1,m_manifoldPtr);
resultOut->AddContactPoint(normalOnSurfaceB,pos1,dist);
m_dispatcher->ReleaseManifoldResult(resultOut);
}
float SphereSphereCollisionAlgorithm::CalculateTimeOfImpact(BroadphaseProxy* proxy0,BroadphaseProxy* proxy1,const DispatcherInfo& dispatchInfo)
{
//not yet
return 1.f;
}

View File

@@ -1,54 +0,0 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef SPHERE_SPHERE_COLLISION_ALGORITHM_H
#define SPHERE_SPHERE_COLLISION_ALGORITHM_H
#include "BroadphaseCollision/CollisionAlgorithm.h"
#include "BroadphaseCollision/BroadphaseProxy.h"
#include "CollisionDispatch/CollisionCreateFunc.h"
class PersistentManifold;
/// SphereSphereCollisionAlgorithm provides sphere-sphere collision detection.
/// Other features are frame-coherency (persistent data) and collision response.
/// Also provides the most basic sample for custom/user CollisionAlgorithm
class SphereSphereCollisionAlgorithm : public CollisionAlgorithm
{
bool m_ownManifold;
PersistentManifold* m_manifoldPtr;
public:
SphereSphereCollisionAlgorithm(const CollisionAlgorithmConstructionInfo& ci)
: CollisionAlgorithm(ci) {}
virtual void ProcessCollision (BroadphaseProxy* proxy0,BroadphaseProxy* proxy1,const DispatcherInfo& dispatchInfo);
virtual float CalculateTimeOfImpact(BroadphaseProxy* proxy0,BroadphaseProxy* proxy1,const DispatcherInfo& dispatchInfo);
SphereSphereCollisionAlgorithm(PersistentManifold* mf,const CollisionAlgorithmConstructionInfo& ci,BroadphaseProxy* proxy0,BroadphaseProxy* proxy1);
virtual ~SphereSphereCollisionAlgorithm();
struct CreateFunc :public CollisionAlgorithmCreateFunc
{
virtual CollisionAlgorithm* CreateCollisionAlgorithm(CollisionAlgorithmConstructionInfo& ci, BroadphaseProxy* proxy0,BroadphaseProxy* proxy1)
{
return new SphereSphereCollisionAlgorithm(0,ci,proxy0,proxy1);
}
};
};
#endif //SPHERE_SPHERE_COLLISION_ALGORITHM_H

View File

@@ -27,6 +27,8 @@ subject to the following restrictions:
#include "ConstraintSolver/SequentialImpulseConstraintSolver.h"
#include "CollisionDispatch/CollisionDispatcher.h"
#include "BroadphaseCollision/SimpleBroadphase.h"
#include "BroadphaseCollision/AxisSweep3.h"
#include "CollisionShapes/TriangleMeshShape.h"
#include "CollisionShapes/TriangleIndexVertexArray.h"
#include "CollisionShapes/BvhTriangleMeshShape.h"
@@ -39,7 +41,7 @@ subject to the following restrictions:
#include "GlutStuff.h"
//The user defined collision algorithm
#include "SphereSphereCollisionAlgorithm.h"
#include "CollisionDispatch/SphereSphereCollisionAlgorithm.h"
GLDebugDrawer debugDrawer;
@@ -139,7 +141,8 @@ void UserCollisionAlgorithm::initPhysics()
CollisionDispatcher* dispatcher = new CollisionDispatcher();
OverlappingPairCache* broadphase = new SimpleBroadphase();
SimdVector3 maxAabb(10000,10000,10000);
OverlappingPairCache* broadphase = new AxisSweep3(-maxAabb,maxAabb);//SimpleBroadphase();
dispatcher->RegisterCollisionCreateFunc(SPHERE_SHAPE_PROXYTYPE,SPHERE_SHAPE_PROXYTYPE,new SphereSphereCollisionAlgorithm::CreateFunc);