added a policy trained by DDPG
This commit is contained in:
109
examples/pybullet/gym/envs/bullet/minitaurGymEnv.py
Normal file
109
examples/pybullet/gym/envs/bullet/minitaurGymEnv.py
Normal file
@@ -0,0 +1,109 @@
|
||||
import math
|
||||
import gym
|
||||
from gym import spaces
|
||||
from gym.utils import seeding
|
||||
import numpy as np
|
||||
import time
|
||||
import pybullet as p
|
||||
import minitaur_new
|
||||
|
||||
class MinitaurGymEnv(gym.Env):
|
||||
metadata = {
|
||||
'render.modes': ['human', 'rgb_array'],
|
||||
'video.frames_per_second' : 50
|
||||
}
|
||||
|
||||
def __init__(self,
|
||||
urdfRoot="",
|
||||
actionRepeat=1,
|
||||
render=False):
|
||||
self._timeStep = 0.01
|
||||
self._urdfRoot = urdfRoot
|
||||
self._actionRepeat = actionRepeat
|
||||
self._observation = []
|
||||
self._envStepCounter = 0
|
||||
self._render = render
|
||||
self._lastBasePosition = [0, 0, 0]
|
||||
if self._render:
|
||||
p.connect(p.GUI)
|
||||
else:
|
||||
p.connect(p.DIRECT)
|
||||
self._seed()
|
||||
self.reset()
|
||||
observationDim = self._minitaur.getObservationDimension()
|
||||
observation_high = np.array([np.finfo(np.float32).max] * observationDim)
|
||||
actionDim = 8
|
||||
action_high = np.array([1] * actionDim)
|
||||
self.action_space = spaces.Box(-action_high, action_high)
|
||||
self.observation_space = spaces.Box(-observation_high, observation_high)
|
||||
self.viewer = None
|
||||
|
||||
def _reset(self):
|
||||
p.resetSimulation()
|
||||
p.setPhysicsEngineParameter(numSolverIterations=300)
|
||||
p.setTimeStep(self._timeStep)
|
||||
p.loadURDF("%splane.urdf" % self._urdfRoot)
|
||||
p.setGravity(0,0,-10)
|
||||
self._minitaur = minitaur_new.Minitaur(self._urdfRoot)
|
||||
self._envStepCounter = 0
|
||||
self._lastBasePosition = [0, 0, 0]
|
||||
for i in range(100):
|
||||
p.stepSimulation()
|
||||
self._observation = self._minitaur.getObservation()
|
||||
return self._observation
|
||||
|
||||
def __del__(self):
|
||||
p.disconnect()
|
||||
|
||||
def _seed(self, seed=None):
|
||||
self.np_random, seed = seeding.np_random(seed)
|
||||
return [seed]
|
||||
|
||||
def _step(self, action):
|
||||
if (self._render):
|
||||
basePos = self._minitaur.getBasePosition()
|
||||
p.resetDebugVisualizerCamera(1, 30, 40, basePos)
|
||||
|
||||
if len(action) != self._minitaur.getActionDimension():
|
||||
raise ValueError("We expect {} continuous action not {}.".format(self._minitaur.getActionDimension(), len(action)))
|
||||
|
||||
for i in range(len(action)):
|
||||
if not -1.01 <= action[i] <= 1.01:
|
||||
raise ValueError("{}th action should be between -1 and 1 not {}.".format(i, action[i]))
|
||||
|
||||
realAction = self._minitaur.convertFromLegModel(action)
|
||||
self._minitaur.applyAction(realAction)
|
||||
for i in range(self._actionRepeat):
|
||||
p.stepSimulation()
|
||||
if self._render:
|
||||
time.sleep(self._timeStep)
|
||||
self._observation = self._minitaur.getObservation()
|
||||
if self._termination():
|
||||
break
|
||||
self._envStepCounter += 1
|
||||
reward = self._reward()
|
||||
done = self._termination()
|
||||
return np.array(self._observation), reward, done, {}
|
||||
|
||||
def _render(self, mode='human', close=False):
|
||||
return
|
||||
|
||||
def is_fallen(self):
|
||||
orientation = self._minitaur.getBaseOrientation()
|
||||
rotMat = p.getMatrixFromQuaternion(orientation)
|
||||
localUp = rotMat[6:]
|
||||
return np.dot(np.asarray([0, 0, 1]), np.asarray(localUp)) < 0 or self._observation[-1] < 0.1
|
||||
|
||||
def _termination(self):
|
||||
return self.is_fallen()
|
||||
|
||||
def _reward(self):
|
||||
currentBasePosition = self._minitaur.getBasePosition()
|
||||
forward_reward = currentBasePosition[0] - self._lastBasePosition[0]
|
||||
self._lastBasePosition = currentBasePosition
|
||||
|
||||
energyWeight = 0.001
|
||||
energy = np.abs(np.dot(self._minitaur.getMotorTorques(), self._minitaur.getMotorVelocities())) * self._timeStep
|
||||
energy_reward = energyWeight * energy
|
||||
reward = forward_reward - energy_reward
|
||||
return reward
|
||||
166
examples/pybullet/gym/envs/bullet/minitaur_new.py
Normal file
166
examples/pybullet/gym/envs/bullet/minitaur_new.py
Normal file
@@ -0,0 +1,166 @@
|
||||
import pybullet as p
|
||||
import numpy as np
|
||||
import copy
|
||||
import math
|
||||
|
||||
class Minitaur:
|
||||
def __init__(self, urdfRootPath=''):
|
||||
self.urdfRootPath = urdfRootPath
|
||||
self.reset()
|
||||
|
||||
def buildJointNameToIdDict(self):
|
||||
nJoints = p.getNumJoints(self.quadruped)
|
||||
self.jointNameToId = {}
|
||||
for i in range(nJoints):
|
||||
jointInfo = p.getJointInfo(self.quadruped, i)
|
||||
self.jointNameToId[jointInfo[1].decode('UTF-8')] = jointInfo[0]
|
||||
self.resetPose()
|
||||
|
||||
def buildMotorIdList(self):
|
||||
self.motorIdList.append(self.jointNameToId['motor_front_leftL_joint'])
|
||||
self.motorIdList.append(self.jointNameToId['motor_front_leftR_joint'])
|
||||
self.motorIdList.append(self.jointNameToId['motor_back_leftL_joint'])
|
||||
self.motorIdList.append(self.jointNameToId['motor_back_leftR_joint'])
|
||||
self.motorIdList.append(self.jointNameToId['motor_front_rightL_joint'])
|
||||
self.motorIdList.append(self.jointNameToId['motor_front_rightR_joint'])
|
||||
self.motorIdList.append(self.jointNameToId['motor_back_rightL_joint'])
|
||||
self.motorIdList.append(self.jointNameToId['motor_back_rightR_joint'])
|
||||
|
||||
def reset(self):
|
||||
# self.quadruped = p.loadURDF("%squadruped/minitaur.urdf" % self.urdfRootPath, [0,0,.2], flags=p.URDF_USE_SELF_COLLISION)
|
||||
self.quadruped = p.loadURDF("%squadruped/minitaur.urdf" % self.urdfRootPath, [0,0,.2])
|
||||
self.kp = 1
|
||||
self.kd = 1
|
||||
self.maxForce = 3.5
|
||||
self.nMotors = 8
|
||||
self.motorIdList = []
|
||||
self.motorDir = [-1, -1, -1, -1, 1, 1, 1, 1]
|
||||
self.buildJointNameToIdDict()
|
||||
self.buildMotorIdList()
|
||||
|
||||
|
||||
def setMotorAngleById(self, motorId, desiredAngle):
|
||||
p.setJointMotorControl2(bodyIndex=self.quadruped, jointIndex=motorId, controlMode=p.POSITION_CONTROL, targetPosition=desiredAngle, positionGain=self.kp, velocityGain=self.kd, force=self.maxForce)
|
||||
|
||||
def setMotorAngleByName(self, motorName, desiredAngle):
|
||||
self.setMotorAngleById(self.jointNameToId[motorName], desiredAngle)
|
||||
|
||||
def resetPose(self):
|
||||
kneeFrictionForce = 0
|
||||
halfpi = 1.57079632679
|
||||
kneeangle = -2.1834 #halfpi - acos(upper_leg_length / lower_leg_length)
|
||||
|
||||
#left front leg
|
||||
p.resetJointState(self.quadruped,self.jointNameToId['motor_front_leftL_joint'],self.motorDir[0]*halfpi)
|
||||
p.resetJointState(self.quadruped,self.jointNameToId['knee_front_leftL_link'],self.motorDir[0]*kneeangle)
|
||||
p.resetJointState(self.quadruped,self.jointNameToId['motor_front_leftR_joint'],self.motorDir[1]*halfpi)
|
||||
p.resetJointState(self.quadruped,self.jointNameToId['knee_front_leftR_link'],self.motorDir[1]*kneeangle)
|
||||
p.createConstraint(self.quadruped,self.jointNameToId['knee_front_leftR_link'],self.quadruped,self.jointNameToId['knee_front_leftL_link'],p.JOINT_POINT2POINT,[0,0,0],[0,0.005,0.2],[0,0.01,0.2])
|
||||
self.setMotorAngleByName('motor_front_leftL_joint', self.motorDir[0]*halfpi)
|
||||
self.setMotorAngleByName('motor_front_leftR_joint', self.motorDir[1]*halfpi)
|
||||
p.setJointMotorControl2(bodyIndex=self.quadruped,jointIndex=self.jointNameToId['knee_front_leftL_link'],controlMode=p.VELOCITY_CONTROL,targetVelocity=0,force=kneeFrictionForce)
|
||||
p.setJointMotorControl2(bodyIndex=self.quadruped,jointIndex=self.jointNameToId['knee_front_leftR_link'],controlMode=p.VELOCITY_CONTROL,targetVelocity=0,force=kneeFrictionForce)
|
||||
|
||||
#left back leg
|
||||
p.resetJointState(self.quadruped,self.jointNameToId['motor_back_leftL_joint'],self.motorDir[2]*halfpi)
|
||||
p.resetJointState(self.quadruped,self.jointNameToId['knee_back_leftL_link'],self.motorDir[2]*kneeangle)
|
||||
p.resetJointState(self.quadruped,self.jointNameToId['motor_back_leftR_joint'],self.motorDir[3]*halfpi)
|
||||
p.resetJointState(self.quadruped,self.jointNameToId['knee_back_leftR_link'],self.motorDir[3]*kneeangle)
|
||||
p.createConstraint(self.quadruped,self.jointNameToId['knee_back_leftR_link'],self.quadruped,self.jointNameToId['knee_back_leftL_link'],p.JOINT_POINT2POINT,[0,0,0],[0,0.005,0.2],[0,0.01,0.2])
|
||||
self.setMotorAngleByName('motor_back_leftL_joint',self.motorDir[2]*halfpi)
|
||||
self.setMotorAngleByName('motor_back_leftR_joint',self.motorDir[3]*halfpi)
|
||||
p.setJointMotorControl2(bodyIndex=self.quadruped,jointIndex=self.jointNameToId['knee_back_leftL_link'],controlMode=p.VELOCITY_CONTROL,targetVelocity=0,force=kneeFrictionForce)
|
||||
p.setJointMotorControl2(bodyIndex=self.quadruped,jointIndex=self.jointNameToId['knee_back_leftR_link'],controlMode=p.VELOCITY_CONTROL,targetVelocity=0,force=kneeFrictionForce)
|
||||
|
||||
#right front leg
|
||||
p.resetJointState(self.quadruped,self.jointNameToId['motor_front_rightL_joint'],self.motorDir[4]*halfpi)
|
||||
p.resetJointState(self.quadruped,self.jointNameToId['knee_front_rightL_link'],self.motorDir[4]*kneeangle)
|
||||
p.resetJointState(self.quadruped,self.jointNameToId['motor_front_rightR_joint'],self.motorDir[5]*halfpi)
|
||||
p.resetJointState(self.quadruped,self.jointNameToId['knee_front_rightR_link'],self.motorDir[5]*kneeangle)
|
||||
p.createConstraint(self.quadruped,self.jointNameToId['knee_front_rightR_link'],self.quadruped,self.jointNameToId['knee_front_rightL_link'],p.JOINT_POINT2POINT,[0,0,0],[0,0.005,0.2],[0,0.01,0.2])
|
||||
self.setMotorAngleByName('motor_front_rightL_joint',self.motorDir[4]*halfpi)
|
||||
self.setMotorAngleByName('motor_front_rightR_joint',self.motorDir[5]*halfpi)
|
||||
p.setJointMotorControl2(bodyIndex=self.quadruped,jointIndex=self.jointNameToId['knee_front_rightL_link'],controlMode=p.VELOCITY_CONTROL,targetVelocity=0,force=kneeFrictionForce)
|
||||
p.setJointMotorControl2(bodyIndex=self.quadruped,jointIndex=self.jointNameToId['knee_front_rightR_link'],controlMode=p.VELOCITY_CONTROL,targetVelocity=0,force=kneeFrictionForce)
|
||||
|
||||
|
||||
#right back leg
|
||||
p.resetJointState(self.quadruped,self.jointNameToId['motor_back_rightL_joint'],self.motorDir[6]*halfpi)
|
||||
p.resetJointState(self.quadruped,self.jointNameToId['knee_back_rightL_link'],self.motorDir[6]*kneeangle)
|
||||
p.resetJointState(self.quadruped,self.jointNameToId['motor_back_rightR_joint'],self.motorDir[7]*halfpi)
|
||||
p.resetJointState(self.quadruped,self.jointNameToId['knee_back_rightR_link'],self.motorDir[7]*kneeangle)
|
||||
p.createConstraint(self.quadruped,self.jointNameToId['knee_back_rightR_link'],self.quadruped,self.jointNameToId['knee_back_rightL_link'],p.JOINT_POINT2POINT,[0,0,0],[0,0.005,0.2],[0,0.01,0.2])
|
||||
self.setMotorAngleByName('motor_back_rightL_joint',self.motorDir[6]*halfpi)
|
||||
self.setMotorAngleByName('motor_back_rightR_joint',self.motorDir[7]*halfpi)
|
||||
p.setJointMotorControl2(bodyIndex=self.quadruped,jointIndex=self.jointNameToId['knee_back_rightL_link'],controlMode=p.VELOCITY_CONTROL,targetVelocity=0,force=kneeFrictionForce)
|
||||
p.setJointMotorControl2(bodyIndex=self.quadruped,jointIndex=self.jointNameToId['knee_back_rightR_link'],controlMode=p.VELOCITY_CONTROL,targetVelocity=0,force=kneeFrictionForce)
|
||||
|
||||
|
||||
def getBasePosition(self):
|
||||
position, orientation = p.getBasePositionAndOrientation(self.quadruped)
|
||||
return position
|
||||
|
||||
def getBaseOrientation(self):
|
||||
position, orientation = p.getBasePositionAndOrientation(self.quadruped)
|
||||
return orientation
|
||||
|
||||
def getActionDimension(self):
|
||||
return self.nMotors
|
||||
|
||||
def getObservationDimension(self):
|
||||
return len(self.getObservation())
|
||||
|
||||
def getObservation(self):
|
||||
observation = []
|
||||
observation.extend(self.getMotorAngles().tolist())
|
||||
observation.extend(self.getMotorVelocities().tolist())
|
||||
observation.extend(self.getMotorTorques().tolist())
|
||||
observation.extend(list(self.getBaseOrientation()))
|
||||
observation.extend(list(self.getBasePosition()))
|
||||
return observation
|
||||
|
||||
|
||||
def applyAction(self, motorCommands):
|
||||
motorCommandsWithDir = np.multiply(motorCommands, self.motorDir)
|
||||
# print('action: {}'.format(motorCommands))
|
||||
# print('motor: {}'.format(motorCommandsWithDir))
|
||||
for i in range(self.nMotors):
|
||||
self.setMotorAngleById(self.motorIdList[i], motorCommandsWithDir[i])
|
||||
|
||||
def getMotorAngles(self):
|
||||
motorAngles = []
|
||||
for i in range(self.nMotors):
|
||||
jointState = p.getJointState(self.quadruped, self.motorIdList[i])
|
||||
motorAngles.append(jointState[0])
|
||||
motorAngles = np.multiply(motorAngles, self.motorDir)
|
||||
return motorAngles
|
||||
|
||||
def getMotorVelocities(self):
|
||||
motorVelocities = []
|
||||
for i in range(self.nMotors):
|
||||
jointState = p.getJointState(self.quadruped, self.motorIdList[i])
|
||||
motorVelocities.append(jointState[1])
|
||||
motorVelocities = np.multiply(motorVelocities, self.motorDir)
|
||||
return motorVelocities
|
||||
|
||||
def getMotorTorques(self):
|
||||
motorTorques = []
|
||||
for i in range(self.nMotors):
|
||||
jointState = p.getJointState(self.quadruped, self.motorIdList[i])
|
||||
motorTorques.append(jointState[3])
|
||||
motorTorques = np.multiply(motorTorques, self.motorDir)
|
||||
return motorTorques
|
||||
|
||||
def convertFromLegModel(self, actions):
|
||||
motorAngle = copy.deepcopy(actions)
|
||||
scaleForSingularity = 1
|
||||
offsetForSingularity = 0.5
|
||||
motorAngle[0] = math.pi + math.pi / 4 * actions[0] - scaleForSingularity * math.pi / 4 * (actions[4] + 1 + offsetForSingularity)
|
||||
motorAngle[1] = math.pi - math.pi / 4 * actions[0] - scaleForSingularity * math.pi / 4 * (actions[4] + 1 + offsetForSingularity)
|
||||
motorAngle[2] = math.pi + math.pi / 4 * actions[1] - scaleForSingularity * math.pi / 4 * (actions[5] + 1 + offsetForSingularity)
|
||||
motorAngle[3] = math.pi - math.pi / 4 * actions[1] - scaleForSingularity * math.pi / 4 * (actions[5] + 1 + offsetForSingularity)
|
||||
motorAngle[4] = math.pi - math.pi / 4 * actions[2] - scaleForSingularity * math.pi / 4 * (actions[6] + 1 + offsetForSingularity)
|
||||
motorAngle[5] = math.pi + math.pi / 4 * actions[2] - scaleForSingularity * math.pi / 4 * (actions[6] + 1 + offsetForSingularity)
|
||||
motorAngle[6] = math.pi - math.pi / 4 * actions[3] - scaleForSingularity * math.pi / 4 * (actions[7] + 1 + offsetForSingularity)
|
||||
motorAngle[7] = math.pi + math.pi / 4 * actions[3] - scaleForSingularity * math.pi / 4 * (actions[7] + 1 + offsetForSingularity)
|
||||
return motorAngle
|
||||
Reference in New Issue
Block a user