Refactoring:

Moved optional code to Extras: AlgebraicCCD,EPA,quickstep
Moved SimpleBroadphase data to OverlappingPairCache, and derive both SimpleBroadphase and AxisSweep3 from OverlappingPairCache.
Added ParallelPhysicsEnvironment (prepair more parallel mainloop)
Upgraded hardcoded limit from 1024/8192 to 32766/65535 (max objects / max overlapping pairs)
This commit is contained in:
ejcoumans
2006-06-29 20:57:47 +00:00
parent 28a8afe528
commit 9105c3af5a
51 changed files with 7428 additions and 7107 deletions

560
Extras/EPA/Epa.cpp Normal file
View File

@@ -0,0 +1,560 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
EPA Copyright (c) Ricardo Padrela 2006
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "SimdScalar.h"
#include "SimdVector3.h"
#include "SimdPoint3.h"
#include "SimdTransform.h"
#include "SimdMinMax.h"
#include "CollisionShapes/ConvexShape.h"
#include <vector>
#include <list>
#include <algorithm>
#include "NarrowPhaseCollision/SimplexSolverInterface.h"
#include "NarrowPhaseCollision/EpaCommon.h"
#include "NarrowPhaseCollision/EpaVertex.h"
#include "NarrowPhaseCollision/EpaHalfEdge.h"
#include "NarrowPhaseCollision/EpaFace.h"
#include "NarrowPhaseCollision/EpaPolyhedron.h"
#include "NarrowPhaseCollision/Epa.h"
const SimdScalar EPA_MAX_RELATIVE_ERROR = 1e-2f;
const SimdScalar EPA_MAX_RELATIVE_ERROR_SQRD = EPA_MAX_RELATIVE_ERROR * EPA_MAX_RELATIVE_ERROR;
Epa::Epa( ConvexShape* pConvexShapeA, ConvexShape* pConvexShapeB,
const SimdTransform& transformA, const SimdTransform& transformB ) : m_pConvexShapeA( pConvexShapeA ),
m_pConvexShapeB( pConvexShapeB ),
m_transformA( transformA ),
m_transformB( transformB )
{
m_faceEntries.reserve( EPA_MAX_FACE_ENTRIES );
}
Epa::~Epa()
{
}
bool Epa::Initialize( SimplexSolverInterface& simplexSolver )
{
// Run GJK on the enlarged shapes to obtain a simplex of the enlarged CSO
SimdVector3 v( 1, 0, 0 );
SimdScalar squaredDistance = SIMD_INFINITY;
SimdScalar delta = 0.f;
simplexSolver.reset();
int nbIterations = 0;
while ( true )
{
assert( ( v.length2() > 0 ) && "Warning : v has zero magnitude!" );
SimdVector3 seperatingAxisInA = -v * m_transformA.getBasis();
SimdVector3 seperatingAxisInB = v * m_transformB.getBasis();
SimdVector3 pInA = m_pConvexShapeA->LocalGetSupportingVertex( seperatingAxisInA );
SimdVector3 qInB = m_pConvexShapeB->LocalGetSupportingVertex( seperatingAxisInB );
SimdPoint3 pWorld = m_transformA( pInA );
SimdPoint3 qWorld = m_transformB( qInB );
SimdVector3 w = pWorld - qWorld;
delta = v.dot( w );
assert( ( delta <= 0 ) && "Shapes are disjoint, EPA should have never been called!" );
assert( !simplexSolver.inSimplex( w ) && "Shapes are disjoint, EPA should have never been called!" );
// Add support point to simplex
simplexSolver.addVertex( w, pWorld, qWorld );
bool closestOk = simplexSolver.closest( v );
assert( closestOk && "Shapes are disjoint, EPA should have never been called!" );
SimdScalar prevVSqrd = squaredDistance;
squaredDistance = v.length2();
// Is v converging to v(A-B) ?
assert( ( ( prevVSqrd - squaredDistance ) > SIMD_EPSILON * prevVSqrd ) &&
"Shapes are disjoint, EPA should have never been called!" );
if ( simplexSolver.fullSimplex() || ( squaredDistance <= SIMD_EPSILON * simplexSolver.maxVertex() ) )
{
break;
}
++nbIterations;
}
SimdPoint3 simplexPoints[ 5 ];
SimdPoint3 wSupportPointsOnA[ 5 ];
SimdPoint3 wSupportPointsOnB[ 5 ];
int nbSimplexPoints = simplexSolver.getSimplex( wSupportPointsOnA, wSupportPointsOnB, simplexPoints );
// nbSimplexPoints can't be one because cases where the origin is on the boundary are handled
// by hybrid penetration depth
assert( ( ( nbSimplexPoints > 1 ) && ( nbSimplexPoints <= 4 ) ) &&
"Hybrid Penetration Depth algorithm failed!" );
int nbPolyhedronPoints = nbSimplexPoints;
#ifndef EPA_POLYHEDRON_USE_PLANES
int initTetraIndices[ 4 ] = { 0, 1, 2, 3 };
#endif
// Prepare initial polyhedron to start EPA from
if ( nbSimplexPoints == 1 )
{
return false;
}
else if ( nbSimplexPoints == 2 )
{
// We have a line segment inside the CSO that contains the origin
// Create an hexahedron ( two tetrahedron glued together ) by adding 3 new points
SimdVector3 d = simplexPoints[ 0 ] - simplexPoints[ 1 ];
d.normalize();
SimdVector3 v1;
SimdVector3 v2;
SimdVector3 v3;
SimdVector3 e1;
SimdScalar absx = abs( d.getX() );
SimdScalar absy = abs( d.getY() );
SimdScalar absz = abs( d.getZ() );
if ( absx < absy )
{
if ( absx < absz )
{
e1.setX( 1 );
}
else
{
e1.setZ( 1 );
}
}
else
{
if ( absy < absz )
{
e1.setY( 1 );
}
else
{
e1.setZ( 1 );
}
}
v1 = d.cross( e1 );
v1.normalize();
v2 = v1.rotate( d, 120 * SIMD_RADS_PER_DEG );
v3 = v2.rotate( d, 120 * SIMD_RADS_PER_DEG );
nbPolyhedronPoints = 5;
SimdVector3 seperatingAxisInA = v1 * m_transformA.getBasis();
SimdVector3 seperatingAxisInB = -v1 * m_transformB.getBasis();
SimdVector3 p = m_pConvexShapeA->LocalGetSupportingVertex( seperatingAxisInA );
SimdVector3 q = m_pConvexShapeB->LocalGetSupportingVertex( seperatingAxisInB );
SimdPoint3 pWorld = m_transformA( p );
SimdPoint3 qWorld = m_transformB( q );
wSupportPointsOnA[ 2 ] = pWorld;
wSupportPointsOnB[ 2 ] = qWorld;
simplexPoints[ 2 ] = wSupportPointsOnA[ 2 ] - wSupportPointsOnB[ 2 ];
seperatingAxisInA = v2 * m_transformA.getBasis();
seperatingAxisInB = -v2 * m_transformB.getBasis();
p = m_pConvexShapeA->LocalGetSupportingVertex( seperatingAxisInA );
q = m_pConvexShapeB->LocalGetSupportingVertex( seperatingAxisInB );
pWorld = m_transformA( p );
qWorld = m_transformB( q );
wSupportPointsOnA[ 3 ] = pWorld;
wSupportPointsOnB[ 3 ] = qWorld;
simplexPoints[ 3 ] = wSupportPointsOnA[ 3 ] - wSupportPointsOnB[ 3 ];
seperatingAxisInA = v3 * m_transformA.getBasis();
seperatingAxisInB = -v3 * m_transformB.getBasis();
p = m_pConvexShapeA->LocalGetSupportingVertex( seperatingAxisInA );
q = m_pConvexShapeB->LocalGetSupportingVertex( seperatingAxisInB );
pWorld = m_transformA( p );
qWorld = m_transformB( q );
wSupportPointsOnA[ 4 ] = pWorld;
wSupportPointsOnB[ 4 ] = qWorld;
simplexPoints[ 4 ] = wSupportPointsOnA[ 4 ] - wSupportPointsOnB[ 4 ];
#ifndef EPA_POLYHEDRON_USE_PLANES
if ( TetrahedronContainsOrigin( simplexPoints[ 0 ], simplexPoints[ 2 ], simplexPoints[ 3 ], simplexPoints[ 4 ] ) )
{
initTetraIndices[ 1 ] = 2;
initTetraIndices[ 2 ] = 3;
initTetraIndices[ 3 ] = 4;
}
else
{
if ( TetrahedronContainsOrigin( simplexPoints[ 1 ], simplexPoints[ 2 ], simplexPoints[ 3 ], simplexPoints[ 4 ] ) )
{
initTetraIndices[ 0 ] = 1;
initTetraIndices[ 1 ] = 2;
initTetraIndices[ 2 ] = 3;
initTetraIndices[ 3 ] = 4;
}
else
{
// No tetrahedron contains the origin
assert( false && "Unable to find an initial tetrahedron that contains the origin!" );
return false;
}
}
#endif
}
else if ( nbSimplexPoints == 3 )
{
// We have a triangle inside the CSO that contains the origin
// Create an hexahedron ( two tetrahedron glued together ) by adding 2 new points
SimdVector3 v0 = simplexPoints[ 2 ] - simplexPoints[ 0 ];
SimdVector3 v1 = simplexPoints[ 1 ] - simplexPoints[ 0 ];
SimdVector3 triangleNormal = v0.cross( v1 );
triangleNormal.normalize();
nbPolyhedronPoints = 5;
SimdVector3 seperatingAxisInA = triangleNormal * m_transformA.getBasis();
SimdVector3 seperatingAxisInB = -triangleNormal * m_transformB.getBasis();
SimdVector3 p = m_pConvexShapeA->LocalGetSupportingVertex( seperatingAxisInA );
SimdVector3 q = m_pConvexShapeB->LocalGetSupportingVertex( seperatingAxisInB );
SimdPoint3 pWorld = m_transformA( p );
SimdPoint3 qWorld = m_transformB( q );
wSupportPointsOnA[ 3 ] = pWorld;
wSupportPointsOnB[ 3 ] = qWorld;
simplexPoints[ 3 ] = wSupportPointsOnA[ 3 ] - wSupportPointsOnB[ 3 ];
#ifndef EPA_POLYHEDRON_USE_PLANES
// We place this check here because if the tetrahedron contains the origin
// there is no need to sample another support point
if ( !TetrahedronContainsOrigin( simplexPoints[ 0 ], simplexPoints[ 1 ], simplexPoints[ 2 ], simplexPoints[ 3 ] ) )
{
#endif
seperatingAxisInA = -triangleNormal * m_transformA.getBasis();
seperatingAxisInB = triangleNormal * m_transformB.getBasis();
p = m_pConvexShapeA->LocalGetSupportingVertex( seperatingAxisInA );
q = m_pConvexShapeB->LocalGetSupportingVertex( seperatingAxisInB );
pWorld = m_transformA( p );
qWorld = m_transformB( q );
wSupportPointsOnA[ 4 ] = pWorld;
wSupportPointsOnB[ 4 ] = qWorld;
simplexPoints[ 4 ] = wSupportPointsOnA[ 4 ] - wSupportPointsOnB[ 4 ];
#ifndef EPA_POLYHEDRON_USE_PLANES
if ( TetrahedronContainsOrigin( simplexPoints[ 0 ], simplexPoints[ 1 ], simplexPoints[ 2 ], simplexPoints[ 4 ] ) )
{
initTetraIndices[ 3 ] = 4;
}
else
{
// No tetrahedron contains the origin
assert( false && "Unable to find an initial tetrahedron that contains the origin!" );
return false;
}
}
#endif
}
#ifdef _DEBUG
else if ( nbSimplexPoints == 4 )
{
assert( TetrahedronContainsOrigin( simplexPoints ) && "Initial tetrahedron does not contain the origin!" );
}
#endif
#ifndef EPA_POLYHEDRON_USE_PLANES
SimdPoint3 wTetraPoints[ 4 ] = { simplexPoints[ initTetraIndices[ 0 ] ],
simplexPoints[ initTetraIndices[ 1 ] ],
simplexPoints[ initTetraIndices[ 2 ] ],
simplexPoints[ initTetraIndices[ 3 ] ] };
SimdPoint3 wTetraSupportPointsOnA[ 4 ] = { wSupportPointsOnA[ initTetraIndices[ 0 ] ],
wSupportPointsOnA[ initTetraIndices[ 1 ] ],
wSupportPointsOnA[ initTetraIndices[ 2 ] ],
wSupportPointsOnA[ initTetraIndices[ 3 ] ] };
SimdPoint3 wTetraSupportPointsOnB[ 4 ] = { wSupportPointsOnB[ initTetraIndices[ 0 ] ],
wSupportPointsOnB[ initTetraIndices[ 1 ] ],
wSupportPointsOnB[ initTetraIndices[ 2 ] ],
wSupportPointsOnB[ initTetraIndices[ 3 ] ] };
#endif
#ifdef EPA_POLYHEDRON_USE_PLANES
if ( !m_polyhedron.Create( simplexPoints, wSupportPointsOnA, wSupportPointsOnB, nbPolyhedronPoints ) )
#else
if ( !m_polyhedron.Create( wTetraPoints, wTetraSupportPointsOnA, wTetraSupportPointsOnB, 4 ) )
#endif
{
// Failed to create initial polyhedron
assert( false && "Failed to create initial polyhedron!" );
return false;
}
// Add initial faces to priority queue
#ifdef _DEBUG
//m_polyhedron._dbgSaveToFile( "epa_start.dbg" );
#endif
std::list< EpaFace* >& faces = m_polyhedron.GetFaces();
std::list< EpaFace* >::iterator facesItr( faces.begin() );
while ( facesItr != faces.end() )
{
EpaFace* pFace = *facesItr;
if ( !pFace->m_deleted )
{
//#ifdef EPA_POLYHEDRON_USE_PLANES
// if ( pFace->m_planeDistance >= 0 )
// {
// m_polyhedron._dbgSaveToFile( "epa_start.dbg" );
// assert( false && "Face's plane distance equal or greater than 0!" );
// }
//#endif
if ( pFace->IsAffinelyDependent() )
{
assert( false && "One initial face is affinely dependent!" );
return false;
}
if ( pFace->m_vSqrd <= 0 )
{
assert( false && "Face containing the origin!" );
return false;
}
if ( pFace->IsClosestPointInternal() )
{
m_faceEntries.push_back( pFace );
std::push_heap( m_faceEntries.begin(), m_faceEntries.end(), CompareEpaFaceEntries );
}
}
++facesItr;
}
#ifdef _DEBUG
//m_polyhedron._dbgSaveToFile( "epa_start.dbg" );
#endif
assert( !m_faceEntries.empty() && "No faces added to heap!" );
return true;
}
SimdScalar Epa::CalcPenDepth( SimdPoint3& wWitnessOnA, SimdPoint3& wWitnessOnB )
{
SimdVector3 v;
SimdScalar upperBoundSqrd = SIMD_INFINITY;
SimdScalar vSqrd = 0;
#ifdef _DEBUG
SimdScalar prevVSqrd;
#endif
SimdScalar delta;
bool isCloseEnough = false;
EpaFace* pEpaFace = NULL;
int nbIterations = 0;
//int nbMaxIterations = 1000;
do
{
pEpaFace = m_faceEntries.front();
std::pop_heap( m_faceEntries.begin(), m_faceEntries.end(), CompareEpaFaceEntries );
m_faceEntries.pop_back();
if ( !pEpaFace->m_deleted )
{
#ifdef _DEBUG
prevVSqrd = vSqrd;
#endif
vSqrd = pEpaFace->m_vSqrd;
if ( pEpaFace->m_planeDistance >= 0 )
{
v = pEpaFace->m_planeNormal;
}
else
{
v = pEpaFace->m_v;
}
#ifdef _DEBUG
//assert_msg( vSqrd <= upperBoundSqrd, "A triangle was falsely rejected!" );
assert( ( vSqrd >= prevVSqrd ) && "vSqrd decreased!" );
#endif //_DEBUG
assert( ( v.length2() > 0 ) && "Zero vector not allowed!" );
SimdVector3 seperatingAxisInA = v * m_transformA.getBasis();
SimdVector3 seperatingAxisInB = -v * m_transformB.getBasis();
SimdVector3 p = m_pConvexShapeA->LocalGetSupportingVertex( seperatingAxisInA );
SimdVector3 q = m_pConvexShapeB->LocalGetSupportingVertex( seperatingAxisInB );
SimdPoint3 pWorld = m_transformA( p );
SimdPoint3 qWorld = m_transformB( q );
SimdPoint3 w = pWorld - qWorld;
delta = v.dot( w );
// Keep tighest upper bound
upperBoundSqrd = SimdMin( upperBoundSqrd, delta * delta / vSqrd );
//assert_msg( vSqrd <= upperBoundSqrd, "A triangle was falsely rejected!" );
isCloseEnough = ( upperBoundSqrd <= ( 1 + 1e-4f ) * vSqrd );
if ( !isCloseEnough )
{
std::list< EpaFace* > newFaces;
bool expandOk = m_polyhedron.Expand( w, pWorld, qWorld, pEpaFace, newFaces );
if ( expandOk )
{
assert( !newFaces.empty() && "EPA polyhedron not expanding ?" );
bool check = true;
bool areEqual = false;
while ( !newFaces.empty() )
{
EpaFace* pNewFace = newFaces.front();
assert( !pNewFace->m_deleted && "New face is deleted!" );
if ( !pNewFace->m_deleted )
{
assert( ( pNewFace->m_vSqrd > 0 ) && "Face containing the origin!" );
assert( !pNewFace->IsAffinelyDependent() && "Face is affinely dependent!" );
//#ifdef EPA_POLYHEDRON_USE_PLANES
//// if ( pNewFace->m_planeDistance >= 0 )
//// {
// // assert( false && "Face's plane distance greater than 0!" );
//#ifdef _DEBUG
//// m_polyhedron._dbgSaveToFile( "epa_beforeFix.dbg" );
//#endif
// //pNewFace->FixOrder();
//#ifdef _DEBUG
// //m_polyhedron._dbgSaveToFile( "epa_afterFix.dbg" );
//#endif
//// }
//#endif
//
//#ifdef EPA_POLYHEDRON_USE_PLANES
// //assert( ( pNewFace->m_planeDistance < 0 ) && "Face's plane distance equal or greater than 0!" );
//#endif
if ( pNewFace->IsClosestPointInternal() && ( vSqrd <= pNewFace->m_vSqrd ) && ( pNewFace->m_vSqrd <= upperBoundSqrd ) )
{
m_faceEntries.push_back( pNewFace );
std::push_heap( m_faceEntries.begin(), m_faceEntries.end(), CompareEpaFaceEntries );
}
}
newFaces.pop_front();
}
}
else
{
pEpaFace->CalcClosestPointOnA( wWitnessOnA );
pEpaFace->CalcClosestPointOnB( wWitnessOnB );
#ifdef _DEBUG
//m_polyhedron._dbgSaveToFile( "epa_end.dbg" );
#endif
return v.length();
}
}
}
++nbIterations;
}
while ( ( m_polyhedron.GetNbFaces() < EPA_MAX_FACE_ENTRIES ) &&/*( nbIterations < nbMaxIterations ) &&*/
!isCloseEnough && ( m_faceEntries.size() > 0 ) && ( m_faceEntries[ 0 ]->m_vSqrd <= upperBoundSqrd ) );
#ifdef _DEBUG
//m_polyhedron._dbgSaveToFile( "epa_end.dbg" );
#endif
assert( pEpaFace && "Invalid epa face!" );
pEpaFace->CalcClosestPointOnA( wWitnessOnA );
pEpaFace->CalcClosestPointOnB( wWitnessOnB );
return v.length();
}
bool Epa::TetrahedronContainsOrigin( const SimdPoint3& point0, const SimdPoint3& point1,
const SimdPoint3& point2, const SimdPoint3& point3 )
{
SimdVector3 facesNormals[ 4 ] = { ( point1 - point0 ).cross( point2 - point0 ),
( point2 - point1 ).cross( point3 - point1 ),
( point3 - point2 ).cross( point0 - point2 ),
( point0 - point3 ).cross( point1 - point3 ) };
return ( ( facesNormals[ 0 ].dot( point0 ) > 0 ) != ( facesNormals[ 0 ].dot( point3 ) > 0 ) ) &&
( ( facesNormals[ 1 ].dot( point1 ) > 0 ) != ( facesNormals[ 1 ].dot( point0 ) > 0 ) ) &&
( ( facesNormals[ 2 ].dot( point2 ) > 0 ) != ( facesNormals[ 2 ].dot( point1 ) > 0 ) ) &&
( ( facesNormals[ 3 ].dot( point3 ) > 0 ) != ( facesNormals[ 3 ].dot( point2 ) > 0 ) );
}
bool Epa::TetrahedronContainsOrigin( SimdPoint3* pPoints )
{
return TetrahedronContainsOrigin( pPoints[ 0 ], pPoints[ 1 ], pPoints[ 2 ], pPoints[ 3 ] );
}
bool CompareEpaFaceEntries( EpaFace* pFaceA, EpaFace* pFaceB )
{
return ( pFaceA->m_vSqrd > pFaceB->m_vSqrd );
}

66
Extras/EPA/Epa.h Normal file
View File

@@ -0,0 +1,66 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
EPA Copyright (c) Ricardo Padrela 2006
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef EPA_H
#define EPA_H
#define EPA_MAX_FACE_ENTRIES 256
extern const SimdScalar EPA_MAX_RELATIVE_ERROR;
extern const SimdScalar EPA_MAX_RELATIVE_ERROR_SQRD;
class Epa
{
private :
//! Prevents copying objects from this class
Epa( const Epa& epa );
const Epa& operator = ( const Epa& epa );
public :
Epa( ConvexShape* pConvexShapeA, ConvexShape* pConvexShapeB,
const SimdTransform& transformA, const SimdTransform& transformB );
~Epa();
bool Initialize( SimplexSolverInterface& simplexSolver );
SimdScalar CalcPenDepth( SimdPoint3& wWitnessOnA, SimdPoint3& wWitnessOnB );
private :
bool TetrahedronContainsOrigin( SimdPoint3* pPoints );
bool TetrahedronContainsOrigin( const SimdPoint3& point0, const SimdPoint3& point1,
const SimdPoint3& point2, const SimdPoint3& point3 );
private :
//! Priority queue
std::vector< EpaFace* > m_faceEntries;
ConvexShape* m_pConvexShapeA;
ConvexShape* m_pConvexShapeB;
SimdTransform m_transformA;
SimdTransform m_transformB;
EpaPolyhedron m_polyhedron;
};
extern bool CompareEpaFaceEntries( EpaFace* pFaceA, EpaFace* pFaceB );
#endif

25
Extras/EPA/EpaCommon.h Normal file
View File

@@ -0,0 +1,25 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
EPA Copyright (c) Ricardo Padrela 2006
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef EPA_COMMON_H
#define EPA_COMMON_H
#define EPA_POLYHEDRON_USE_PLANES
//#define EPA_USE_HYBRID
#endif

254
Extras/EPA/EpaFace.cpp Normal file
View File

@@ -0,0 +1,254 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
EPA Copyright (c) Ricardo Padrela 2006
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "SimdScalar.h"
#include "SimdVector3.h"
#include "SimdPoint3.h"
#include "NarrowPhaseCollision/EpaCommon.h"
#include "NarrowPhaseCollision/EpaVertex.h"
#include "NarrowPhaseCollision/EpaHalfEdge.h"
#include "NarrowPhaseCollision/EpaFace.h"
#ifdef EPA_POLYHEDRON_USE_PLANES
SimdScalar PLANE_THICKNESS = 1e-5f;
#endif
EpaFace::EpaFace() : m_pHalfEdge( 0 ), m_deleted( false )
{
m_pVertices[ 0 ] = m_pVertices[ 1 ] = m_pVertices[ 2 ] = 0;
}
EpaFace::~EpaFace()
{
}
bool EpaFace::Initialize()
{
assert( m_pHalfEdge && "Must setup half-edge first!" );
CollectVertices( m_pVertices );
const SimdVector3 e0 = m_pVertices[ 1 ]->m_point - m_pVertices[ 0 ]->m_point;
const SimdVector3 e1 = m_pVertices[ 2 ]->m_point - m_pVertices[ 0 ]->m_point;
const SimdScalar e0Sqrd = e0.length2();
const SimdScalar e1Sqrd = e1.length2();
const SimdScalar e0e1 = e0.dot( e1 );
m_determinant = e0Sqrd * e1Sqrd - e0e1 * e0e1;
const SimdScalar e0v0 = e0.dot( m_pVertices[ 0 ]->m_point );
const SimdScalar e1v0 = e1.dot( m_pVertices[ 0 ]->m_point );
m_lambdas[ 0 ] = e0e1 * e1v0 - e1Sqrd * e0v0;
m_lambdas[ 1 ] = e0e1 * e0v0 - e0Sqrd * e1v0;
if ( IsAffinelyDependent() )
{
return false;
}
CalcClosestPoint();
#ifdef EPA_POLYHEDRON_USE_PLANES
if ( !CalculatePlane() )
{
return false;
}
#endif
return true;
}
#ifdef EPA_POLYHEDRON_USE_PLANES
bool EpaFace::CalculatePlane()
{
assert( ( m_pVertices[ 0 ] && m_pVertices[ 1 ] && m_pVertices[ 2 ] )
&& "Must setup vertices pointers first!" );
// Traditional method
const SimdVector3 v1 = m_pVertices[ 1 ]->m_point - m_pVertices[ 0 ]->m_point;
const SimdVector3 v2 = m_pVertices[ 2 ]->m_point - m_pVertices[ 0 ]->m_point;
m_planeNormal = v2.cross( v1 );
if ( m_planeNormal.length2() == 0 )
{
return false;
}
m_planeNormal.normalize();
m_planeDistance = m_pVertices[ 0 ]->m_point.dot( -m_planeNormal );
// Robust method
//SimdVector3 _v1 = m_pVertices[ 1 ]->m_point - m_pVertices[ 0 ]->m_point;
//SimdVector3 _v2 = m_pVertices[ 2 ]->m_point - m_pVertices[ 0 ]->m_point;
//SimdVector3 n;
//n = _v2.cross( _v1 );
//_v1 = m_pVertices[ 0 ]->m_point - m_pVertices[ 1 ]->m_point;
//_v2 = m_pVertices[ 2 ]->m_point - m_pVertices[ 1 ]->m_point;
//n += ( _v1.cross( _v2 ) );
//_v1 = m_pVertices[ 0 ]->m_point - m_pVertices[ 2 ]->m_point;
//_v2 = m_pVertices[ 1 ]->m_point - m_pVertices[ 2 ]->m_point;
//n += ( _v2.cross( _v1 ) );
//n /= 3;
//n.normalize();
//SimdVector3 c = ( m_pVertices[ 0 ]->m_point + m_pVertices[ 1 ]->m_point + m_pVertices[ 2 ]->m_point ) / 3;
//SimdScalar d = c.dot( -n );
//m_robustPlaneNormal = n;
//m_robustPlaneDistance = d;
// Compare results from both methods and check whether they disagree
//if ( d < 0 )
//{
// assert( ( m_planeDistance < 0 ) && "He he! Busted!" );
//}
//else
//{
// assert( ( m_planeDistance >= 0 ) && "He he! Busted!" );
//}
return true;
}
#endif
void EpaFace::CalcClosestPoint()
{
const SimdVector3 e0 = m_pVertices[ 1 ]->m_point - m_pVertices[ 0 ]->m_point;
const SimdVector3 e1 = m_pVertices[ 2 ]->m_point - m_pVertices[ 0 ]->m_point;
m_v = m_pVertices[ 0 ]->m_point +
( e0 * m_lambdas[ 0 ] + e1 * m_lambdas[ 1 ] ) / m_determinant;
m_vSqrd = m_v.length2();
}
void EpaFace::CalcClosestPointOnA( SimdVector3& closestPointOnA )
{
const SimdVector3 e0 = m_pVertices[ 1 ]->m_wSupportPointOnA - m_pVertices[ 0 ]->m_wSupportPointOnA;
const SimdVector3 e1 = m_pVertices[ 2 ]->m_wSupportPointOnA - m_pVertices[ 0 ]->m_wSupportPointOnA;
closestPointOnA = m_pVertices[ 0 ]->m_wSupportPointOnA +
( e0 * m_lambdas[ 0 ] + e1 * m_lambdas[ 1 ] ) /
m_determinant;
}
void EpaFace::CalcClosestPointOnB( SimdVector3& closestPointOnB )
{
const SimdVector3 e0 = m_pVertices[ 1 ]->m_wSupportPointOnB - m_pVertices[ 0 ]->m_wSupportPointOnB;
const SimdVector3 e1 = m_pVertices[ 2 ]->m_wSupportPointOnB - m_pVertices[ 0 ]->m_wSupportPointOnB;
closestPointOnB = m_pVertices[ 0 ]->m_wSupportPointOnB +
( e0 * m_lambdas[ 0 ] + e1 * m_lambdas[ 1 ] ) /
m_determinant;
}
bool EpaFace::IsAffinelyDependent() const
{
return ( m_determinant <= SIMD_EPSILON );
}
bool EpaFace::IsClosestPointInternal() const
{
return ( ( m_lambdas[ 0 ] >= 0 ) && ( m_lambdas[ 1 ] >= 0 ) && ( ( m_lambdas[ 0 ] + m_lambdas[ 1 ] <= m_determinant ) ) );
}
void EpaFace::CollectVertices( EpaVertex** ppVertices )
{
assert( m_pHalfEdge && "Invalid half-edge pointer!" );
int vertexIndex = 0;
EpaHalfEdge* pCurrentHalfEdge = m_pHalfEdge;
do
{
assert( ( ( vertexIndex >= 0 ) && ( vertexIndex < 3 ) ) &&
"Face is not a triangle!" );
assert( pCurrentHalfEdge->m_pVertex && "Half-edge has an invalid vertex pointer!" );
ppVertices[ vertexIndex++ ] = pCurrentHalfEdge->m_pVertex;
pCurrentHalfEdge = pCurrentHalfEdge->m_pNextCCW;
}
while( pCurrentHalfEdge != m_pHalfEdge );
}
//void EpaFace::FixOrder()
//{
// EpaHalfEdge* pHalfEdges[ 3 ];
//
// int halfEdgeIndex = 0;
//
// EpaHalfEdge* pCurrentHalfEdge = m_pHalfEdge;
//
// do
// {
// assert( ( ( halfEdgeIndex >= 0 ) && ( halfEdgeIndex < 3 ) ) &&
// "Face is not a triangle!" );
//
// pHalfEdges[ halfEdgeIndex++ ] = pCurrentHalfEdge;
//
// pCurrentHalfEdge = pCurrentHalfEdge->m_pNextCCW;
// }
// while( pCurrentHalfEdge != m_pHalfEdge );
//
// EpaVertex* pVertices[ 3 ] = { pHalfEdges[ 0 ]->m_pVertex,
// pHalfEdges[ 1 ]->m_pVertex,
// pHalfEdges[ 2 ]->m_pVertex };
//
// // Make them run in the opposite direction
// pHalfEdges[ 0 ]->m_pNextCCW = pHalfEdges[ 2 ];
// pHalfEdges[ 1 ]->m_pNextCCW = pHalfEdges[ 0 ];
// pHalfEdges[ 2 ]->m_pNextCCW = pHalfEdges[ 1 ];
//
// // Make half-edges point to their correct origin vertices
//
// pHalfEdges[ 1 ]->m_pVertex = pVertices[ 2 ];
// pHalfEdges[ 2 ]->m_pVertex = pVertices[ 0 ];
// pHalfEdges[ 0 ]->m_pVertex = pVertices[ 1 ];
//
// // Make vertices point to the correct half-edges
//
// //pHalfEdges[ 0 ]->m_pVertex->m_pHalfEdge = pHalfEdges[ 0 ];
// //pHalfEdges[ 1 ]->m_pVertex->m_pHalfEdge = pHalfEdges[ 1 ];
// //pHalfEdges[ 2 ]->m_pVertex->m_pHalfEdge = pHalfEdges[ 2 ];
//
// // Flip normal and change the sign of plane distance
//
//#ifdef EPA_POLYHEDRON_USE_PLANES
// m_planeNormal = -m_planeNormal;
// m_planeDistance = -m_planeDistance;
//#endif
//}

83
Extras/EPA/EpaFace.h Normal file
View File

@@ -0,0 +1,83 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
EPA Copyright (c) Ricardo Padrela 2006
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef EPA_FACE_H
#define EPA_FACE_H
class EpaVertex;
class EpaHalfEdge;
#ifdef EPA_POLYHEDRON_USE_PLANES
extern SimdScalar PLANE_THICKNESS;
#endif
//! Note : This class is not supposed to be a base class
class EpaFace
{
private :
//! Prevents copying objects from this class
EpaFace( const EpaFace& epaFace );
const EpaFace& operator = ( const EpaFace& epaFace );
public :
EpaFace();
~EpaFace();
bool Initialize();
#ifdef EPA_POLYHEDRON_USE_PLANES
bool CalculatePlane();
#endif
void CalcClosestPoint();
void CalcClosestPointOnA( SimdVector3& closestPointOnA );
void CalcClosestPointOnB( SimdVector3& closestPointOnB );
bool IsAffinelyDependent() const;
bool IsClosestPointInternal() const;
void CollectVertices( EpaVertex** ppVertices );
//void FixOrder();
public :
EpaHalfEdge* m_pHalfEdge;
// We keep vertices here so we don't need to call CollectVertices
// every time we need them
EpaVertex* m_pVertices[ 3 ];
#ifdef EPA_POLYHEDRON_USE_PLANES
SimdVector3 m_planeNormal;
SimdScalar m_planeDistance;
//SimdVector3 m_robustPlaneNormal;
//SimdScalar m_robustPlaneDistance;
#endif
SimdVector3 m_v;
SimdScalar m_vSqrd;
SimdScalar m_determinant;
SimdScalar m_lambdas[ 2 ];
bool m_deleted;
};
#endif

58
Extras/EPA/EpaHalfEdge.h Normal file
View File

@@ -0,0 +1,58 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
EPA Copyright (c) Ricardo Padrela 2006
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef EPA_HALF_EDGE_H
#define EPA_HALF_EDGE_H
class EpaFace;
class EpaVertex;
//! Note : This class is not supposed to be a base class
class EpaHalfEdge
{
private :
//! Prevents copying objects from this class
EpaHalfEdge( const EpaHalfEdge& epaHalfEdge );
const EpaHalfEdge& operator = ( const EpaHalfEdge& epaHalfEdge );
public :
EpaHalfEdge() : m_pTwin( 0 ), m_pNextCCW( 0 ), m_pFace( 0 ), m_pVertex( 0 )
{
}
~EpaHalfEdge()
{
}
public :
//! Twin half-edge link
EpaHalfEdge* m_pTwin;
//! Next half-edge in counter clock-wise ( CCW ) order
EpaHalfEdge* m_pNextCCW;
//! Parent face link
EpaFace* m_pFace;
//! Origin vertex link
EpaVertex* m_pVertex;
};
#endif

View File

@@ -0,0 +1,202 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
EPA Copyright (c) Ricardo Padrela 2006
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "SimdScalar.h"
#include "SimdVector3.h"
#include "SimdPoint3.h"
#include "SimdTransform.h"
#include "SimdMinMax.h"
#include <list>
#include "CollisionShapes/ConvexShape.h"
#include "NarrowPhaseCollision/SimplexSolverInterface.h"
#include "NarrowPhaseCollision/EpaCommon.h"
#include "NarrowPhaseCollision/EpaVertex.h"
#include "NarrowPhaseCollision/EpaHalfEdge.h"
#include "NarrowPhaseCollision/EpaFace.h"
#include "NarrowPhaseCollision/EpaPolyhedron.h"
#include "NarrowPhaseCollision/Epa.h"
#include "NarrowPhaseCollision/ConvexPenetrationDepthSolver.h"
#include "NarrowPhaseCollision/EpaPenetrationDepthSolver.h"
SimdScalar g_GJKMaxRelError = 1e-3f;
SimdScalar g_GJKMaxRelErrorSqrd = g_GJKMaxRelError * g_GJKMaxRelError;
bool EpaPenetrationDepthSolver::CalcPenDepth( SimplexSolverInterface& simplexSolver,
ConvexShape* pConvexA, ConvexShape* pConvexB,
const SimdTransform& transformA, const SimdTransform& transformB,
SimdVector3& v, SimdPoint3& wWitnessOnA, SimdPoint3& wWitnessOnB,
class IDebugDraw* debugDraw )
{
assert( pConvexA && "Convex shape A is invalid!" );
assert( pConvexB && "Convex shape B is invalid!" );
SimdScalar penDepth;
#ifdef EPA_USE_HYBRID
bool needsEPA = !HybridPenDepth( simplexSolver, pConvexA, pConvexB, transformA, transformB,
wWitnessOnA, wWitnessOnB, penDepth, v );
if ( needsEPA )
{
#endif
penDepth = EpaPenDepth( simplexSolver, pConvexA, pConvexB,
transformA, transformB,
wWitnessOnA, wWitnessOnB );
assert( ( penDepth > 0 ) && "EPA or Hybrid Technique failed to calculate penetration depth!" );
#ifdef EPA_USE_HYBRID
}
#endif
return ( penDepth > 0 );
}
#ifdef EPA_USE_HYBRID
bool EpaPenetrationDepthSolver::HybridPenDepth( SimplexSolverInterface& simplexSolver,
ConvexShape* pConvexA, ConvexShape* pConvexB,
const SimdTransform& transformA, const SimdTransform& transformB,
SimdPoint3& wWitnessOnA, SimdPoint3& wWitnessOnB,
SimdScalar& penDepth, SimdVector3& v )
{
SimdScalar squaredDistance = SIMD_INFINITY;
SimdScalar delta = 0.f;
const SimdScalar margin = pConvexA->GetMargin() + pConvexB->GetMargin();
const SimdScalar marginSqrd = margin * margin;
simplexSolver.reset();
int nbIterations = 0;
while ( true )
{
assert( ( v.length2() > 0 ) && "Warning: v is the zero vector!" );
SimdVector3 seperatingAxisInA = -v * transformA.getBasis();
SimdVector3 seperatingAxisInB = v * transformB.getBasis();
SimdVector3 pInA = pConvexA->LocalGetSupportingVertexWithoutMargin( seperatingAxisInA );
SimdVector3 qInB = pConvexB->LocalGetSupportingVertexWithoutMargin( seperatingAxisInB );
SimdPoint3 pWorld = transformA( pInA );
SimdPoint3 qWorld = transformB( qInB );
SimdVector3 w = pWorld - qWorld;
delta = v.dot( w );
// potential exit, they don't overlap
if ( ( delta > 0 ) && ( ( delta * delta / squaredDistance ) > marginSqrd ) )
{
// Convex shapes do not overlap
// Returning true means that Hybrid's result is ok and there's no need to run EPA
penDepth = 0;
return true;
}
//exit 0: the new point is already in the simplex, or we didn't come any closer
if ( ( squaredDistance - delta <= squaredDistance * g_GJKMaxRelErrorSqrd ) || simplexSolver.inSimplex( w ) )
{
simplexSolver.compute_points( wWitnessOnA, wWitnessOnB );
assert( ( squaredDistance > 0 ) && "squaredDistance is zero!" );
SimdScalar vLength = sqrt( squaredDistance );
wWitnessOnA -= v * ( pConvexA->GetMargin() / vLength );
wWitnessOnB += v * ( pConvexB->GetMargin() / vLength );
penDepth = pConvexA->GetMargin() + pConvexB->GetMargin() - vLength;
// Returning true means that Hybrid's result is ok and there's no need to run EPA
return true;
}
//add current vertex to simplex
simplexSolver.addVertex( w, pWorld, qWorld );
//calculate the closest point to the origin (update vector v)
if ( !simplexSolver.closest( v ) )
{
simplexSolver.compute_points( wWitnessOnA, wWitnessOnB );
assert( ( squaredDistance > 0 ) && "squaredDistance is zero!" );
SimdScalar vLength = sqrt( squaredDistance );
wWitnessOnA -= v * ( pConvexA->GetMargin() / vLength );
wWitnessOnB += v * ( pConvexB->GetMargin() / vLength );
penDepth = pConvexA->GetMargin() + pConvexB->GetMargin() - vLength;
// Returning true means that Hybrid's result is ok and there's no need to run EPA
return true;
}
SimdScalar previousSquaredDistance = squaredDistance;
squaredDistance = v.length2();
//are we getting any closer ?
if ( previousSquaredDistance - squaredDistance <= SIMD_EPSILON * previousSquaredDistance )
{
simplexSolver.backup_closest( v );
squaredDistance = v.length2();
simplexSolver.compute_points( wWitnessOnA, wWitnessOnB );
assert( ( squaredDistance > 0 ) && "squaredDistance is zero!" );
SimdScalar vLength = sqrt( squaredDistance );
wWitnessOnA -= v * ( pConvexA->GetMargin() / vLength );
wWitnessOnB += v * ( pConvexB->GetMargin() / vLength );
penDepth = pConvexA->GetMargin() + pConvexB->GetMargin() - vLength;
// Returning true means that Hybrid's result is ok and there's no need to run EPA
return true;
}
if ( simplexSolver.fullSimplex() || ( squaredDistance <= SIMD_EPSILON * simplexSolver.maxVertex() ) )
{
// Convex Shapes intersect - we need to run EPA
// Returning false means that Hybrid couldn't do anything for us
// and that we need to run EPA to calculate the pen depth
return false;
}
++nbIterations;
}
}
#endif
SimdScalar EpaPenetrationDepthSolver::EpaPenDepth( SimplexSolverInterface& simplexSolver,
ConvexShape* pConvexA, ConvexShape* pConvexB,
const SimdTransform& transformA, const SimdTransform& transformB,
SimdPoint3& wWitnessOnA, SimdPoint3& wWitnessOnB )
{
Epa epa( pConvexA, pConvexB, transformA, transformB );
if ( !epa.Initialize( simplexSolver ) )
{
assert( false && "Epa failed to initialize!" );
return 0;
}
return epa.CalcPenDepth( wWitnessOnA, wWitnessOnB );
}

View File

@@ -0,0 +1,56 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
EPA Copyright (c) Ricardo Padrela 2006
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef EPA_PENETRATION_DEPTH_H
#define EPA_PENETRATION_DEPTH_H
/**
* EpaPenetrationDepthSolver uses the Expanding Polytope Algorithm to
* calculate the penetration depth between two convex shapes.
*/
extern SimdScalar g_GJKMaxRelError;
extern SimdScalar g_GJKMaxRelErrorSqrd;
//! Note : This class is not supposed to be a base class
class EpaPenetrationDepthSolver : public ConvexPenetrationDepthSolver
{
public :
bool CalcPenDepth( SimplexSolverInterface& simplexSolver,
ConvexShape* pConvexA, ConvexShape* pConvexB,
const SimdTransform& transformA, const SimdTransform& transformB,
SimdVector3& v, SimdPoint3& wWitnessOnA, SimdPoint3& wWitnessOnB,
class IDebugDraw* debugDraw );
private :
#ifdef EPA_USE_HYBRID
bool HybridPenDepth( SimplexSolverInterface& simplexSolver,
ConvexShape* pConvexA, ConvexShape* pConvexB,
const SimdTransform& transformA, const SimdTransform& transformB,
SimdPoint3& wWitnessOnA, SimdPoint3& wWitnessOnB,
SimdScalar& penDepth, SimdVector3& v );
#endif
SimdScalar EpaPenDepth( SimplexSolverInterface& simplexSolver,
ConvexShape* pConvexA, ConvexShape* pConvexB,
const SimdTransform& transformA, const SimdTransform& transformB,
SimdPoint3& wWitnessOnA, SimdPoint3& wWitnessOnB );
};
#endif // EPA_PENETRATION_DEPTH_H

1014
Extras/EPA/EpaPolyhedron.cpp Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,89 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
EPA Copyright (c) Ricardo Padrela 2006
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef EPA_POLYHEDRON_H
#define EPA_POLYHEDRON_H
class EpaFace;
class EpaVertex;
//! Note : This class is not supposed to be a base class
class EpaPolyhedron
{
private :
//! Prevents copying objects from this class
EpaPolyhedron( const EpaPolyhedron& epaPolyhedron );
const EpaPolyhedron& operator = ( const EpaPolyhedron& epaPolyhedron );
public :
EpaPolyhedron();
~EpaPolyhedron();
bool Create( SimdPoint3* pInitialPoints,
SimdPoint3* pSupportPointsOnA, SimdPoint3* pSupportPointsOnB,
const int nbInitialPoints );
void Destroy();
EpaFace* CreateFace();
EpaHalfEdge* CreateHalfEdge();
EpaVertex* CreateVertex( const SimdPoint3& wSupportPoint,
const SimdPoint3& wSupportPointOnA,
const SimdPoint3& wSupportPointOnB );
void DeleteFace( EpaFace* pFace );
void DestroyAllFaces();
void DestroyAllHalfEdges();
void DestroyAllVertices();
bool Expand( const SimdPoint3& wSupportPoint,
const SimdPoint3& wSupportPointOnA,
const SimdPoint3& wSupportPointOnB,
EpaFace* pFace, std::list< EpaFace* >& newFaces );
std::list< EpaFace* >& GetFaces();
int GetNbFaces() const;
private :
void DeleteVisibleFaces( const SimdPoint3& point, EpaFace* pFace,
std::list< EpaHalfEdge* >& coneBaseTwinHalfEdges );
void CreateCone( EpaVertex* pAppexVertex, std::list< EpaHalfEdge* >& baseTwinHalfEdges,
std::list< EpaFace* >& newFaces );
EpaFace* CreateConeFace( EpaVertex* pAppexVertex, EpaHalfEdge* pBaseTwinHalfEdge,
std::list< EpaHalfEdge* >& halfEdgesToLink );
#ifdef _DEBUG
public :
//! Please don't remove this method, it will help debugging if some problems arise in the future
bool _dbgSaveToFile( const char* pFileName );
#endif
private :
//! This is the number of valid faces, m_faces list also contain deleted faces
int m_nbFaces;
std::list< EpaFace* > m_faces;
std::list< EpaHalfEdge* > m_halfEdges;
std::list< EpaVertex* > m_vertices;
};
#endif

61
Extras/EPA/EpaVertex.h Normal file
View File

@@ -0,0 +1,61 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
EPA Copyright (c) Ricardo Padrela 2006
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef EPA_VERTEX_H
#define EPA_VERTEX_H
class EpaHalfEdge;
//! Note : This class is not supposed to be a base class
class EpaVertex
{
private :
//! Prevents copying objects from this class
EpaVertex( const EpaVertex& epaVertex );
const EpaVertex& operator = ( const EpaVertex& epaVertex );
public :
EpaVertex( const SimdPoint3& point ) : /*m_pHalfEdge( 0 ),*/ m_point( point )
{
}
EpaVertex( const SimdPoint3& point,
const SimdPoint3& wSupportPointOnA,
const SimdPoint3& wSupportPointOnB ) : /*m_pHalfEdge( 0 ),*/ m_point( point ),
m_wSupportPointOnA( wSupportPointOnA ),
m_wSupportPointOnB( wSupportPointOnB )
{
}
~EpaVertex()
{
}
public :
//! This is not necessary
//EpaHalfEdge* m_pHalfEdge;
SimdPoint3 m_point;
SimdPoint3 m_wSupportPointOnA;
SimdPoint3 m_wSupportPointOnB;
};
#endif