add pybullet getCameraImage, replacing renderImage, cleaner API:
always pass in width, hight and viewMatrix, projectionMatrix, optionally lightDir added helper methods computeViewMatrix, computeViewMatrixFromYawPitchRoll, computeProjectionMatrix, computeProjectionMatrixFOV see Bullet/examples/pybullet/testrender.py + testrender_np.py for example use add missing base_link.stl for husky.urdf
This commit is contained in:
@@ -1377,15 +1377,18 @@ static int pybullet_internalSetMatrix(PyObject* objMat, float matrix[16]) {
|
||||
PyObject* seq;
|
||||
|
||||
seq = PySequence_Fast(objMat, "expected a sequence");
|
||||
len = PySequence_Size(objMat);
|
||||
if (len == 16) {
|
||||
for (i = 0; i < len; i++) {
|
||||
matrix[i] = pybullet_internalGetFloatFromSequence(seq, i);
|
||||
}
|
||||
Py_DECREF(seq);
|
||||
return 1;
|
||||
if (seq)
|
||||
{
|
||||
len = PySequence_Size(objMat);
|
||||
if (len == 16) {
|
||||
for (i = 0; i < len; i++) {
|
||||
matrix[i] = pybullet_internalGetFloatFromSequence(seq, i);
|
||||
}
|
||||
Py_DECREF(seq);
|
||||
return 1;
|
||||
}
|
||||
Py_DECREF(seq);
|
||||
}
|
||||
Py_DECREF(seq);
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -1397,20 +1400,24 @@ static int pybullet_internalSetMatrix(PyObject* objMat, float matrix[16]) {
|
||||
// vector - float[3] which will be set by values from objMat
|
||||
static int pybullet_internalSetVector(PyObject* objVec, float vector[3]) {
|
||||
int i, len;
|
||||
PyObject* seq;
|
||||
PyObject* seq=0;
|
||||
if (objVec==NULL)
|
||||
return 0;
|
||||
|
||||
seq = PySequence_Fast(objVec, "expected a sequence");
|
||||
len = PySequence_Size(objVec);
|
||||
if (len == 3) {
|
||||
for (i = 0; i < len; i++) {
|
||||
vector[i] = pybullet_internalGetFloatFromSequence(seq, i);
|
||||
}
|
||||
Py_DECREF(seq);
|
||||
return 1;
|
||||
if (seq)
|
||||
{
|
||||
|
||||
len = PySequence_Size(objVec);
|
||||
if (len == 3) {
|
||||
for (i = 0; i < len; i++) {
|
||||
vector[i] = pybullet_internalGetFloatFromSequence(seq, i);
|
||||
}
|
||||
Py_DECREF(seq);
|
||||
return 1;
|
||||
}
|
||||
Py_DECREF(seq);
|
||||
}
|
||||
Py_DECREF(seq);
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -1422,15 +1429,18 @@ static int pybullet_internalSetVectord(PyObject* obVec, double vector[3]) {
|
||||
return 0;
|
||||
|
||||
seq = PySequence_Fast(obVec, "expected a sequence");
|
||||
len = PySequence_Size(obVec);
|
||||
if (len == 3) {
|
||||
for (i = 0; i < len; i++) {
|
||||
vector[i] = pybullet_internalGetFloatFromSequence(seq, i);
|
||||
}
|
||||
Py_DECREF(seq);
|
||||
return 1;
|
||||
}
|
||||
Py_DECREF(seq);
|
||||
if (seq)
|
||||
{
|
||||
len = PySequence_Size(obVec);
|
||||
if (len == 3) {
|
||||
for (i = 0; i < len; i++) {
|
||||
vector[i] = pybullet_internalGetFloatFromSequence(seq, i);
|
||||
}
|
||||
Py_DECREF(seq);
|
||||
return 1;
|
||||
}
|
||||
Py_DECREF(seq);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -2196,6 +2206,302 @@ static PyObject* pybullet_getContactPointData(PyObject* self, PyObject* args, Py
|
||||
return Py_None;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/// Render an image from the current timestep of the simulation, width, height are required, other args are optional
|
||||
// getCameraImage(w, h, view[16], projection[16], lightpos[3])
|
||||
static PyObject* pybullet_getCameraImage(PyObject* self, PyObject* args, PyObject *keywds)
|
||||
{
|
||||
/// request an image from a simulated camera, using a software renderer.
|
||||
struct b3CameraImageData imageData;
|
||||
PyObject* objViewMat = 0, *objProjMat = 0, *lightDirObj = 0;
|
||||
int width, height;
|
||||
int size = PySequence_Size(args);
|
||||
float viewMatrix[16];
|
||||
float projectionMatrix[16];
|
||||
float lightDir[3];
|
||||
// inialize cmd
|
||||
b3SharedMemoryCommandHandle command;
|
||||
|
||||
if (0 == sm)
|
||||
{
|
||||
PyErr_SetString(SpamError, "Not connected to physics server.");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
command = b3InitRequestCameraImage(sm);
|
||||
|
||||
// set camera resolution, optionally view, projection matrix, light direction
|
||||
static char *kwlist[] = { "width", "height", "viewMatrix", "projectionMatrix", "lightDirection",NULL };
|
||||
|
||||
if (!PyArg_ParseTupleAndKeywords(args, keywds, "ii|OOO", kwlist, &width, &height, &objViewMat, &objProjMat, &lightDirObj))
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
b3RequestCameraImageSetPixelResolution(command, width, height);
|
||||
|
||||
// set camera matrices only if set matrix function succeeds
|
||||
if (pybullet_internalSetMatrix(objViewMat, viewMatrix) && (pybullet_internalSetMatrix(objProjMat, projectionMatrix)))
|
||||
{
|
||||
b3RequestCameraImageSetCameraMatrices(command, viewMatrix, projectionMatrix);
|
||||
}
|
||||
//set light pos only if function succeeds
|
||||
if (pybullet_internalSetVector(lightDirObj, lightDir))
|
||||
{
|
||||
b3RequestCameraImageSetLightDirection(command, lightDir);
|
||||
}
|
||||
|
||||
|
||||
if (b3CanSubmitCommand(sm))
|
||||
{
|
||||
b3SharedMemoryStatusHandle statusHandle;
|
||||
int statusType;
|
||||
|
||||
// b3RequestCameraImageSelectRenderer(command,ER_BULLET_HARDWARE_OPENGL);
|
||||
|
||||
statusHandle = b3SubmitClientCommandAndWaitStatus(sm, command);
|
||||
statusType = b3GetStatusType(statusHandle);
|
||||
if (statusType == CMD_CAMERA_IMAGE_COMPLETED) {
|
||||
PyObject* item2;
|
||||
PyObject* pyResultList; // store 4 elements in this result: width,
|
||||
// height, rgbData, depth
|
||||
|
||||
#ifdef PYBULLET_USE_NUMPY
|
||||
PyObject* pyRGB;
|
||||
PyObject* pyDep;
|
||||
PyObject* pySeg;
|
||||
|
||||
int i, j, p;
|
||||
|
||||
b3GetCameraImageData(sm, &imageData);
|
||||
// TODO(hellojas): error handling if image size is 0
|
||||
pyResultList = PyTuple_New(5);
|
||||
PyTuple_SetItem(pyResultList, 0, PyInt_FromLong(imageData.m_pixelWidth));
|
||||
PyTuple_SetItem(pyResultList, 1, PyInt_FromLong(imageData.m_pixelHeight));
|
||||
|
||||
int bytesPerPixel = 4; // Red, Green, Blue, and Alpha each 8 bit values
|
||||
|
||||
npy_intp rgb_dims[3] = { imageData.m_pixelHeight, imageData.m_pixelWidth,
|
||||
bytesPerPixel };
|
||||
npy_intp dep_dims[2] = { imageData.m_pixelHeight, imageData.m_pixelWidth };
|
||||
npy_intp seg_dims[2] = { imageData.m_pixelHeight, imageData.m_pixelWidth };
|
||||
|
||||
pyRGB = PyArray_SimpleNew(3, rgb_dims, NPY_UINT8);
|
||||
pyDep = PyArray_SimpleNew(2, dep_dims, NPY_FLOAT32);
|
||||
pySeg = PyArray_SimpleNew(2, seg_dims, NPY_INT32);
|
||||
|
||||
memcpy(PyArray_DATA(pyRGB), imageData.m_rgbColorData,
|
||||
imageData.m_pixelHeight * imageData.m_pixelWidth * bytesPerPixel);
|
||||
memcpy(PyArray_DATA(pyDep), imageData.m_depthValues,
|
||||
imageData.m_pixelHeight * imageData.m_pixelWidth);
|
||||
memcpy(PyArray_DATA(pySeg), imageData.m_segmentationMaskValues,
|
||||
imageData.m_pixelHeight * imageData.m_pixelWidth);
|
||||
|
||||
PyTuple_SetItem(pyResultList, 2, pyRGB);
|
||||
PyTuple_SetItem(pyResultList, 3, pyDep);
|
||||
PyTuple_SetItem(pyResultList, 4, pySeg);
|
||||
#else//PYBULLET_USE_NUMPY
|
||||
PyObject* pylistRGB;
|
||||
PyObject* pylistDep;
|
||||
PyObject* pylistSeg;
|
||||
|
||||
int i, j, p;
|
||||
|
||||
b3GetCameraImageData(sm, &imageData);
|
||||
// TODO(hellojas): error handling if image size is 0
|
||||
pyResultList = PyTuple_New(5);
|
||||
PyTuple_SetItem(pyResultList, 0, PyInt_FromLong(imageData.m_pixelWidth));
|
||||
PyTuple_SetItem(pyResultList, 1, PyInt_FromLong(imageData.m_pixelHeight));
|
||||
|
||||
{
|
||||
PyObject* item;
|
||||
int bytesPerPixel = 4; // Red, Green, Blue, and Alpha each 8 bit values
|
||||
int num =
|
||||
bytesPerPixel * imageData.m_pixelWidth * imageData.m_pixelHeight;
|
||||
pylistRGB = PyTuple_New(num);
|
||||
pylistDep =
|
||||
PyTuple_New(imageData.m_pixelWidth * imageData.m_pixelHeight);
|
||||
pylistSeg =
|
||||
PyTuple_New(imageData.m_pixelWidth * imageData.m_pixelHeight);
|
||||
for (i = 0; i < imageData.m_pixelWidth; i++) {
|
||||
for (j = 0; j < imageData.m_pixelHeight; j++) {
|
||||
// TODO(hellojas): validate depth values make sense
|
||||
int depIndex = i + j * imageData.m_pixelWidth;
|
||||
{
|
||||
item = PyFloat_FromDouble(imageData.m_depthValues[depIndex]);
|
||||
PyTuple_SetItem(pylistDep, depIndex, item);
|
||||
}
|
||||
{
|
||||
item2 =
|
||||
PyLong_FromLong(imageData.m_segmentationMaskValues[depIndex]);
|
||||
PyTuple_SetItem(pylistSeg, depIndex, item2);
|
||||
}
|
||||
|
||||
for (p = 0; p < bytesPerPixel; p++) {
|
||||
int pixelIndex =
|
||||
bytesPerPixel * (i + j * imageData.m_pixelWidth) + p;
|
||||
item = PyInt_FromLong(imageData.m_rgbColorData[pixelIndex]);
|
||||
PyTuple_SetItem(pylistRGB, pixelIndex, item);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
PyTuple_SetItem(pyResultList, 2, pylistRGB);
|
||||
PyTuple_SetItem(pyResultList, 3, pylistDep);
|
||||
PyTuple_SetItem(pyResultList, 4, pylistSeg);
|
||||
return pyResultList;
|
||||
#endif//PYBULLET_USE_NUMPY
|
||||
|
||||
return pyResultList;
|
||||
}
|
||||
}
|
||||
|
||||
Py_INCREF(Py_None);
|
||||
return Py_None;
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
static PyObject* pybullet_computeViewMatrix(PyObject* self, PyObject* args, PyObject *keywds)
|
||||
{
|
||||
PyObject* camEyeObj = 0;
|
||||
PyObject* camTargetPositionObj = 0;
|
||||
PyObject* camUpVectorObj = 0;
|
||||
float camEye[3];
|
||||
float camTargetPosition[3];
|
||||
float camUpVector[3];
|
||||
|
||||
// set camera resolution, optionally view, projection matrix, light position
|
||||
static char *kwlist[] = { "cameraEyePosition", "cameraTargetPosition", "cameraUpVector",NULL };
|
||||
|
||||
if (!PyArg_ParseTupleAndKeywords(args, keywds, "OOO", kwlist, &camEyeObj, &camTargetPositionObj, &camUpVectorObj))
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (pybullet_internalSetVector(camEyeObj, camEye) &&
|
||||
pybullet_internalSetVector(camTargetPositionObj, camTargetPosition) &&
|
||||
pybullet_internalSetVector(camUpVectorObj, camUpVector))
|
||||
{
|
||||
float viewMatrix[16];
|
||||
PyObject* pyResultList=0;
|
||||
int i;
|
||||
b3ComputeViewMatrixFromPositions(camEye, camTargetPosition, camUpVector, viewMatrix);
|
||||
|
||||
pyResultList = PyTuple_New(16);
|
||||
for (i = 0; i < 16; i++)
|
||||
{
|
||||
PyObject* item = PyFloat_FromDouble(viewMatrix[i]);
|
||||
PyTuple_SetItem(pyResultList, i, item);
|
||||
}
|
||||
return pyResultList;
|
||||
}
|
||||
|
||||
PyErr_SetString(SpamError, "Error in computeViewMatrix.");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
///compute a view matrix, helper function for b3RequestCameraImageSetCameraMatrices
|
||||
static PyObject* pybullet_computeViewMatrixFromYawPitchRoll(PyObject* self, PyObject* args, PyObject *keywds)
|
||||
{
|
||||
PyObject* cameraTargetPositionObj = 0;
|
||||
float cameraTargetPosition[3];
|
||||
float distance, yaw, pitch, roll;
|
||||
int upAxisIndex;
|
||||
float viewMatrix[16];
|
||||
PyObject* pyResultList = 0;
|
||||
int i;
|
||||
|
||||
// set camera resolution, optionally view, projection matrix, light position
|
||||
static char *kwlist[] = { "cameraTargetPosition", "distance", "yaw", "pitch", "roll", "upAxisIndex" ,NULL };
|
||||
|
||||
if (!PyArg_ParseTupleAndKeywords(args, keywds, "Offffi", kwlist, &cameraTargetPositionObj, &distance,&yaw,&pitch,&roll, &upAxisIndex))
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (!pybullet_internalSetVector(cameraTargetPositionObj, cameraTargetPosition))
|
||||
{
|
||||
PyErr_SetString(SpamError, "Cannot convert cameraTargetPosition.");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
b3ComputeViewMatrixFromYawPitchRoll(cameraTargetPosition, distance, yaw, pitch, roll, upAxisIndex, viewMatrix);
|
||||
|
||||
pyResultList = PyTuple_New(16);
|
||||
for (i = 0; i < 16; i++)
|
||||
{
|
||||
PyObject* item = PyFloat_FromDouble(viewMatrix[i]);
|
||||
PyTuple_SetItem(pyResultList, i, item);
|
||||
}
|
||||
return pyResultList;
|
||||
|
||||
|
||||
}
|
||||
|
||||
///compute a projection matrix, helper function for b3RequestCameraImageSetCameraMatrices
|
||||
static PyObject* pybullet_computeProjectionMatrix(PyObject* self, PyObject* args, PyObject *keywds)
|
||||
{
|
||||
PyObject* pyResultList = 0;
|
||||
float left;
|
||||
float right;
|
||||
float bottom;
|
||||
float top;
|
||||
float nearVal;
|
||||
float farVal;
|
||||
float projectionMatrix[16];
|
||||
int i;
|
||||
|
||||
// set camera resolution, optionally view, projection matrix, light position
|
||||
static char *kwlist[] = { "left", "right", "bottom", "top", "nearVal", "farVal" ,NULL };
|
||||
|
||||
if (!PyArg_ParseTupleAndKeywords(args, keywds, "ffffff", kwlist, &left, &right, &bottom, &top, &nearVal, &farVal))
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
||||
b3ComputeProjectionMatrix(left, right, bottom, top, nearVal, farVal, projectionMatrix);
|
||||
|
||||
pyResultList = PyTuple_New(16);
|
||||
for (i = 0; i < 16; i++)
|
||||
{
|
||||
PyObject* item = PyFloat_FromDouble(projectionMatrix[i]);
|
||||
PyTuple_SetItem(pyResultList, i, item);
|
||||
}
|
||||
return pyResultList;
|
||||
|
||||
}
|
||||
|
||||
static PyObject* pybullet_computeProjectionMatrixFOV(PyObject* self, PyObject* args, PyObject *keywds)
|
||||
{
|
||||
float fov, aspect, nearVal, farVal;
|
||||
PyObject* pyResultList = 0;
|
||||
float projectionMatrix[16];
|
||||
int i;
|
||||
|
||||
static char *kwlist[] = { "fov","aspect","nearVal","farVal",NULL };
|
||||
|
||||
if (!PyArg_ParseTupleAndKeywords(args, keywds, "ffff", kwlist, &fov, &aspect, &nearVal, &farVal))
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
|
||||
b3ComputeProjectionMatrixFOV(fov, aspect, nearVal, farVal, projectionMatrix);
|
||||
|
||||
pyResultList = PyTuple_New(16);
|
||||
for (i = 0; i < 16; i++)
|
||||
{
|
||||
PyObject* item = PyFloat_FromDouble(projectionMatrix[i]);
|
||||
PyTuple_SetItem(pyResultList, i, item);
|
||||
}
|
||||
return pyResultList;
|
||||
|
||||
}
|
||||
|
||||
|
||||
// Render an image from the current timestep of the simulation
|
||||
//
|
||||
// Examples:
|
||||
@@ -2219,7 +2525,7 @@ static PyObject* pybullet_getContactPointData(PyObject* self, PyObject* args, Py
|
||||
// TODO(hellojas): fix image is cut off at head
|
||||
// TODO(hellojas): should we add check to give minimum image resolution
|
||||
// to see object based on camera position?
|
||||
static PyObject* pybullet_renderImage(PyObject* self, PyObject* args) {
|
||||
static PyObject* pybullet_renderImageObsolete(PyObject* self, PyObject* args) {
|
||||
/// request an image from a simulated camera, using a software renderer.
|
||||
struct b3CameraImageData imageData;
|
||||
PyObject* objViewMat, *objProjMat;
|
||||
@@ -2277,7 +2583,8 @@ static PyObject* pybullet_renderImage(PyObject* self, PyObject* args) {
|
||||
b3RequestCameraImageSetPixelResolution(command, width, height);
|
||||
if (pybullet_internalSetVector(objCameraPos, cameraPos) &&
|
||||
pybullet_internalSetVector(objTargetPos, targetPos) &&
|
||||
pybullet_internalSetVector(objCameraUp, cameraUp)) {
|
||||
pybullet_internalSetVector(objCameraUp, cameraUp))
|
||||
{
|
||||
b3RequestCameraImageSetViewMatrix(command, cameraPos, targetPos,
|
||||
cameraUp);
|
||||
} else {
|
||||
@@ -3020,15 +3327,35 @@ static PyMethodDef SpamMethods[] = {
|
||||
"[x,y,z] in Cartesian coordinates, flag to select TORQUE_IN_LINK_FRAME or "
|
||||
"TORQUE_IN_WORLD_FRAME coordinates"},
|
||||
|
||||
{"renderImage", pybullet_renderImage, METH_VARARGS,
|
||||
"Render an image (given the pixel resolution width, height, camera view "
|
||||
"matrix, projection matrix, near, and far values), and return the "
|
||||
"8-8-8bit RGB pixel data and floating point depth values"
|
||||
#ifdef PYBULLET_USE_NUMPY
|
||||
" as NumPy arrays"
|
||||
#endif
|
||||
{"renderImage", pybullet_renderImageObsolete, METH_VARARGS,
|
||||
"obsolete, please use getCameraImage and getViewProjectionMatrices instead"
|
||||
},
|
||||
|
||||
{ "getCameraImage",(PyCFunction)pybullet_getCameraImage, METH_VARARGS| METH_KEYWORDS,
|
||||
"Render an image (given the pixel resolution width, height, camera viewMatrix "
|
||||
", projectionMatrix and lightDirection), and return the "
|
||||
"8-8-8bit RGB pixel data and floating point depth values"
|
||||
#ifdef PYBULLET_USE_NUMPY
|
||||
" as NumPy arrays"
|
||||
#endif
|
||||
},
|
||||
|
||||
{ "computeViewMatrix", (PyCFunction)pybullet_computeViewMatrix, METH_VARARGS | METH_KEYWORDS,
|
||||
"Compute a camera viewmatrix from camera eye, target position and up vector "
|
||||
},
|
||||
|
||||
{ "computeViewMatrixFromYawPitchRoll",(PyCFunction)pybullet_computeViewMatrixFromYawPitchRoll, METH_VARARGS | METH_KEYWORDS,
|
||||
"Compute a camera viewmatrix from camera eye, target position and up vector "
|
||||
},
|
||||
|
||||
{ "computeProjectionMatrix", (PyCFunction)pybullet_computeProjectionMatrix, METH_VARARGS | METH_KEYWORDS,
|
||||
"Compute a camera projection matrix from screen left/right/bottom/top/near/far values"
|
||||
},
|
||||
|
||||
{ "computeProjectionMatrixFOV", (PyCFunction)pybullet_computeProjectionMatrixFOV, METH_VARARGS | METH_KEYWORDS,
|
||||
"Compute a camera projection matrix from fov, aspect ratio, near, far values"
|
||||
},
|
||||
|
||||
{"getContactPoints", (PyCFunction)pybullet_getContactPointData, METH_VARARGS | METH_KEYWORDS,
|
||||
"Return existing contact points after the stepSimulation command. "
|
||||
"Optional arguments one or two object unique "
|
||||
|
||||
Reference in New Issue
Block a user