multidof4 patch

This commit is contained in:
kubas
2014-01-09 00:26:24 +01:00
parent 75b8f7230d
commit 96ff69276f
12 changed files with 2661 additions and 428 deletions

View File

@@ -24,6 +24,303 @@ enum btMultiBodyLinkFlags
{
BT_MULTIBODYLINKFLAGS_DISABLE_PARENT_COLLISION = 1
};
//#define BT_MULTIBODYLINK_INCLUDE_PLANAR_JOINTS
#define TEST_SPATIAL_ALGEBRA_LAYER
//
// Various spatial helper functions
//
namespace {
#ifdef TEST_SPATIAL_ALGEBRA_LAYER
struct btSpatialForceVector
{
btVector3 m_topVec, m_bottomVec;
//
btSpatialForceVector() { setZero(); }
btSpatialForceVector(const btVector3 &angular, const btVector3 &linear) : m_topVec(linear), m_bottomVec(angular) {}
btSpatialForceVector(const btScalar &ax, const btScalar &ay, const btScalar &az, const btScalar &lx, const btScalar &ly, const btScalar &lz)
{
setValue(ax, ay, az, lx, ly, lz);
}
//
void setVector(const btVector3 &angular, const btVector3 &linear) { m_topVec = linear; m_bottomVec = angular; }
void setValue(const btScalar &ax, const btScalar &ay, const btScalar &az, const btScalar &lx, const btScalar &ly, const btScalar &lz)
{
m_bottomVec.setValue(ax, ay, az); m_topVec.setValue(lx, ly, lz);
}
//
void addVector(const btVector3 &angular, const btVector3 &linear) { m_topVec += linear; m_bottomVec += angular; }
void addValue(const btScalar &ax, const btScalar &ay, const btScalar &az, const btScalar &lx, const btScalar &ly, const btScalar &lz)
{
m_bottomVec[0] += ax; m_bottomVec[1] += ay; m_bottomVec[2] += az;
m_topVec[0] += lx; m_topVec[1] += ly; m_topVec[2] += lz;
}
//
const btVector3 & getLinear() const { return m_topVec; }
const btVector3 & getAngular() const { return m_bottomVec; }
//
void setLinear(const btVector3 &linear) { m_topVec = linear; }
void setAngular(const btVector3 &angular) { m_bottomVec = angular; }
//
void addAngular(const btVector3 &angular) { m_bottomVec += angular; }
void addLinear(const btVector3 &linear) { m_topVec += linear; }
//
void setZero() { m_topVec.setZero(); m_bottomVec.setZero(); }
//
btSpatialForceVector & operator += (const btSpatialForceVector &vec) { m_topVec += vec.m_topVec; m_bottomVec += vec.m_bottomVec; return *this; }
btSpatialForceVector & operator -= (const btSpatialForceVector &vec) { m_topVec -= vec.m_topVec; m_bottomVec -= vec.m_bottomVec; return *this; }
btSpatialForceVector operator - (const btSpatialForceVector &vec) const { return btSpatialForceVector(m_bottomVec - vec.m_bottomVec, m_topVec - vec.m_topVec); }
btSpatialForceVector operator + (const btSpatialForceVector &vec) const { return btSpatialForceVector(m_bottomVec + vec.m_bottomVec, m_topVec + vec.m_topVec); }
btSpatialForceVector operator - () const { return btSpatialForceVector(-m_bottomVec, -m_topVec); }
btSpatialForceVector operator * (const btScalar &s) const { return btSpatialForceVector(s * m_bottomVec, s * m_topVec); }
//btSpatialForceVector & operator = (const btSpatialForceVector &vec) { m_topVec = vec.m_topVec; m_bottomVec = vec.m_bottomVec; return *this; }
};
struct btSpatialMotionVector
{
btVector3 m_topVec, m_bottomVec;
//
btSpatialMotionVector() { setZero(); }
btSpatialMotionVector(const btVector3 &angular, const btVector3 &linear) : m_topVec(angular), m_bottomVec(linear) {}
//
void setVector(const btVector3 &angular, const btVector3 &linear) { m_topVec = angular; m_bottomVec = linear; }
void setValue(const btScalar &ax, const btScalar &ay, const btScalar &az, const btScalar &lx, const btScalar &ly, const btScalar &lz)
{
m_topVec.setValue(ax, ay, az); m_bottomVec.setValue(lx, ly, lz);
}
//
void addVector(const btVector3 &angular, const btVector3 &linear) { m_topVec += linear; m_bottomVec += angular; }
void addValue(const btScalar &ax, const btScalar &ay, const btScalar &az, const btScalar &lx, const btScalar &ly, const btScalar &lz)
{
m_topVec[0] += ax; m_topVec[1] += ay; m_topVec[2] += az;
m_bottomVec[0] += lx; m_bottomVec[1] += ly; m_bottomVec[2] += lz;
}
//
const btVector3 & getAngular() const { return m_topVec; }
const btVector3 & getLinear() const { return m_bottomVec; }
//
void setAngular(const btVector3 &angular) { m_topVec = angular; }
void setLinear(const btVector3 &linear) { m_bottomVec = linear; }
//
void addAngular(const btVector3 &angular) { m_topVec += angular; }
void addLinear(const btVector3 &linear) { m_bottomVec += linear; }
//
void setZero() { m_topVec.setZero(); m_bottomVec.setZero(); }
//
btScalar dot(const btSpatialForceVector &b) const
{
return m_bottomVec.dot(b.m_topVec) + m_topVec.dot(b.m_bottomVec);
}
//
template<typename SpatialVectorType>
void cross(const SpatialVectorType &b, SpatialVectorType &out) const
{
out.m_topVec = m_topVec.cross(b.m_topVec);
out.m_bottomVec = m_bottomVec.cross(b.m_topVec) + m_topVec.cross(b.m_bottomVec);
}
template<typename SpatialVectorType>
SpatialVectorType cross(const SpatialVectorType &b) const
{
SpatialVectorType out;
out.m_topVec = m_topVec.cross(b.m_topVec);
out.m_bottomVec = m_bottomVec.cross(b.m_topVec) + m_topVec.cross(b.m_bottomVec);
return out;
}
//
btSpatialMotionVector & operator += (const btSpatialMotionVector &vec) { m_topVec += vec.m_topVec; m_bottomVec += vec.m_bottomVec; return *this; }
btSpatialMotionVector & operator -= (const btSpatialMotionVector &vec) { m_topVec -= vec.m_topVec; m_bottomVec -= vec.m_bottomVec; return *this; }
btSpatialMotionVector operator - (const btSpatialMotionVector &vec) const { return btSpatialMotionVector(m_topVec - vec.m_topVec, m_bottomVec - vec.m_bottomVec); }
btSpatialMotionVector operator + (const btSpatialMotionVector &vec) const { return btSpatialMotionVector(m_topVec + vec.m_topVec, m_bottomVec + vec.m_bottomVec); }
btSpatialMotionVector operator - () const { return btSpatialMotionVector(-m_topVec, -m_bottomVec); }
btSpatialMotionVector operator * (const btScalar &s) const { return btSpatialMotionVector(s * m_topVec, s * m_bottomVec); }
};
struct btSymmetricSpatialDyad
{
btMatrix3x3 m_topLeftMat, m_topRightMat, m_bottomLeftMat;
//
btSymmetricSpatialDyad() { setIdentity(); }
btSymmetricSpatialDyad(const btMatrix3x3 &topLeftMat, const btMatrix3x3 &topRightMat, const btMatrix3x3 &bottomLeftMat) { setMatrix(topLeftMat, topRightMat, bottomLeftMat); }
//
void setMatrix(const btMatrix3x3 &topLeftMat, const btMatrix3x3 &topRightMat, const btMatrix3x3 &bottomLeftMat)
{
m_topLeftMat = topLeftMat;
m_topRightMat = topRightMat;
m_bottomLeftMat = bottomLeftMat;
}
//
void addMatrix(const btMatrix3x3 &topLeftMat, const btMatrix3x3 &topRightMat, const btMatrix3x3 &bottomLeftMat)
{
m_topLeftMat += topLeftMat;
m_topRightMat += topRightMat;
m_bottomLeftMat += bottomLeftMat;
}
//
void setIdentity() { m_topLeftMat.setIdentity(); m_topRightMat.setIdentity(); m_bottomLeftMat.setIdentity(); }
//
btSymmetricSpatialDyad & operator -= (const btSymmetricSpatialDyad &mat)
{
m_topLeftMat -= mat.m_topLeftMat;
m_topRightMat -= mat.m_topRightMat;
m_bottomLeftMat -= mat.m_bottomLeftMat;
return *this;
}
//
btSpatialForceVector operator * (const btSpatialMotionVector &vec)
{
return btSpatialForceVector(m_bottomLeftMat * vec.m_topVec + m_topLeftMat.transpose() * vec.m_bottomVec, m_topLeftMat * vec.m_topVec + m_topRightMat * vec.m_bottomVec);
}
};
struct btSpatialTransformationMatrix
{
btMatrix3x3 m_rotMat; //btMatrix3x3 m_trnCrossMat;
btVector3 m_trnVec;
//
enum eOutputOperation
{
None = 0,
Add = 1,
Subtract = 2
};
//
template<typename SpatialVectorType>
void transform( const SpatialVectorType &inVec,
SpatialVectorType &outVec,
eOutputOperation outOp = None)
{
if(outOp == None)
{
outVec.m_topVec = m_rotMat * inVec.m_topVec;
outVec.m_bottomVec = -m_trnVec.cross(outVec.m_topVec) + m_rotMat * inVec.m_bottomVec;
}
else if(outOp == Add)
{
outVec.m_topVec += m_rotMat * inVec.m_topVec;
outVec.m_bottomVec += -m_trnVec.cross(outVec.m_topVec) + m_rotMat * inVec.m_bottomVec;
}
else if(outOp == Subtract)
{
outVec.m_topVec -= m_rotMat * inVec.m_topVec;
outVec.m_bottomVec -= -m_trnVec.cross(outVec.m_topVec) + m_rotMat * inVec.m_bottomVec;
}
}
template<typename SpatialVectorType>
void transformRotationOnly( const SpatialVectorType &inVec,
SpatialVectorType &outVec,
eOutputOperation outOp = None)
{
if(outOp == None)
{
outVec.m_topVec = m_rotMat * inVec.m_topVec;
outVec.m_bottomVec = m_rotMat * inVec.m_bottomVec;
}
else if(outOp == Add)
{
outVec.m_topVec += m_rotMat * inVec.m_topVec;
outVec.m_bottomVec += m_rotMat * inVec.m_bottomVec;
}
else if(outOp == Subtract)
{
outVec.m_topVec -= m_rotMat * inVec.m_topVec;
outVec.m_bottomVec -= m_rotMat * inVec.m_bottomVec;
}
}
template<typename SpatialVectorType>
void transformInverse( const SpatialVectorType &inVec,
SpatialVectorType &outVec,
eOutputOperation outOp = None)
{
if(outOp == None)
{
outVec.m_topVec = m_rotMat.transpose() * inVec.m_topVec;
outVec.m_bottomVec = m_rotMat.transpose() * (inVec.m_bottomVec + m_trnVec.cross(inVec.m_topVec));
}
else if(outOp == Add)
{
outVec.m_topVec += m_rotMat.transpose() * inVec.m_topVec;
outVec.m_bottomVec += m_rotMat.transpose() * (inVec.m_bottomVec + m_trnVec.cross(inVec.m_topVec));
}
else if(outOp == Subtract)
{
outVec.m_topVec -= m_rotMat.transpose() * inVec.m_topVec;
outVec.m_bottomVec -= m_rotMat.transpose() * (inVec.m_bottomVec + m_trnVec.cross(inVec.m_topVec));
}
}
void transformInverse( const btSymmetricSpatialDyad &inMat,
btSymmetricSpatialDyad &outMat,
eOutputOperation outOp = None)
{
const btMatrix3x3 r_cross( 0, -m_trnVec[2], m_trnVec[1],
m_trnVec[2], 0, -m_trnVec[0],
-m_trnVec[1], m_trnVec[0], 0);
if(outOp == None)
{
outMat.m_topLeftMat = m_rotMat.transpose() * ( inMat.m_topLeftMat - inMat.m_topRightMat * r_cross ) * m_rotMat;
outMat.m_topRightMat = m_rotMat.transpose() * inMat.m_topRightMat * m_rotMat;
outMat.m_bottomLeftMat = m_rotMat.transpose() * (r_cross * (inMat.m_topLeftMat - inMat.m_topRightMat * r_cross) + inMat.m_bottomLeftMat - inMat.m_topLeftMat.transpose() * r_cross) * m_rotMat;
}
else if(outOp == Add)
{
outMat.m_topLeftMat += m_rotMat.transpose() * ( inMat.m_topLeftMat - inMat.m_topRightMat * r_cross ) * m_rotMat;
outMat.m_topRightMat += m_rotMat.transpose() * inMat.m_topRightMat * m_rotMat;
outMat.m_bottomLeftMat += m_rotMat.transpose() * (r_cross * (inMat.m_topLeftMat - inMat.m_topRightMat * r_cross) + inMat.m_bottomLeftMat - inMat.m_topLeftMat.transpose() * r_cross) * m_rotMat;
}
else if(outOp == Subtract)
{
outMat.m_topLeftMat -= m_rotMat.transpose() * ( inMat.m_topLeftMat - inMat.m_topRightMat * r_cross ) * m_rotMat;
outMat.m_topRightMat -= m_rotMat.transpose() * inMat.m_topRightMat * m_rotMat;
outMat.m_bottomLeftMat -= m_rotMat.transpose() * (r_cross * (inMat.m_topLeftMat - inMat.m_topRightMat * r_cross) + inMat.m_bottomLeftMat - inMat.m_topLeftMat.transpose() * r_cross) * m_rotMat;
}
}
template<typename SpatialVectorType>
SpatialVectorType operator * (const SpatialVectorType &vec)
{
SpatialVectorType out;
transform(vec, out);
return out;
}
};
template<typename SpatialVectorType>
void symmetricSpatialOuterProduct(const SpatialVectorType &a, const SpatialVectorType &b, btSymmetricSpatialDyad &out)
{
//output op maybe?
out.m_topLeftMat = outerProduct(a.m_topVec, b.m_bottomVec);
out.m_topRightMat = outerProduct(a.m_topVec, b.m_topVec);
out.m_topLeftMat = outerProduct(a.m_bottomVec, b.m_bottomVec);
//maybe simple a*spatTranspose(a) would be nicer?
}
template<typename SpatialVectorType>
btSymmetricSpatialDyad symmetricSpatialOuterProduct(const SpatialVectorType &a, const SpatialVectorType &b)
{
btSymmetricSpatialDyad out;
out.m_topLeftMat = outerProduct(a.m_topVec, b.m_bottomVec);
out.m_topRightMat = outerProduct(a.m_topVec, b.m_topVec);
out.m_bottomLeftMat = outerProduct(a.m_bottomVec, b.m_bottomVec);
return out;
//maybe simple a*spatTranspose(a) would be nicer?
}
#endif
}
//
// Link struct
//
@@ -33,75 +330,155 @@ struct btMultibodyLink
BT_DECLARE_ALIGNED_ALLOCATOR();
btScalar joint_pos; // qi
btScalar m_mass; // mass of link
btVector3 m_inertia; // inertia of link (local frame; diagonal)
btScalar mass; // mass of link
btVector3 inertia; // inertia of link (local frame; diagonal)
int m_parent; // index of the parent link (assumed to be < index of this link), or -1 if parent is the base link.
int parent; // index of the parent link (assumed to be < index of this link), or -1 if parent is the base link.
btQuaternion m_zeroRotParentToThis; // rotates vectors in parent-frame to vectors in local-frame (when q=0). constant.
btQuaternion zero_rot_parent_to_this; // rotates vectors in parent-frame to vectors in local-frame (when q=0). constant.
btVector3 m_dVector; // vector from the inboard joint pos to this link's COM. (local frame.) constant. set for revolute joints only.
// "axis" = spatial joint axis (Mirtich Defn 9 p104). (expressed in local frame.) constant.
// for prismatic: axis_top = zero;
// axis_bottom = unit vector along the joint axis.
// for revolute: axis_top = unit vector along the rotation axis (u);
// axis_bottom = u cross d_vector.
btVector3 axis_top;
btVector3 axis_bottom;
btVector3 d_vector; // vector from the inboard joint pos to this link's COM. (local frame.) constant. set for revolute joints only.
// e_vector is constant, but depends on the joint type
// m_eVector is constant, but depends on the joint type
// prismatic: vector from COM of parent to COM of this link, WHEN Q = 0. (local frame.)
// revolute: vector from parent's COM to the pivot point, in PARENT's frame.
btVector3 e_vector;
btVector3 m_eVector;
bool is_revolute; // true = revolute, false = prismatic
enum eFeatherstoneJointType
{
eRevolute = 0,
ePrismatic = 1,
eSpherical = 2,
#ifdef BT_MULTIBODYLINK_INCLUDE_PLANAR_JOINTS
ePlanar = 3,
#endif
eInvalid
};
btQuaternion cached_rot_parent_to_this; // rotates vectors in parent frame to vectors in local frame
btVector3 cached_r_vector; // vector from COM of parent to COM of this link, in local frame.
eFeatherstoneJointType m_jointType;
int m_dofCount, m_posVarCount; //redundant but handy
btVector3 applied_force; // In WORLD frame
btVector3 applied_torque; // In WORLD frame
btScalar joint_torque;
// "axis" = spatial joint axis (Mirtich Defn 9 p104). (expressed in local frame.) constant.
// for prismatic: m_axesTop[0] = zero;
// m_axesBottom[0] = unit vector along the joint axis.
// for revolute: m_axesTop[0] = unit vector along the rotation axis (u);
// m_axesBottom[0] = u cross m_dVector (i.e. COM linear motion due to the rotation at the joint)
//
// for spherical: m_axesTop[0][1][2] (u1,u2,u3) form a 3x3 identity matrix (3 rotation axes)
// m_axesBottom[0][1][2] cross u1,u2,u3 (i.e. COM linear motion due to the rotation at the joint)
//
// for planar: m_axesTop[0] = unit vector along the rotation axis (u); defines the plane of motion
// m_axesTop[1][2] = zero
// m_axesBottom[0] = zero
// m_axesBottom[1][2] = unit vectors along the translational axes on that plane
#ifndef TEST_SPATIAL_ALGEBRA_LAYER
btVector3 m_axesTop[6];
btVector3 m_axesBottom[6];
void setAxisTop(int dof, const btVector3 &axis) { m_axesTop[dof] = axis; }
void setAxisBottom(int dof, const btVector3 &axis) { m_axesBottom[dof] = axis; }
void setAxisTop(int dof, const btScalar &x, const btScalar &y, const btScalar &z) { m_axesTop[dof].setValue(x, y, z); }
void setAxisBottom(int dof, const btScalar &x, const btScalar &y, const btScalar &z) { m_axesBottom[dof].setValue(x, y, z); }
const btVector3 & getAxisTop(int dof) const { return m_axesTop[dof]; }
const btVector3 & getAxisBottom(int dof) const { return m_axesBottom[dof]; }
#else
btSpatialMotionVector m_axes[6];
void setAxisTop(int dof, const btVector3 &axis) { m_axes[dof].m_topVec = axis; }
void setAxisBottom(int dof, const btVector3 &axis) { m_axes[dof].m_bottomVec = axis; }
void setAxisTop(int dof, const btScalar &x, const btScalar &y, const btScalar &z) { m_axes[dof].m_topVec.setValue(x, y, z); }
void setAxisBottom(int dof, const btScalar &x, const btScalar &y, const btScalar &z) { m_axes[dof].m_bottomVec.setValue(x, y, z); }
const btVector3 & getAxisTop(int dof) const { return m_axes[dof].m_topVec; }
const btVector3 & getAxisBottom(int dof) const { return m_axes[dof].m_bottomVec; }
#endif
int m_dofOffset;
btQuaternion m_cachedRotParentToThis; // rotates vectors in parent frame to vectors in local frame
btVector3 m_cachedRVector; // vector from COM of parent to COM of this link, in local frame.
btVector3 m_appliedForce; // In WORLD frame
btVector3 m_appliedTorque; // In WORLD frame
btScalar m_jointPos[7];
btScalar m_jointTorque[6]; //TODO
class btMultiBodyLinkCollider* m_collider;
int m_flags;
// ctor: set some sensible defaults
btMultibodyLink()
: joint_pos(0),
mass(1),
parent(-1),
zero_rot_parent_to_this(1, 0, 0, 0),
is_revolute(false),
cached_rot_parent_to_this(1, 0, 0, 0),
joint_torque(0),
: m_mass(1),
m_parent(-1),
m_zeroRotParentToThis(1, 0, 0, 0),
m_cachedRotParentToThis(1, 0, 0, 0),
m_collider(0),
m_flags(0)
m_flags(0),
m_dofCount(0),
m_posVarCount(0),
m_jointType(btMultibodyLink::eInvalid)
{
inertia.setValue(1, 1, 1);
axis_top.setValue(0, 0, 0);
axis_bottom.setValue(1, 0, 0);
d_vector.setValue(0, 0, 0);
e_vector.setValue(0, 0, 0);
cached_r_vector.setValue(0, 0, 0);
applied_force.setValue( 0, 0, 0);
applied_torque.setValue(0, 0, 0);
m_inertia.setValue(1, 1, 1);
setAxisTop(0, 0., 0., 0.);
setAxisBottom(0, 1., 0., 0.);
m_dVector.setValue(0, 0, 0);
m_eVector.setValue(0, 0, 0);
m_cachedRVector.setValue(0, 0, 0);
m_appliedForce.setValue( 0, 0, 0);
m_appliedTorque.setValue(0, 0, 0);
//
m_jointPos[0] = m_jointPos[1] = m_jointPos[2] = m_jointPos[4] = m_jointPos[5] = m_jointPos[6] = 0.f;
m_jointPos[3] = 1.f; //"quat.w"
m_jointTorque[0] = m_jointTorque[1] = m_jointTorque[2] = m_jointTorque[3] = m_jointTorque[4] = m_jointTorque[5] = 0.f;
}
// routine to update cached_rot_parent_to_this and cached_r_vector
// routine to update m_cachedRotParentToThis and m_cachedRVector
void updateCache()
{
if (is_revolute)
//multidof
if (m_jointType == eRevolute)
{
cached_rot_parent_to_this = btQuaternion(axis_top,-joint_pos) * zero_rot_parent_to_this;
cached_r_vector = d_vector + quatRotate(cached_rot_parent_to_this,e_vector);
m_cachedRotParentToThis = btQuaternion(getAxisTop(0),-m_jointPos[0]) * m_zeroRotParentToThis;
m_cachedRVector = m_dVector + quatRotate(m_cachedRotParentToThis,m_eVector);
} else
{
// cached_rot_parent_to_this never changes, so no need to update
cached_r_vector = e_vector + joint_pos * axis_bottom;
// m_cachedRotParentToThis never changes, so no need to update
m_cachedRVector = m_eVector + m_jointPos[0] * getAxisBottom(0);
}
}
void updateCacheMultiDof()
{
switch(m_jointType)
{
case eRevolute:
{
m_cachedRotParentToThis = btQuaternion(getAxisTop(0),-m_jointPos[0]) * m_zeroRotParentToThis;
m_cachedRVector = m_dVector + quatRotate(m_cachedRotParentToThis,m_eVector);
break;
}
case ePrismatic:
{
// m_cachedRotParentToThis never changes, so no need to update
m_cachedRVector = m_eVector + m_jointPos[0] * getAxisBottom(0);
break;
}
case eSpherical:
{
m_cachedRotParentToThis = btQuaternion(m_jointPos[0], m_jointPos[1], m_jointPos[2], -m_jointPos[3]) * m_zeroRotParentToThis;
m_cachedRVector = m_dVector + quatRotate(m_cachedRotParentToThis,m_eVector);
break;
}
#ifdef BT_MULTIBODYLINK_INCLUDE_PLANAR_JOINTS
case ePlanar:
{
m_cachedRotParentToThis = btQuaternion(getAxisTop(0),-m_jointPos[0]) * m_zeroRotParentToThis;
m_cachedRVector = quatRotate(btQuaternion(getAxisTop(0),-m_jointPos[0]), m_jointPos[1] * m_axesBottom[1] + m_jointPos[2] * m_axesBottom[2]) + quatRotate(m_cachedRotParentToThis,m_eVector);
break;
}
#endif
}
}
};