multidof4 patch
This commit is contained in:
@@ -24,6 +24,303 @@ enum btMultiBodyLinkFlags
|
||||
{
|
||||
BT_MULTIBODYLINKFLAGS_DISABLE_PARENT_COLLISION = 1
|
||||
};
|
||||
|
||||
//#define BT_MULTIBODYLINK_INCLUDE_PLANAR_JOINTS
|
||||
#define TEST_SPATIAL_ALGEBRA_LAYER
|
||||
|
||||
//
|
||||
// Various spatial helper functions
|
||||
//
|
||||
|
||||
namespace {
|
||||
|
||||
#ifdef TEST_SPATIAL_ALGEBRA_LAYER
|
||||
|
||||
struct btSpatialForceVector
|
||||
{
|
||||
btVector3 m_topVec, m_bottomVec;
|
||||
//
|
||||
btSpatialForceVector() { setZero(); }
|
||||
btSpatialForceVector(const btVector3 &angular, const btVector3 &linear) : m_topVec(linear), m_bottomVec(angular) {}
|
||||
btSpatialForceVector(const btScalar &ax, const btScalar &ay, const btScalar &az, const btScalar &lx, const btScalar &ly, const btScalar &lz)
|
||||
{
|
||||
setValue(ax, ay, az, lx, ly, lz);
|
||||
}
|
||||
//
|
||||
void setVector(const btVector3 &angular, const btVector3 &linear) { m_topVec = linear; m_bottomVec = angular; }
|
||||
void setValue(const btScalar &ax, const btScalar &ay, const btScalar &az, const btScalar &lx, const btScalar &ly, const btScalar &lz)
|
||||
{
|
||||
m_bottomVec.setValue(ax, ay, az); m_topVec.setValue(lx, ly, lz);
|
||||
}
|
||||
//
|
||||
void addVector(const btVector3 &angular, const btVector3 &linear) { m_topVec += linear; m_bottomVec += angular; }
|
||||
void addValue(const btScalar &ax, const btScalar &ay, const btScalar &az, const btScalar &lx, const btScalar &ly, const btScalar &lz)
|
||||
{
|
||||
m_bottomVec[0] += ax; m_bottomVec[1] += ay; m_bottomVec[2] += az;
|
||||
m_topVec[0] += lx; m_topVec[1] += ly; m_topVec[2] += lz;
|
||||
}
|
||||
//
|
||||
const btVector3 & getLinear() const { return m_topVec; }
|
||||
const btVector3 & getAngular() const { return m_bottomVec; }
|
||||
//
|
||||
void setLinear(const btVector3 &linear) { m_topVec = linear; }
|
||||
void setAngular(const btVector3 &angular) { m_bottomVec = angular; }
|
||||
//
|
||||
void addAngular(const btVector3 &angular) { m_bottomVec += angular; }
|
||||
void addLinear(const btVector3 &linear) { m_topVec += linear; }
|
||||
//
|
||||
void setZero() { m_topVec.setZero(); m_bottomVec.setZero(); }
|
||||
//
|
||||
btSpatialForceVector & operator += (const btSpatialForceVector &vec) { m_topVec += vec.m_topVec; m_bottomVec += vec.m_bottomVec; return *this; }
|
||||
btSpatialForceVector & operator -= (const btSpatialForceVector &vec) { m_topVec -= vec.m_topVec; m_bottomVec -= vec.m_bottomVec; return *this; }
|
||||
btSpatialForceVector operator - (const btSpatialForceVector &vec) const { return btSpatialForceVector(m_bottomVec - vec.m_bottomVec, m_topVec - vec.m_topVec); }
|
||||
btSpatialForceVector operator + (const btSpatialForceVector &vec) const { return btSpatialForceVector(m_bottomVec + vec.m_bottomVec, m_topVec + vec.m_topVec); }
|
||||
btSpatialForceVector operator - () const { return btSpatialForceVector(-m_bottomVec, -m_topVec); }
|
||||
btSpatialForceVector operator * (const btScalar &s) const { return btSpatialForceVector(s * m_bottomVec, s * m_topVec); }
|
||||
//btSpatialForceVector & operator = (const btSpatialForceVector &vec) { m_topVec = vec.m_topVec; m_bottomVec = vec.m_bottomVec; return *this; }
|
||||
};
|
||||
|
||||
struct btSpatialMotionVector
|
||||
{
|
||||
btVector3 m_topVec, m_bottomVec;
|
||||
//
|
||||
btSpatialMotionVector() { setZero(); }
|
||||
btSpatialMotionVector(const btVector3 &angular, const btVector3 &linear) : m_topVec(angular), m_bottomVec(linear) {}
|
||||
//
|
||||
void setVector(const btVector3 &angular, const btVector3 &linear) { m_topVec = angular; m_bottomVec = linear; }
|
||||
void setValue(const btScalar &ax, const btScalar &ay, const btScalar &az, const btScalar &lx, const btScalar &ly, const btScalar &lz)
|
||||
{
|
||||
m_topVec.setValue(ax, ay, az); m_bottomVec.setValue(lx, ly, lz);
|
||||
}
|
||||
//
|
||||
void addVector(const btVector3 &angular, const btVector3 &linear) { m_topVec += linear; m_bottomVec += angular; }
|
||||
void addValue(const btScalar &ax, const btScalar &ay, const btScalar &az, const btScalar &lx, const btScalar &ly, const btScalar &lz)
|
||||
{
|
||||
m_topVec[0] += ax; m_topVec[1] += ay; m_topVec[2] += az;
|
||||
m_bottomVec[0] += lx; m_bottomVec[1] += ly; m_bottomVec[2] += lz;
|
||||
}
|
||||
//
|
||||
const btVector3 & getAngular() const { return m_topVec; }
|
||||
const btVector3 & getLinear() const { return m_bottomVec; }
|
||||
//
|
||||
void setAngular(const btVector3 &angular) { m_topVec = angular; }
|
||||
void setLinear(const btVector3 &linear) { m_bottomVec = linear; }
|
||||
//
|
||||
void addAngular(const btVector3 &angular) { m_topVec += angular; }
|
||||
void addLinear(const btVector3 &linear) { m_bottomVec += linear; }
|
||||
//
|
||||
void setZero() { m_topVec.setZero(); m_bottomVec.setZero(); }
|
||||
//
|
||||
btScalar dot(const btSpatialForceVector &b) const
|
||||
{
|
||||
return m_bottomVec.dot(b.m_topVec) + m_topVec.dot(b.m_bottomVec);
|
||||
}
|
||||
//
|
||||
template<typename SpatialVectorType>
|
||||
void cross(const SpatialVectorType &b, SpatialVectorType &out) const
|
||||
{
|
||||
out.m_topVec = m_topVec.cross(b.m_topVec);
|
||||
out.m_bottomVec = m_bottomVec.cross(b.m_topVec) + m_topVec.cross(b.m_bottomVec);
|
||||
}
|
||||
template<typename SpatialVectorType>
|
||||
SpatialVectorType cross(const SpatialVectorType &b) const
|
||||
{
|
||||
SpatialVectorType out;
|
||||
out.m_topVec = m_topVec.cross(b.m_topVec);
|
||||
out.m_bottomVec = m_bottomVec.cross(b.m_topVec) + m_topVec.cross(b.m_bottomVec);
|
||||
return out;
|
||||
}
|
||||
//
|
||||
btSpatialMotionVector & operator += (const btSpatialMotionVector &vec) { m_topVec += vec.m_topVec; m_bottomVec += vec.m_bottomVec; return *this; }
|
||||
btSpatialMotionVector & operator -= (const btSpatialMotionVector &vec) { m_topVec -= vec.m_topVec; m_bottomVec -= vec.m_bottomVec; return *this; }
|
||||
btSpatialMotionVector operator - (const btSpatialMotionVector &vec) const { return btSpatialMotionVector(m_topVec - vec.m_topVec, m_bottomVec - vec.m_bottomVec); }
|
||||
btSpatialMotionVector operator + (const btSpatialMotionVector &vec) const { return btSpatialMotionVector(m_topVec + vec.m_topVec, m_bottomVec + vec.m_bottomVec); }
|
||||
btSpatialMotionVector operator - () const { return btSpatialMotionVector(-m_topVec, -m_bottomVec); }
|
||||
btSpatialMotionVector operator * (const btScalar &s) const { return btSpatialMotionVector(s * m_topVec, s * m_bottomVec); }
|
||||
};
|
||||
|
||||
struct btSymmetricSpatialDyad
|
||||
{
|
||||
btMatrix3x3 m_topLeftMat, m_topRightMat, m_bottomLeftMat;
|
||||
//
|
||||
btSymmetricSpatialDyad() { setIdentity(); }
|
||||
btSymmetricSpatialDyad(const btMatrix3x3 &topLeftMat, const btMatrix3x3 &topRightMat, const btMatrix3x3 &bottomLeftMat) { setMatrix(topLeftMat, topRightMat, bottomLeftMat); }
|
||||
//
|
||||
void setMatrix(const btMatrix3x3 &topLeftMat, const btMatrix3x3 &topRightMat, const btMatrix3x3 &bottomLeftMat)
|
||||
{
|
||||
m_topLeftMat = topLeftMat;
|
||||
m_topRightMat = topRightMat;
|
||||
m_bottomLeftMat = bottomLeftMat;
|
||||
}
|
||||
//
|
||||
void addMatrix(const btMatrix3x3 &topLeftMat, const btMatrix3x3 &topRightMat, const btMatrix3x3 &bottomLeftMat)
|
||||
{
|
||||
m_topLeftMat += topLeftMat;
|
||||
m_topRightMat += topRightMat;
|
||||
m_bottomLeftMat += bottomLeftMat;
|
||||
}
|
||||
//
|
||||
void setIdentity() { m_topLeftMat.setIdentity(); m_topRightMat.setIdentity(); m_bottomLeftMat.setIdentity(); }
|
||||
//
|
||||
btSymmetricSpatialDyad & operator -= (const btSymmetricSpatialDyad &mat)
|
||||
{
|
||||
m_topLeftMat -= mat.m_topLeftMat;
|
||||
m_topRightMat -= mat.m_topRightMat;
|
||||
m_bottomLeftMat -= mat.m_bottomLeftMat;
|
||||
return *this;
|
||||
}
|
||||
//
|
||||
btSpatialForceVector operator * (const btSpatialMotionVector &vec)
|
||||
{
|
||||
return btSpatialForceVector(m_bottomLeftMat * vec.m_topVec + m_topLeftMat.transpose() * vec.m_bottomVec, m_topLeftMat * vec.m_topVec + m_topRightMat * vec.m_bottomVec);
|
||||
}
|
||||
};
|
||||
|
||||
struct btSpatialTransformationMatrix
|
||||
{
|
||||
btMatrix3x3 m_rotMat; //btMatrix3x3 m_trnCrossMat;
|
||||
btVector3 m_trnVec;
|
||||
//
|
||||
enum eOutputOperation
|
||||
{
|
||||
None = 0,
|
||||
Add = 1,
|
||||
Subtract = 2
|
||||
};
|
||||
//
|
||||
template<typename SpatialVectorType>
|
||||
void transform( const SpatialVectorType &inVec,
|
||||
SpatialVectorType &outVec,
|
||||
eOutputOperation outOp = None)
|
||||
{
|
||||
if(outOp == None)
|
||||
{
|
||||
outVec.m_topVec = m_rotMat * inVec.m_topVec;
|
||||
outVec.m_bottomVec = -m_trnVec.cross(outVec.m_topVec) + m_rotMat * inVec.m_bottomVec;
|
||||
}
|
||||
else if(outOp == Add)
|
||||
{
|
||||
outVec.m_topVec += m_rotMat * inVec.m_topVec;
|
||||
outVec.m_bottomVec += -m_trnVec.cross(outVec.m_topVec) + m_rotMat * inVec.m_bottomVec;
|
||||
}
|
||||
else if(outOp == Subtract)
|
||||
{
|
||||
outVec.m_topVec -= m_rotMat * inVec.m_topVec;
|
||||
outVec.m_bottomVec -= -m_trnVec.cross(outVec.m_topVec) + m_rotMat * inVec.m_bottomVec;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
template<typename SpatialVectorType>
|
||||
void transformRotationOnly( const SpatialVectorType &inVec,
|
||||
SpatialVectorType &outVec,
|
||||
eOutputOperation outOp = None)
|
||||
{
|
||||
if(outOp == None)
|
||||
{
|
||||
outVec.m_topVec = m_rotMat * inVec.m_topVec;
|
||||
outVec.m_bottomVec = m_rotMat * inVec.m_bottomVec;
|
||||
}
|
||||
else if(outOp == Add)
|
||||
{
|
||||
outVec.m_topVec += m_rotMat * inVec.m_topVec;
|
||||
outVec.m_bottomVec += m_rotMat * inVec.m_bottomVec;
|
||||
}
|
||||
else if(outOp == Subtract)
|
||||
{
|
||||
outVec.m_topVec -= m_rotMat * inVec.m_topVec;
|
||||
outVec.m_bottomVec -= m_rotMat * inVec.m_bottomVec;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
template<typename SpatialVectorType>
|
||||
void transformInverse( const SpatialVectorType &inVec,
|
||||
SpatialVectorType &outVec,
|
||||
eOutputOperation outOp = None)
|
||||
{
|
||||
if(outOp == None)
|
||||
{
|
||||
outVec.m_topVec = m_rotMat.transpose() * inVec.m_topVec;
|
||||
outVec.m_bottomVec = m_rotMat.transpose() * (inVec.m_bottomVec + m_trnVec.cross(inVec.m_topVec));
|
||||
}
|
||||
else if(outOp == Add)
|
||||
{
|
||||
outVec.m_topVec += m_rotMat.transpose() * inVec.m_topVec;
|
||||
outVec.m_bottomVec += m_rotMat.transpose() * (inVec.m_bottomVec + m_trnVec.cross(inVec.m_topVec));
|
||||
}
|
||||
else if(outOp == Subtract)
|
||||
{
|
||||
outVec.m_topVec -= m_rotMat.transpose() * inVec.m_topVec;
|
||||
outVec.m_bottomVec -= m_rotMat.transpose() * (inVec.m_bottomVec + m_trnVec.cross(inVec.m_topVec));
|
||||
}
|
||||
}
|
||||
|
||||
void transformInverse( const btSymmetricSpatialDyad &inMat,
|
||||
btSymmetricSpatialDyad &outMat,
|
||||
eOutputOperation outOp = None)
|
||||
{
|
||||
const btMatrix3x3 r_cross( 0, -m_trnVec[2], m_trnVec[1],
|
||||
m_trnVec[2], 0, -m_trnVec[0],
|
||||
-m_trnVec[1], m_trnVec[0], 0);
|
||||
|
||||
|
||||
if(outOp == None)
|
||||
{
|
||||
outMat.m_topLeftMat = m_rotMat.transpose() * ( inMat.m_topLeftMat - inMat.m_topRightMat * r_cross ) * m_rotMat;
|
||||
outMat.m_topRightMat = m_rotMat.transpose() * inMat.m_topRightMat * m_rotMat;
|
||||
outMat.m_bottomLeftMat = m_rotMat.transpose() * (r_cross * (inMat.m_topLeftMat - inMat.m_topRightMat * r_cross) + inMat.m_bottomLeftMat - inMat.m_topLeftMat.transpose() * r_cross) * m_rotMat;
|
||||
}
|
||||
else if(outOp == Add)
|
||||
{
|
||||
outMat.m_topLeftMat += m_rotMat.transpose() * ( inMat.m_topLeftMat - inMat.m_topRightMat * r_cross ) * m_rotMat;
|
||||
outMat.m_topRightMat += m_rotMat.transpose() * inMat.m_topRightMat * m_rotMat;
|
||||
outMat.m_bottomLeftMat += m_rotMat.transpose() * (r_cross * (inMat.m_topLeftMat - inMat.m_topRightMat * r_cross) + inMat.m_bottomLeftMat - inMat.m_topLeftMat.transpose() * r_cross) * m_rotMat;
|
||||
}
|
||||
else if(outOp == Subtract)
|
||||
{
|
||||
outMat.m_topLeftMat -= m_rotMat.transpose() * ( inMat.m_topLeftMat - inMat.m_topRightMat * r_cross ) * m_rotMat;
|
||||
outMat.m_topRightMat -= m_rotMat.transpose() * inMat.m_topRightMat * m_rotMat;
|
||||
outMat.m_bottomLeftMat -= m_rotMat.transpose() * (r_cross * (inMat.m_topLeftMat - inMat.m_topRightMat * r_cross) + inMat.m_bottomLeftMat - inMat.m_topLeftMat.transpose() * r_cross) * m_rotMat;
|
||||
}
|
||||
}
|
||||
|
||||
template<typename SpatialVectorType>
|
||||
SpatialVectorType operator * (const SpatialVectorType &vec)
|
||||
{
|
||||
SpatialVectorType out;
|
||||
transform(vec, out);
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename SpatialVectorType>
|
||||
void symmetricSpatialOuterProduct(const SpatialVectorType &a, const SpatialVectorType &b, btSymmetricSpatialDyad &out)
|
||||
{
|
||||
//output op maybe?
|
||||
|
||||
out.m_topLeftMat = outerProduct(a.m_topVec, b.m_bottomVec);
|
||||
out.m_topRightMat = outerProduct(a.m_topVec, b.m_topVec);
|
||||
out.m_topLeftMat = outerProduct(a.m_bottomVec, b.m_bottomVec);
|
||||
//maybe simple a*spatTranspose(a) would be nicer?
|
||||
}
|
||||
|
||||
template<typename SpatialVectorType>
|
||||
btSymmetricSpatialDyad symmetricSpatialOuterProduct(const SpatialVectorType &a, const SpatialVectorType &b)
|
||||
{
|
||||
btSymmetricSpatialDyad out;
|
||||
|
||||
out.m_topLeftMat = outerProduct(a.m_topVec, b.m_bottomVec);
|
||||
out.m_topRightMat = outerProduct(a.m_topVec, b.m_topVec);
|
||||
out.m_bottomLeftMat = outerProduct(a.m_bottomVec, b.m_bottomVec);
|
||||
|
||||
return out;
|
||||
//maybe simple a*spatTranspose(a) would be nicer?
|
||||
}
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
//
|
||||
// Link struct
|
||||
//
|
||||
@@ -33,75 +330,155 @@ struct btMultibodyLink
|
||||
|
||||
BT_DECLARE_ALIGNED_ALLOCATOR();
|
||||
|
||||
btScalar joint_pos; // qi
|
||||
btScalar m_mass; // mass of link
|
||||
btVector3 m_inertia; // inertia of link (local frame; diagonal)
|
||||
|
||||
btScalar mass; // mass of link
|
||||
btVector3 inertia; // inertia of link (local frame; diagonal)
|
||||
int m_parent; // index of the parent link (assumed to be < index of this link), or -1 if parent is the base link.
|
||||
|
||||
int parent; // index of the parent link (assumed to be < index of this link), or -1 if parent is the base link.
|
||||
btQuaternion m_zeroRotParentToThis; // rotates vectors in parent-frame to vectors in local-frame (when q=0). constant.
|
||||
|
||||
btQuaternion zero_rot_parent_to_this; // rotates vectors in parent-frame to vectors in local-frame (when q=0). constant.
|
||||
btVector3 m_dVector; // vector from the inboard joint pos to this link's COM. (local frame.) constant. set for revolute joints only.
|
||||
|
||||
// "axis" = spatial joint axis (Mirtich Defn 9 p104). (expressed in local frame.) constant.
|
||||
// for prismatic: axis_top = zero;
|
||||
// axis_bottom = unit vector along the joint axis.
|
||||
// for revolute: axis_top = unit vector along the rotation axis (u);
|
||||
// axis_bottom = u cross d_vector.
|
||||
btVector3 axis_top;
|
||||
btVector3 axis_bottom;
|
||||
|
||||
btVector3 d_vector; // vector from the inboard joint pos to this link's COM. (local frame.) constant. set for revolute joints only.
|
||||
|
||||
// e_vector is constant, but depends on the joint type
|
||||
// m_eVector is constant, but depends on the joint type
|
||||
// prismatic: vector from COM of parent to COM of this link, WHEN Q = 0. (local frame.)
|
||||
// revolute: vector from parent's COM to the pivot point, in PARENT's frame.
|
||||
btVector3 e_vector;
|
||||
btVector3 m_eVector;
|
||||
|
||||
bool is_revolute; // true = revolute, false = prismatic
|
||||
enum eFeatherstoneJointType
|
||||
{
|
||||
eRevolute = 0,
|
||||
ePrismatic = 1,
|
||||
eSpherical = 2,
|
||||
#ifdef BT_MULTIBODYLINK_INCLUDE_PLANAR_JOINTS
|
||||
ePlanar = 3,
|
||||
#endif
|
||||
eInvalid
|
||||
};
|
||||
|
||||
btQuaternion cached_rot_parent_to_this; // rotates vectors in parent frame to vectors in local frame
|
||||
btVector3 cached_r_vector; // vector from COM of parent to COM of this link, in local frame.
|
||||
eFeatherstoneJointType m_jointType;
|
||||
int m_dofCount, m_posVarCount; //redundant but handy
|
||||
|
||||
btVector3 applied_force; // In WORLD frame
|
||||
btVector3 applied_torque; // In WORLD frame
|
||||
btScalar joint_torque;
|
||||
// "axis" = spatial joint axis (Mirtich Defn 9 p104). (expressed in local frame.) constant.
|
||||
// for prismatic: m_axesTop[0] = zero;
|
||||
// m_axesBottom[0] = unit vector along the joint axis.
|
||||
// for revolute: m_axesTop[0] = unit vector along the rotation axis (u);
|
||||
// m_axesBottom[0] = u cross m_dVector (i.e. COM linear motion due to the rotation at the joint)
|
||||
//
|
||||
// for spherical: m_axesTop[0][1][2] (u1,u2,u3) form a 3x3 identity matrix (3 rotation axes)
|
||||
// m_axesBottom[0][1][2] cross u1,u2,u3 (i.e. COM linear motion due to the rotation at the joint)
|
||||
//
|
||||
// for planar: m_axesTop[0] = unit vector along the rotation axis (u); defines the plane of motion
|
||||
// m_axesTop[1][2] = zero
|
||||
// m_axesBottom[0] = zero
|
||||
// m_axesBottom[1][2] = unit vectors along the translational axes on that plane
|
||||
#ifndef TEST_SPATIAL_ALGEBRA_LAYER
|
||||
btVector3 m_axesTop[6];
|
||||
btVector3 m_axesBottom[6];
|
||||
void setAxisTop(int dof, const btVector3 &axis) { m_axesTop[dof] = axis; }
|
||||
void setAxisBottom(int dof, const btVector3 &axis) { m_axesBottom[dof] = axis; }
|
||||
void setAxisTop(int dof, const btScalar &x, const btScalar &y, const btScalar &z) { m_axesTop[dof].setValue(x, y, z); }
|
||||
void setAxisBottom(int dof, const btScalar &x, const btScalar &y, const btScalar &z) { m_axesBottom[dof].setValue(x, y, z); }
|
||||
const btVector3 & getAxisTop(int dof) const { return m_axesTop[dof]; }
|
||||
const btVector3 & getAxisBottom(int dof) const { return m_axesBottom[dof]; }
|
||||
#else
|
||||
btSpatialMotionVector m_axes[6];
|
||||
void setAxisTop(int dof, const btVector3 &axis) { m_axes[dof].m_topVec = axis; }
|
||||
void setAxisBottom(int dof, const btVector3 &axis) { m_axes[dof].m_bottomVec = axis; }
|
||||
void setAxisTop(int dof, const btScalar &x, const btScalar &y, const btScalar &z) { m_axes[dof].m_topVec.setValue(x, y, z); }
|
||||
void setAxisBottom(int dof, const btScalar &x, const btScalar &y, const btScalar &z) { m_axes[dof].m_bottomVec.setValue(x, y, z); }
|
||||
const btVector3 & getAxisTop(int dof) const { return m_axes[dof].m_topVec; }
|
||||
const btVector3 & getAxisBottom(int dof) const { return m_axes[dof].m_bottomVec; }
|
||||
#endif
|
||||
|
||||
int m_dofOffset;
|
||||
|
||||
btQuaternion m_cachedRotParentToThis; // rotates vectors in parent frame to vectors in local frame
|
||||
btVector3 m_cachedRVector; // vector from COM of parent to COM of this link, in local frame.
|
||||
|
||||
btVector3 m_appliedForce; // In WORLD frame
|
||||
btVector3 m_appliedTorque; // In WORLD frame
|
||||
|
||||
btScalar m_jointPos[7];
|
||||
btScalar m_jointTorque[6]; //TODO
|
||||
|
||||
class btMultiBodyLinkCollider* m_collider;
|
||||
int m_flags;
|
||||
|
||||
// ctor: set some sensible defaults
|
||||
btMultibodyLink()
|
||||
: joint_pos(0),
|
||||
mass(1),
|
||||
parent(-1),
|
||||
zero_rot_parent_to_this(1, 0, 0, 0),
|
||||
is_revolute(false),
|
||||
cached_rot_parent_to_this(1, 0, 0, 0),
|
||||
joint_torque(0),
|
||||
: m_mass(1),
|
||||
m_parent(-1),
|
||||
m_zeroRotParentToThis(1, 0, 0, 0),
|
||||
m_cachedRotParentToThis(1, 0, 0, 0),
|
||||
m_collider(0),
|
||||
m_flags(0)
|
||||
m_flags(0),
|
||||
m_dofCount(0),
|
||||
m_posVarCount(0),
|
||||
m_jointType(btMultibodyLink::eInvalid)
|
||||
{
|
||||
inertia.setValue(1, 1, 1);
|
||||
axis_top.setValue(0, 0, 0);
|
||||
axis_bottom.setValue(1, 0, 0);
|
||||
d_vector.setValue(0, 0, 0);
|
||||
e_vector.setValue(0, 0, 0);
|
||||
cached_r_vector.setValue(0, 0, 0);
|
||||
applied_force.setValue( 0, 0, 0);
|
||||
applied_torque.setValue(0, 0, 0);
|
||||
m_inertia.setValue(1, 1, 1);
|
||||
setAxisTop(0, 0., 0., 0.);
|
||||
setAxisBottom(0, 1., 0., 0.);
|
||||
m_dVector.setValue(0, 0, 0);
|
||||
m_eVector.setValue(0, 0, 0);
|
||||
m_cachedRVector.setValue(0, 0, 0);
|
||||
m_appliedForce.setValue( 0, 0, 0);
|
||||
m_appliedTorque.setValue(0, 0, 0);
|
||||
//
|
||||
m_jointPos[0] = m_jointPos[1] = m_jointPos[2] = m_jointPos[4] = m_jointPos[5] = m_jointPos[6] = 0.f;
|
||||
m_jointPos[3] = 1.f; //"quat.w"
|
||||
m_jointTorque[0] = m_jointTorque[1] = m_jointTorque[2] = m_jointTorque[3] = m_jointTorque[4] = m_jointTorque[5] = 0.f;
|
||||
}
|
||||
|
||||
// routine to update cached_rot_parent_to_this and cached_r_vector
|
||||
// routine to update m_cachedRotParentToThis and m_cachedRVector
|
||||
void updateCache()
|
||||
{
|
||||
if (is_revolute)
|
||||
//multidof
|
||||
if (m_jointType == eRevolute)
|
||||
{
|
||||
cached_rot_parent_to_this = btQuaternion(axis_top,-joint_pos) * zero_rot_parent_to_this;
|
||||
cached_r_vector = d_vector + quatRotate(cached_rot_parent_to_this,e_vector);
|
||||
m_cachedRotParentToThis = btQuaternion(getAxisTop(0),-m_jointPos[0]) * m_zeroRotParentToThis;
|
||||
m_cachedRVector = m_dVector + quatRotate(m_cachedRotParentToThis,m_eVector);
|
||||
} else
|
||||
{
|
||||
// cached_rot_parent_to_this never changes, so no need to update
|
||||
cached_r_vector = e_vector + joint_pos * axis_bottom;
|
||||
// m_cachedRotParentToThis never changes, so no need to update
|
||||
m_cachedRVector = m_eVector + m_jointPos[0] * getAxisBottom(0);
|
||||
}
|
||||
}
|
||||
|
||||
void updateCacheMultiDof()
|
||||
{
|
||||
switch(m_jointType)
|
||||
{
|
||||
case eRevolute:
|
||||
{
|
||||
m_cachedRotParentToThis = btQuaternion(getAxisTop(0),-m_jointPos[0]) * m_zeroRotParentToThis;
|
||||
m_cachedRVector = m_dVector + quatRotate(m_cachedRotParentToThis,m_eVector);
|
||||
|
||||
break;
|
||||
}
|
||||
case ePrismatic:
|
||||
{
|
||||
// m_cachedRotParentToThis never changes, so no need to update
|
||||
m_cachedRVector = m_eVector + m_jointPos[0] * getAxisBottom(0);
|
||||
|
||||
break;
|
||||
}
|
||||
case eSpherical:
|
||||
{
|
||||
m_cachedRotParentToThis = btQuaternion(m_jointPos[0], m_jointPos[1], m_jointPos[2], -m_jointPos[3]) * m_zeroRotParentToThis;
|
||||
m_cachedRVector = m_dVector + quatRotate(m_cachedRotParentToThis,m_eVector);
|
||||
|
||||
break;
|
||||
}
|
||||
#ifdef BT_MULTIBODYLINK_INCLUDE_PLANAR_JOINTS
|
||||
case ePlanar:
|
||||
{
|
||||
m_cachedRotParentToThis = btQuaternion(getAxisTop(0),-m_jointPos[0]) * m_zeroRotParentToThis;
|
||||
m_cachedRVector = quatRotate(btQuaternion(getAxisTop(0),-m_jointPos[0]), m_jointPos[1] * m_axesBottom[1] + m_jointPos[2] * m_axesBottom[2]) + quatRotate(m_cachedRotParentToThis,m_eVector);
|
||||
|
||||
break;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
Reference in New Issue
Block a user