added (and stripped) a simple C/C++ preprocessor (written in Lua), so the stringifier can handle the #include directive,

and embed the included files directly in the stringified files.
We need this, because we start sharing struct definitions and code between C/C++ and OpenCL (and potentially other languages)
preprocessor is from http://github.com/willsteel/lcpp
This commit is contained in:
erwincoumans
2013-08-01 21:05:19 -07:00
parent 34de49d8a4
commit 906415429c
33 changed files with 1339 additions and 55 deletions

View File

@@ -355,5 +355,4 @@ static const char* sapCL= \
" sum[i]=s;\n"
" sum2[i]=s*s; \n"
"}\n"
"\n"
;

View File

@@ -0,0 +1,305 @@
#if 0
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "b3ContactCache.h"
#include "Bullet3Common/b3Transform.h"
b3Scalar gContactBreakingThreshold = b3Scalar(0.02);
b3Scalar m_contactBreakingThreshold;
b3Scalar m_contactProcessingThreshold;
///gContactCalcArea3Points will approximate the convex hull area using 3 points
///when setting it to false, it will use 4 points to compute the area: it is more accurate but slower
bool gContactCalcArea3Points = true;
b3ContactCache::b3ContactCache()
:m_index1a(0)
{
}
#ifdef DEBUG_PERSISTENCY
#include <stdio.h>
void b3ContactCache::DebugPersistency()
{
int i;
printf("DebugPersistency : numPoints %d\n",m_cachedPoints);
for (i=0;i<m_cachedPoints;i++)
{
printf("m_pointCache[%d].m_userPersistentData = %x\n",i,m_pointCache[i].m_userPersistentData);
}
}
#endif //DEBUG_PERSISTENCY
void b3ContactCache::clearUserCache(btManifoldPoint& pt)
{
void* oldPtr = pt.m_userPersistentData;
if (oldPtr)
{
#ifdef DEBUG_PERSISTENCY
int i;
int occurance = 0;
for (i=0;i<m_cachedPoints;i++)
{
if (m_pointCache[i].m_userPersistentData == oldPtr)
{
occurance++;
if (occurance>1)
printf("error in clearUserCache\n");
}
}
btAssert(occurance<=0);
#endif //DEBUG_PERSISTENCY
if (pt.m_userPersistentData && gContactDestroyedCallback)
{
(*gContactDestroyedCallback)(pt.m_userPersistentData);
pt.m_userPersistentData = 0;
}
#ifdef DEBUG_PERSISTENCY
DebugPersistency();
#endif
}
}
static inline b3Scalar calcArea4Points(const btVector3 &p0,const btVector3 &p1,const btVector3 &p2,const btVector3 &p3)
{
// It calculates possible 3 area constructed from random 4 points and returns the biggest one.
btVector3 a[3],b[3];
a[0] = p0 - p1;
a[1] = p0 - p2;
a[2] = p0 - p3;
b[0] = p2 - p3;
b[1] = p1 - p3;
b[2] = p1 - p2;
//todo: Following 3 cross production can be easily optimized by SIMD.
btVector3 tmp0 = a[0].cross(b[0]);
btVector3 tmp1 = a[1].cross(b[1]);
btVector3 tmp2 = a[2].cross(b[2]);
return btMax(btMax(tmp0.length2(),tmp1.length2()),tmp2.length2());
}
int b3ContactCache::sortCachedPoints(const btManifoldPoint& pt)
{
//calculate 4 possible cases areas, and take biggest area
//also need to keep 'deepest'
int maxPenetrationIndex = -1;
#define KEEP_DEEPEST_POINT 1
#ifdef KEEP_DEEPEST_POINT
b3Scalar maxPenetration = pt.getDistance();
for (int i=0;i<4;i++)
{
if (m_pointCache[i].getDistance() < maxPenetration)
{
maxPenetrationIndex = i;
maxPenetration = m_pointCache[i].getDistance();
}
}
#endif //KEEP_DEEPEST_POINT
b3Scalar res0(b3Scalar(0.)),res1(b3Scalar(0.)),res2(b3Scalar(0.)),res3(b3Scalar(0.));
if (gContactCalcArea3Points)
{
if (maxPenetrationIndex != 0)
{
btVector3 a0 = pt.m_localPointA-m_pointCache[1].m_localPointA;
btVector3 b0 = m_pointCache[3].m_localPointA-m_pointCache[2].m_localPointA;
btVector3 cross = a0.cross(b0);
res0 = cross.length2();
}
if (maxPenetrationIndex != 1)
{
btVector3 a1 = pt.m_localPointA-m_pointCache[0].m_localPointA;
btVector3 b1 = m_pointCache[3].m_localPointA-m_pointCache[2].m_localPointA;
btVector3 cross = a1.cross(b1);
res1 = cross.length2();
}
if (maxPenetrationIndex != 2)
{
btVector3 a2 = pt.m_localPointA-m_pointCache[0].m_localPointA;
btVector3 b2 = m_pointCache[3].m_localPointA-m_pointCache[1].m_localPointA;
btVector3 cross = a2.cross(b2);
res2 = cross.length2();
}
if (maxPenetrationIndex != 3)
{
btVector3 a3 = pt.m_localPointA-m_pointCache[0].m_localPointA;
btVector3 b3 = m_pointCache[2].m_localPointA-m_pointCache[1].m_localPointA;
btVector3 cross = a3.cross(b3);
res3 = cross.length2();
}
}
else
{
if(maxPenetrationIndex != 0) {
res0 = calcArea4Points(pt.m_localPointA,m_pointCache[1].m_localPointA,m_pointCache[2].m_localPointA,m_pointCache[3].m_localPointA);
}
if(maxPenetrationIndex != 1) {
res1 = calcArea4Points(pt.m_localPointA,m_pointCache[0].m_localPointA,m_pointCache[2].m_localPointA,m_pointCache[3].m_localPointA);
}
if(maxPenetrationIndex != 2) {
res2 = calcArea4Points(pt.m_localPointA,m_pointCache[0].m_localPointA,m_pointCache[1].m_localPointA,m_pointCache[3].m_localPointA);
}
if(maxPenetrationIndex != 3) {
res3 = calcArea4Points(pt.m_localPointA,m_pointCache[0].m_localPointA,m_pointCache[1].m_localPointA,m_pointCache[2].m_localPointA);
}
}
btVector4 maxvec(res0,res1,res2,res3);
int biggestarea = maxvec.closestAxis4();
return biggestarea;
}
int b3ContactCache::getCacheEntry(const btManifoldPoint& newPoint) const
{
b3Scalar shortestDist = getContactBreakingThreshold() * getContactBreakingThreshold();
int size = getNumContacts();
int nearestPoint = -1;
for( int i = 0; i < size; i++ )
{
const btManifoldPoint &mp = m_pointCache[i];
btVector3 diffA = mp.m_localPointA- newPoint.m_localPointA;
const b3Scalar distToManiPoint = diffA.dot(diffA);
if( distToManiPoint < shortestDist )
{
shortestDist = distToManiPoint;
nearestPoint = i;
}
}
return nearestPoint;
}
int b3ContactCache::addManifoldPoint(const btManifoldPoint& newPoint, bool isPredictive)
{
if (!isPredictive)
{
btAssert(validContactDistance(newPoint));
}
int insertIndex = getNumContacts();
if (insertIndex == MANIFOLD_CACHE_SIZE)
{
#if MANIFOLD_CACHE_SIZE >= 4
//sort cache so best points come first, based on area
insertIndex = sortCachedPoints(newPoint);
#else
insertIndex = 0;
#endif
clearUserCache(m_pointCache[insertIndex]);
} else
{
m_cachedPoints++;
}
if (insertIndex<0)
insertIndex=0;
btAssert(m_pointCache[insertIndex].m_userPersistentData==0);
m_pointCache[insertIndex] = newPoint;
return insertIndex;
}
b3Scalar b3ContactCache::getContactBreakingThreshold() const
{
return m_contactBreakingThreshold;
}
void b3ContactCache::refreshContactPoints(const btTransform& trA,const btTransform& trB)
{
int i;
#ifdef DEBUG_PERSISTENCY
printf("refreshContactPoints posA = (%f,%f,%f) posB = (%f,%f,%f)\n",
trA.getOrigin().getX(),
trA.getOrigin().getY(),
trA.getOrigin().getZ(),
trB.getOrigin().getX(),
trB.getOrigin().getY(),
trB.getOrigin().getZ());
#endif //DEBUG_PERSISTENCY
/// first refresh worldspace positions and distance
for (i=getNumContacts()-1;i>=0;i--)
{
btManifoldPoint &manifoldPoint = m_pointCache[i];
manifoldPoint.m_positionWorldOnA = trA( manifoldPoint.m_localPointA );
manifoldPoint.m_positionWorldOnB = trB( manifoldPoint.m_localPointB );
manifoldPoint.m_distance1 = (manifoldPoint.m_positionWorldOnA - manifoldPoint.m_positionWorldOnB).dot(manifoldPoint.m_normalWorldOnB);
manifoldPoint.m_lifeTime++;
}
/// then
b3Scalar distance2d;
btVector3 projectedDifference,projectedPoint;
for (i=getNumContacts()-1;i>=0;i--)
{
btManifoldPoint &manifoldPoint = m_pointCache[i];
//contact becomes invalid when signed distance exceeds margin (projected on contactnormal direction)
if (!validContactDistance(manifoldPoint))
{
removeContactPoint(i);
} else
{
//contact also becomes invalid when relative movement orthogonal to normal exceeds margin
projectedPoint = manifoldPoint.m_positionWorldOnA - manifoldPoint.m_normalWorldOnB * manifoldPoint.m_distance1;
projectedDifference = manifoldPoint.m_positionWorldOnB - projectedPoint;
distance2d = projectedDifference.dot(projectedDifference);
if (distance2d > getContactBreakingThreshold()*getContactBreakingThreshold() )
{
removeContactPoint(i);
} else
{
//contact point processed callback
if (gContactProcessedCallback)
(*gContactProcessedCallback)(manifoldPoint,(void*)m_body0,(void*)m_body1);
}
}
}
#ifdef DEBUG_PERSISTENCY
DebugPersistency();
#endif //
}
#endif

View File

@@ -0,0 +1,216 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B3_CONTACT_CACHE_H
#define B3_CONTACT_CACHE_H
#include "LinearMath/btVector3.h"
#include "LinearMath/btTransform.h"
#include "btManifoldPoint.h"
class btCollisionObject;
#include "LinearMath/btAlignedAllocator.h"
struct btCollisionResult;
///maximum contact breaking and merging threshold
extern b3Scalar gContactBreakingThreshold;
//the enum starts at 1024 to avoid type conflicts with btTypedConstraint
enum btContactManifoldTypes
{
MIN_CONTACT_MANIFOLD_TYPE = 1024,
BT_PERSISTENT_MANIFOLD_TYPE
};
#define MANIFOLD_CACHE_SIZE 4
///b3ContactCache is a contact point cache, it stays persistent as long as objects are overlapping in the broadphase.
///Those contact points are created by the collision narrow phase.
///The cache can be empty, or hold 1,2,3 or 4 points. Some collision algorithms (GJK) might only add one point at a time.
///updates/refreshes old contact points, and throw them away if necessary (distance becomes too large)
///reduces the cache to 4 points, when more then 4 points are added, using following rules:
///the contact point with deepest penetration is always kept, and it tries to maximuze the area covered by the points
///note that some pairs of objects might have more then one contact manifold.
B3_ATTRIBUTE_ALIGNED16( class) b3ContactCache
{
/// sort cached points so most isolated points come first
int sortCachedPoints(const btManifoldPoint& pt);
int findContactPoint(const btManifoldPoint* unUsed, int numUnused,const btManifoldPoint& pt);
public:
BT_DECLARE_ALIGNED_ALLOCATOR();
int m_index1a;
b3ContactCache();
b3ContactCache(const btCollisionObject* body0,const btCollisionObject* body1,int , b3Scalar contactBreakingThreshold,b3Scalar contactProcessingThreshold)
: btTypedObject(BT_PERSISTENT_MANIFOLD_TYPE),
m_body0(body0),m_body1(body1),m_cachedPoints(0),
m_contactBreakingThreshold(contactBreakingThreshold),
m_contactProcessingThreshold(contactProcessingThreshold)
{
}
B3_FORCE_INLINE const btCollisionObject* getBody0() const { return m_body0;}
B3_FORCE_INLINE const btCollisionObject* getBody1() const { return m_body1;}
void setBodies(const btCollisionObject* body0,const btCollisionObject* body1)
{
m_body0 = body0;
m_body1 = body1;
}
void clearUserCache(btManifoldPoint& pt);
#ifdef DEBUG_PERSISTENCY
void DebugPersistency();
#endif //
B3_FORCE_INLINE int getNumContacts() const { return m_cachedPoints;}
/// the setNumContacts API is usually not used, except when you gather/fill all contacts manually
void setNumContacts(int cachedPoints)
{
m_cachedPoints = cachedPoints;
}
B3_FORCE_INLINE const btManifoldPoint& getContactPoint(int index) const
{
btAssert(index < m_cachedPoints);
return m_pointCache[index];
}
B3_FORCE_INLINE btManifoldPoint& getContactPoint(int index)
{
btAssert(index < m_cachedPoints);
return m_pointCache[index];
}
void setContactBreakingThreshold(b3Scalar contactBreakingThreshold)
{
m_contactBreakingThreshold = contactBreakingThreshold;
}
void setContactProcessingThreshold(b3Scalar contactProcessingThreshold)
{
m_contactProcessingThreshold = contactProcessingThreshold;
}
int getCacheEntry(const btManifoldPoint& newPoint) const;
int addManifoldPoint( const btManifoldPoint& newPoint, bool isPredictive=false);
void removeContactPoint (int index)
{
clearUserCache(m_pointCache[index]);
int lastUsedIndex = getNumContacts() - 1;
// m_pointCache[index] = m_pointCache[lastUsedIndex];
if(index != lastUsedIndex)
{
m_pointCache[index] = m_pointCache[lastUsedIndex];
//get rid of duplicated userPersistentData pointer
m_pointCache[lastUsedIndex].m_userPersistentData = 0;
m_pointCache[lastUsedIndex].m_appliedImpulse = 0.f;
m_pointCache[lastUsedIndex].m_lateralFrictionInitialized = false;
m_pointCache[lastUsedIndex].m_appliedImpulseLateral1 = 0.f;
m_pointCache[lastUsedIndex].m_appliedImpulseLateral2 = 0.f;
m_pointCache[lastUsedIndex].m_lifeTime = 0;
}
btAssert(m_pointCache[lastUsedIndex].m_userPersistentData==0);
m_cachedPoints--;
}
void replaceContactPoint(const btManifoldPoint& newPoint,int insertIndex)
{
btAssert(validContactDistance(newPoint));
#define MAINTAIN_PERSISTENCY 1
#ifdef MAINTAIN_PERSISTENCY
int lifeTime = m_pointCache[insertIndex].getLifeTime();
b3Scalar appliedImpulse = m_pointCache[insertIndex].m_appliedImpulse;
b3Scalar appliedLateralImpulse1 = m_pointCache[insertIndex].m_appliedImpulseLateral1;
b3Scalar appliedLateralImpulse2 = m_pointCache[insertIndex].m_appliedImpulseLateral2;
// bool isLateralFrictionInitialized = m_pointCache[insertIndex].m_lateralFrictionInitialized;
btAssert(lifeTime>=0);
void* cache = m_pointCache[insertIndex].m_userPersistentData;
m_pointCache[insertIndex] = newPoint;
m_pointCache[insertIndex].m_userPersistentData = cache;
m_pointCache[insertIndex].m_appliedImpulse = appliedImpulse;
m_pointCache[insertIndex].m_appliedImpulseLateral1 = appliedLateralImpulse1;
m_pointCache[insertIndex].m_appliedImpulseLateral2 = appliedLateralImpulse2;
m_pointCache[insertIndex].m_appliedImpulse = appliedImpulse;
m_pointCache[insertIndex].m_appliedImpulseLateral1 = appliedLateralImpulse1;
m_pointCache[insertIndex].m_appliedImpulseLateral2 = appliedLateralImpulse2;
m_pointCache[insertIndex].m_lifeTime = lifeTime;
#else
clearUserCache(m_pointCache[insertIndex]);
m_pointCache[insertIndex] = newPoint;
#endif
}
bool validContactDistance(const btManifoldPoint& pt) const
{
return pt.m_distance1 <= getContactBreakingThreshold();
}
/// calculated new worldspace coordinates and depth, and reject points that exceed the collision margin
void refreshContactPoints( const btTransform& trA,const btTransform& trB);
B3_FORCE_INLINE void clearManifold()
{
int i;
for (i=0;i<m_cachedPoints;i++)
{
clearUserCache(m_pointCache[i]);
}
m_cachedPoints = 0;
}
}
;
#endif //B3_CONTACT_CACHE_H

View File

@@ -1571,7 +1571,7 @@ int clipHullHullSingle(
#include "b3GjkEpa.h"
#include "b3VoronoiSimplexSolver.h"
int computeContactConvexConvex(
int computeContactConvexConvex( b3AlignedObjectArray<b3Int4>& pairs,
int pairIndex,
int bodyIndexA, int bodyIndexB,
int collidableIndexA, int collidableIndexB,
@@ -1610,6 +1610,8 @@ int computeContactConvexConvex(
int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;
int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;
int sz = sizeof(b3Contact4);
bool result2 = getClosestPoints(&gjkDetector, transA, transB,
convexShapes[shapeIndexA], convexShapes[shapeIndexB],
convexVertices,convexVertices,
@@ -1617,7 +1619,8 @@ int computeContactConvexConvex(
sepAxis2,
distance2,
resultPointOnB);
if (result2)
{
if (nGlobalContactsOut<maxContactCapacity)
@@ -1634,9 +1637,15 @@ int computeContactConvexConvex(
int numPoints = 1;
if (pairs[pairIndex].z>=0)
{
printf("add existing points?\n");
}
for (int p=0;p<numPoints;p++)
{
resultPointOnB.w = distance2;
contact.m_worldPos[p] = resultPointOnB;
contact.m_worldNormal = -sepAxis2;
@@ -1900,7 +1909,7 @@ void GpuSatCollision::computeConvexConvexContactsGPUSAT( b3OpenCLArray<b3Int4>*
hostCollidables[collidableIndexB].m_shapeType == SHAPE_CONVEX_HULL)
{
//printf("hostPairs[i].z=%d\n",hostPairs[i].z);
int contactIndex = computeContactConvexConvex(i,bodyIndexA,bodyIndexB,collidableIndexA,collidableIndexB,hostBodyBuf,
int contactIndex = computeContactConvexConvex(hostPairs,i,bodyIndexA,bodyIndexB,collidableIndexA,collidableIndexB,hostBodyBuf,
hostCollidables,hostConvexData,hostVertices,hostUniqueEdges,hostIndices,hostFaces,hostContacts,nContacts,maxContactCapacity,
oldHostContacts);

View File

@@ -229,7 +229,7 @@ bool getClosestPoints(b3GjkPairDetector* gjkDetector, const b3Transform& transA,
if (l2>B3_EPSILON*B3_EPSILON)
{
b3Vector3 testAxis = gjkDetector->m_cachedSeparatingAxis*(1./b3Sqrt(l2));
b3Vector3 testAxis = gjkDetector->m_cachedSeparatingAxis*(1.f/b3Sqrt(l2));
float computedDepth=1e30f;
if (!TestSepAxis(hullA,hullB,transA.getOrigin(),transA.getRotation(),
transB.getOrigin(),transB.getRotation(),testAxis,verticesA,verticesB,computedDepth))
@@ -362,7 +362,7 @@ bool getClosestPoints(b3GjkPairDetector* gjkDetector, const b3Transform& transA,
if (l2>B3_EPSILON*B3_EPSILON)
{
b3Vector3 testAxis = gjkDetector->m_cachedSeparatingAxis*(1./b3Sqrt(l2));
b3Vector3 testAxis = gjkDetector->m_cachedSeparatingAxis*(1.f/b3Sqrt(l2));
float computedDepth=1e30f;
if (!TestSepAxis(hullA,hullB,transA.getOrigin(),transA.getRotation(),
transB.getOrigin(),transB.getRotation(),testAxis,verticesA,verticesB,computedDepth))
@@ -576,7 +576,7 @@ bool getClosestPoints(b3GjkPairDetector* gjkDetector, const b3Transform& transA,
if (l2>B3_EPSILON*B3_EPSILON)
{
b3Vector3 testAxis = gjkDetector->m_cachedSeparatingAxis*(1./b3Sqrt(l2));
b3Vector3 testAxis = gjkDetector->m_cachedSeparatingAxis*(1.f/b3Sqrt(l2));
float computedDepth=1e30f;
if (!TestSepAxis(hullA,hullB,transA.getOrigin(),transA.getRotation(),
transB.getOrigin(),transB.getRotation(),testAxis,verticesA,verticesB,computedDepth))

View File

@@ -9,7 +9,7 @@
#include "Bullet3Common/b3Vector3.h"
#include "Bullet3Common/b3AlignedObjectArray.h"
struct b3Transform;
class b3Transform;
struct b3GjkEpaSolver2;
class b3VoronoiSimplexSolver;
struct b3ConvexPolyhedronCL;

View File

@@ -1,6 +1,5 @@
//this file is autogenerated using stringify.bat (premake --stringify) in the build folder of this project
static const char* satClipKernelsCL= \
"\n"
"#define TRIANGLE_NUM_CONVEX_FACES 5\n"
"\n"
"#define SHAPE_CONVEX_HULL 3\n"
@@ -47,15 +46,15 @@ static const char* satClipKernelsCL= \
"{\n"
" float4 m_worldPos[4];\n"
" float4 m_worldNormal; // w: m_nPoints\n"
"\n"
" u32 m_coeffs;\n"
" u32 m_batchIdx;\n"
"\n"
" int m_bodyAPtrAndSignBit;//x:m_bodyAPtr, y:m_bodyBPtr\n"
" int m_bodyBPtrAndSignBit;\n"
"\n"
" int m_childIndexA;\n"
" int m_childIndexB;\n"
" int m_unused1;\n"
" float m_unused1;\n"
" int m_unused2;\n"
"\n"
"} Contact4;\n"
@@ -678,10 +677,8 @@ static const char* satClipKernelsCL= \
"\n"
"#define PARALLEL_SUM(v, n) for(int j=1; j<n; j++) v[0] += v[j];\n"
"#define PARALLEL_DO(execution, n) for(int ie=0; ie<n; ie++){execution;}\n"
"#define REDUCE_MAX(v, n) {int i=0;"
"for(int offset=0; offset<n; offset++) v[i] = (v[i].y > v[i+offset].y)? v[i]: v[i+offset]; }\n"
"#define REDUCE_MIN(v, n) {int i=0;"
"for(int offset=0; offset<n; offset++) v[i] = (v[i].y < v[i+offset].y)? v[i]: v[i+offset]; }\n"
"#define REDUCE_MAX(v, n) {int i=0; for(int offset=0; offset<n; offset++) v[i] = (v[i].y > v[i+offset].y)? v[i]: v[i+offset]; }\n"
"#define REDUCE_MIN(v, n) {int i=0; for(int offset=0; offset<n; offset++) v[i] = (v[i].y < v[i+offset].y)? v[i]: v[i+offset]; }\n"
"\n"
"int extractManifoldSequentialGlobal(__global const float4* p, int nPoints, float4 nearNormal, int4* contactIdx)\n"
"{\n"
@@ -1947,4 +1944,5 @@ static const char* satClipKernelsCL= \
" \n"
"}\n"
"\n"
"\n"
;

View File

@@ -1316,5 +1316,4 @@ static const char* satKernelsCL= \
" concavePairs[pairIdx].w = -1;\n"
" }\n"
"}\n"
"\n"
;

View File

@@ -106,5 +106,4 @@ static const char* boundSearchKernelsCL= \
" }\n"
"}\n"
"\n"
"\n"
;

View File

@@ -107,5 +107,4 @@ static const char* fillKernelsCL= \
" }\n"
"}\n"
"\n"
"\n"
;

View File

@@ -154,5 +154,4 @@ static const char* prefixScanKernelsCL= \
" dst[cb.m_numBlocks] = sum;\n"
" }\n"
"}\n"
"\n"
;

View File

@@ -154,5 +154,4 @@ static const char* prefixScanKernelsFloat4CL= \
" dst[cb.m_numBlocks] = sum;\n"
" }\n"
"}\n"
"\n"
;

View File

@@ -1,6 +1,5 @@
//this file is autogenerated using stringify.bat (premake --stringify) in the build folder of this project
static const char* rayCastKernelCL= \
"\n"
"#define SHAPE_CONVEX_HULL 3\n"
"#define SHAPE_PLANE 4\n"
"#define SHAPE_CONCAVE_TRIMESH 5\n"
@@ -339,5 +338,4 @@ static const char* rayCastKernelCL= \
" }\n"
"\n"
"}\n"
"\n"
;

View File

@@ -570,4 +570,3 @@ void b3GpuRigidBodyPipeline::castRays(const b3AlignedObjectArray<b3RayInfo>& ray
m_data->m_narrowphase->getNumCollidablesGpu(), m_data->m_narrowphase->getCollidablesCpu(), m_data->m_narrowphase->getInternalData()
);
}

View File

@@ -352,5 +352,4 @@ static const char* batchingKernelsCL= \
"\n"
"\n"
"\n"
"\n"
;

View File

@@ -242,5 +242,4 @@ static const char* batchingKernelsNewCL= \
" \n"
" //return batchIdx;\n"
"}\n"
"\n"
;

View File

@@ -106,5 +106,4 @@ static const char* integrateKernelCL= \
" \n"
" }\n"
"}\n"
"\n"
;

View File

@@ -877,5 +877,4 @@ static const char* solveConstraintRowsCL= \
" }\n"
" }\n"
"}\n"
"\n"
;

View File

@@ -493,5 +493,4 @@ static const char* solveContactCL= \
" \n"
" \n"
"}\n"
"\n"
;

View File

@@ -515,5 +515,4 @@ static const char* solveFrictionCL= \
" \n"
" \n"
"}\n"
"\n"
;

View File

@@ -1,6 +1,5 @@
//this file is autogenerated using stringify.bat (premake --stringify) in the build folder of this project
static const char* solverSetupCL= \
"\n"
"/*\n"
"Copyright (c) 2012 Advanced Micro Devices, Inc. \n"
"\n"
@@ -666,5 +665,4 @@ static const char* solverSetupCL= \
"\n"
"\n"
"\n"
"\n"
;

View File

@@ -626,5 +626,4 @@ static const char* solverSetup2CL= \
"\n"
"\n"
"\n"
"\n"
;

View File

@@ -1,6 +1,5 @@
//this file is autogenerated using stringify.bat (premake --stringify) in the build folder of this project
static const char* updateAabbsKernelCL= \
"\n"
"#define SHAPE_CONVEX_HULL 3\n"
"\n"
"typedef float4 Quaternion;\n"
@@ -195,5 +194,4 @@ static const char* updateAabbsKernelCL= \
" }\n"
" } \n"
"}\n"
"\n"
;