Use the opposite constraint axis inside the constraint solver for the second object (-normal).

This makes it easier to port existing constraints and makes it 100% compatible with ODE quickstep constraint layout (getInfo2)
This commit is contained in:
erwin.coumans
2008-12-03 04:52:23 +00:00
parent 12a9a6e412
commit a064fd2052
4 changed files with 43 additions and 48 deletions

View File

@@ -27,9 +27,9 @@ int main(int argc,char** argv)
GLDebugDrawer gDebugDrawer;
// BenchmarkDemo1 benchmarkDemo;
// BenchmarkDemo2 benchmarkDemo;
BenchmarkDemo2 benchmarkDemo;
// BenchmarkDemo3 benchmarkDemo;
BenchmarkDemo4 benchmarkDemo;
// BenchmarkDemo4 benchmarkDemo;
// BenchmarkDemo5 benchmarkDemo;
// BenchmarkDemo6 benchmarkDemo;
// BenchmarkDemo7 benchmarkDemo;

View File

@@ -773,7 +773,7 @@ void DemoApplication::mouseMotionFunc(int x,int y)
btRigidBody* DemoApplication::localCreateRigidBody(float mass, const btTransform& startTransform,btCollisionShape* shape)
{
btAssert(shape->getShapeType() != INVALID_SHAPE_PROXYTYPE);
btAssert((!shape || shape->getShapeType() != INVALID_SHAPE_PROXYTYPE));
//rigidbody is dynamic if and only if mass is non zero, otherwise static
bool isDynamic = (mass != 0.f);

View File

@@ -63,10 +63,9 @@ SIMD_FORCE_INLINE void btSequentialImpulseConstraintSolver::resolveSingleConstra
__m128 upperLimit1 = _mm_set1_ps(c.m_upperLimit);
__m128 deltaImpulse = _mm_sub_ps(_mm_set1_ps(c.m_rhs), _mm_mul_ps(_mm_set1_ps(c.m_appliedImpulse),_mm_set1_ps(c.m_cfm)));
__m128 deltaVel1Dotn = _mm_add_ps(_vmathVfDot3(c.m_contactNormal.mVec128,body1.m_deltaLinearVelocity.mVec128), _vmathVfDot3(c.m_relpos1CrossNormal.mVec128,body1.m_deltaAngularVelocity.mVec128));
__m128 deltaVel2Dotn = _mm_add_ps(_vmathVfDot3(c.m_contactNormal.mVec128,body2.m_deltaLinearVelocity.mVec128) ,_vmathVfDot3(c.m_relpos2CrossNormal.mVec128,body2.m_deltaAngularVelocity.mVec128));
__m128 delta_rel_vel = _mm_sub_ps(deltaVel1Dotn,deltaVel2Dotn);
__m128 deltaVel2Dotn = _mm_add_ps(_vmathVfDot3((-c.m_contactNormal).mVec128,body2.m_deltaLinearVelocity.mVec128) ,_vmathVfDot3(c.m_relpos2CrossNormal.mVec128,body2.m_deltaAngularVelocity.mVec128));
deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel1Dotn,_mm_set1_ps(c.m_jacDiagABInv)));
deltaImpulse = _mm_add_ps(deltaImpulse,_mm_mul_ps(deltaVel2Dotn,_mm_set1_ps(c.m_jacDiagABInv)));
deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel2Dotn,_mm_set1_ps(c.m_jacDiagABInv)));
btSimdScalar sum = _mm_add_ps(cpAppliedImp,deltaImpulse);
btSimdScalar resultLowerLess,resultUpperLess;
resultLowerLess = _mm_cmplt_ps(sum,lowerLimit1);
@@ -78,12 +77,12 @@ SIMD_FORCE_INLINE void btSequentialImpulseConstraintSolver::resolveSingleConstra
deltaImpulse = _mm_or_ps( _mm_and_ps(resultUpperLess, deltaImpulse), _mm_andnot_ps(resultUpperLess, upperMinApplied) );
c.m_appliedImpulse = _mm_or_ps( _mm_and_ps(resultUpperLess, c.m_appliedImpulse), _mm_andnot_ps(resultUpperLess, upperLimit1) );
__m128 linearComponentA = _mm_mul_ps(c.m_contactNormal.mVec128,_mm_set1_ps(body1.m_invMass));
__m128 linearComponentB = _mm_mul_ps(c.m_contactNormal.mVec128,_mm_set1_ps(body2.m_invMass));
__m128 linearComponentB = _mm_mul_ps((-c.m_contactNormal).mVec128,_mm_set1_ps(body2.m_invMass));
__m128 impulseMagnitude = deltaImpulse;
body1.m_deltaLinearVelocity.mVec128 = _mm_add_ps(body1.m_deltaLinearVelocity.mVec128,_mm_mul_ps(linearComponentA,impulseMagnitude));
body1.m_deltaAngularVelocity.mVec128 = _mm_add_ps(body1.m_deltaAngularVelocity.mVec128 ,_mm_mul_ps(c.m_angularComponentA.mVec128,impulseMagnitude));
body2.m_deltaLinearVelocity.mVec128 = _mm_sub_ps(body2.m_deltaLinearVelocity.mVec128,_mm_mul_ps(linearComponentB,impulseMagnitude));
body2.m_deltaAngularVelocity.mVec128 = _mm_sub_ps(body2.m_deltaAngularVelocity.mVec128 ,_mm_mul_ps(c.m_angularComponentB.mVec128,impulseMagnitude));
body2.m_deltaLinearVelocity.mVec128 = _mm_add_ps(body2.m_deltaLinearVelocity.mVec128,_mm_mul_ps(linearComponentB,impulseMagnitude));
body2.m_deltaAngularVelocity.mVec128 = _mm_add_ps(body2.m_deltaAngularVelocity.mVec128 ,_mm_mul_ps(c.m_angularComponentB.mVec128,impulseMagnitude));
#else
resolveSingleConstraintRowGeneric(body1,body2,c);
#endif
@@ -94,10 +93,12 @@ SIMD_FORCE_INLINE void btSequentialImpulseConstraintSolver::resolveSingleConstra
{
btScalar deltaImpulse = c.m_rhs-btScalar(c.m_appliedImpulse)*c.m_cfm;
const btScalar deltaVel1Dotn = c.m_contactNormal.dot(body1.m_deltaLinearVelocity) + c.m_relpos1CrossNormal.dot(body1.m_deltaAngularVelocity);
const btScalar deltaVel2Dotn = c.m_contactNormal.dot(body2.m_deltaLinearVelocity) + c.m_relpos2CrossNormal.dot(body2.m_deltaAngularVelocity);
const btScalar deltaVel2Dotn = -c.m_contactNormal.dot(body2.m_deltaLinearVelocity) + c.m_relpos2CrossNormal.dot(body2.m_deltaAngularVelocity);
const btScalar delta_rel_vel = deltaVel1Dotn-deltaVel2Dotn;
deltaImpulse -= deltaVel1Dotn*c.m_jacDiagABInv;
deltaImpulse += deltaVel2Dotn*c.m_jacDiagABInv;
deltaImpulse -= deltaVel2Dotn*c.m_jacDiagABInv;
const btScalar sum = btScalar(c.m_appliedImpulse) + deltaImpulse;
if (sum < c.m_lowerLimit)
{
@@ -116,40 +117,34 @@ SIMD_FORCE_INLINE void btSequentialImpulseConstraintSolver::resolveSingleConstra
if (body1.m_invMass)
body1.applyImpulse(c.m_contactNormal*body1.m_invMass,c.m_angularComponentA,deltaImpulse);
if (body2.m_invMass)
body2.applyImpulse(c.m_contactNormal*body2.m_invMass,c.m_angularComponentB,-deltaImpulse);
body2.applyImpulse(-c.m_contactNormal*body2.m_invMass,c.m_angularComponentB,deltaImpulse);
}
SIMD_FORCE_INLINE void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowLowerLimitSIMD(btSolverBody& body1,btSolverBody& body2,const btSolverConstraint& c)
{
#ifdef USE_SIMD
__m128 cpAppliedImp = _mm_set1_ps(c.m_appliedImpulse);
__m128 lowerLimit1 = _mm_set1_ps(c.m_lowerLimit);
__m128 upperLimit1 = _mm_set1_ps(c.m_upperLimit);
__m128 deltaImpulse = _mm_sub_ps(_mm_set1_ps(c.m_rhs), _mm_mul_ps(_mm_set1_ps(c.m_appliedImpulse),_mm_set1_ps(c.m_cfm)));
__m128 deltaVel1Dotn = _mm_add_ps(_vmathVfDot3(c.m_contactNormal.mVec128,body1.m_deltaLinearVelocity.mVec128), _vmathVfDot3(c.m_relpos1CrossNormal.mVec128,body1.m_deltaAngularVelocity.mVec128));
__m128 deltaVel2Dotn = _mm_add_ps(_vmathVfDot3(c.m_contactNormal.mVec128,body2.m_deltaLinearVelocity.mVec128) ,_vmathVfDot3(c.m_relpos2CrossNormal.mVec128,body2.m_deltaAngularVelocity.mVec128));
__m128 delta_rel_vel = _mm_sub_ps(deltaVel1Dotn,deltaVel2Dotn);
__m128 deltaVel2Dotn = _mm_add_ps(_vmathVfDot3((-c.m_contactNormal).mVec128,body2.m_deltaLinearVelocity.mVec128) ,_vmathVfDot3(c.m_relpos2CrossNormal.mVec128,body2.m_deltaAngularVelocity.mVec128));
deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel1Dotn,_mm_set1_ps(c.m_jacDiagABInv)));
deltaImpulse = _mm_add_ps(deltaImpulse,_mm_mul_ps(deltaVel2Dotn,_mm_set1_ps(c.m_jacDiagABInv)));
deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel2Dotn,_mm_set1_ps(c.m_jacDiagABInv)));
btSimdScalar sum = _mm_add_ps(cpAppliedImp,deltaImpulse);
btSimdScalar resultLowerLess,resultUpperLess;
btSimdScalar resultLowerLess;
resultLowerLess = _mm_cmplt_ps(sum,lowerLimit1);
__m128 lowMinApplied = _mm_sub_ps(lowerLimit1,cpAppliedImp);
deltaImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowMinApplied), _mm_andnot_ps(resultLowerLess, deltaImpulse) );
c.m_appliedImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowerLimit1), _mm_andnot_ps(resultLowerLess, sum) );
__m128 linearComponentA = _mm_mul_ps(c.m_contactNormal.mVec128,_mm_set1_ps(body1.m_invMass));
__m128 linearComponentB = _mm_mul_ps(c.m_contactNormal.mVec128,_mm_set1_ps(body2.m_invMass));
//body1.applyImpulse(c.m_contactNormal*body1.m_invMass.m_vec128,c.m_angularComponentA,deltaImpulse);
//body2.applyImpulse(c.m_contactNormal*body2.m_invMass.m_vec128,c.m_angularComponentB,-deltaImpulse);
__m128 linearComponentB = _mm_mul_ps((-c.m_contactNormal).mVec128,_mm_set1_ps(body2.m_invMass));
__m128 impulseMagnitude = deltaImpulse;
body1.m_deltaLinearVelocity.mVec128 = _mm_add_ps(body1.m_deltaLinearVelocity.mVec128,_mm_mul_ps(linearComponentA,impulseMagnitude));
body1.m_deltaAngularVelocity.mVec128 = _mm_add_ps(body1.m_deltaAngularVelocity.mVec128 ,_mm_mul_ps(c.m_angularComponentA.mVec128,impulseMagnitude));
body2.m_deltaLinearVelocity.mVec128 = _mm_sub_ps(body2.m_deltaLinearVelocity.mVec128,_mm_mul_ps(linearComponentB,impulseMagnitude));
body2.m_deltaAngularVelocity.mVec128 = _mm_sub_ps(body2.m_deltaAngularVelocity.mVec128 ,_mm_mul_ps(c.m_angularComponentB.mVec128,impulseMagnitude));
body2.m_deltaLinearVelocity.mVec128 = _mm_add_ps(body2.m_deltaLinearVelocity.mVec128,_mm_mul_ps(linearComponentB,impulseMagnitude));
body2.m_deltaAngularVelocity.mVec128 = _mm_add_ps(body2.m_deltaAngularVelocity.mVec128 ,_mm_mul_ps(c.m_angularComponentB.mVec128,impulseMagnitude));
#else
resolveSingleConstraintRowLowerLimit(body1,body2,c);
#endif
@@ -160,10 +155,10 @@ SIMD_FORCE_INLINE void btSequentialImpulseConstraintSolver::resolveSingleConstra
{
btScalar deltaImpulse = c.m_rhs-btScalar(c.m_appliedImpulse)*c.m_cfm;
const btScalar deltaVel1Dotn = c.m_contactNormal.dot(body1.m_deltaLinearVelocity) + c.m_relpos1CrossNormal.dot(body1.m_deltaAngularVelocity);
const btScalar deltaVel2Dotn = c.m_contactNormal.dot(body2.m_deltaLinearVelocity) + c.m_relpos2CrossNormal.dot(body2.m_deltaAngularVelocity);
const btScalar delta_rel_vel = deltaVel1Dotn-deltaVel2Dotn;
const btScalar deltaVel2Dotn = -c.m_contactNormal.dot(body2.m_deltaLinearVelocity) + c.m_relpos2CrossNormal.dot(body2.m_deltaAngularVelocity);
deltaImpulse -= deltaVel1Dotn*c.m_jacDiagABInv;
deltaImpulse += deltaVel2Dotn*c.m_jacDiagABInv;
deltaImpulse -= deltaVel2Dotn*c.m_jacDiagABInv;
const btScalar sum = btScalar(c.m_appliedImpulse) + deltaImpulse;
if (sum < c.m_lowerLimit)
{
@@ -177,7 +172,7 @@ SIMD_FORCE_INLINE void btSequentialImpulseConstraintSolver::resolveSingleConstra
if (body1.m_invMass)
body1.applyImpulse(c.m_contactNormal*body1.m_invMass,c.m_angularComponentA,deltaImpulse);
if (body2.m_invMass)
body2.applyImpulse(c.m_contactNormal*body2.m_invMass,c.m_angularComponentB,-deltaImpulse);
body2.applyImpulse(-c.m_contactNormal*body2.m_invMass,c.m_angularComponentB,deltaImpulse);
}
@@ -281,7 +276,7 @@ btSolverConstraint& btSequentialImpulseConstraintSolver::addFrictionConstraint(c
solverConstraint.m_angularComponentA = body0 ? body0->getInvInertiaTensorWorld()*ftorqueAxis1 : btVector3(0,0,0);
}
{
btVector3 ftorqueAxis1 = rel_pos2.cross(solverConstraint.m_contactNormal);
btVector3 ftorqueAxis1 = rel_pos2.cross(-solverConstraint.m_contactNormal);
solverConstraint.m_relpos2CrossNormal = ftorqueAxis1;
solverConstraint.m_angularComponentB = body1 ? body1->getInvInertiaTensorWorld()*ftorqueAxis1 : btVector3(0,0,0);
}
@@ -300,7 +295,7 @@ btSolverConstraint& btSequentialImpulseConstraintSolver::addFrictionConstraint(c
}
if (body1)
{
vec = ( solverConstraint.m_angularComponentB).cross(rel_pos2);
vec = ( -solverConstraint.m_angularComponentB).cross(rel_pos2);
denom1 = body1->getInvMass() + normalAxis.dot(vec);
}
@@ -323,10 +318,10 @@ btSolverConstraint& btSequentialImpulseConstraintSolver::addFrictionConstraint(c
btScalar rel_vel;
btScalar vel1Dotn = solverConstraint.m_contactNormal.dot(body0?body0->getLinearVelocity():btVector3(0,0,0))
+ solverConstraint.m_relpos1CrossNormal.dot(body0?body0->getAngularVelocity():btVector3(0,0,0));
btScalar vel2Dotn = solverConstraint.m_contactNormal.dot(body1?body1->getLinearVelocity():btVector3(0,0,0))
btScalar vel2Dotn = -solverConstraint.m_contactNormal.dot(body1?body1->getLinearVelocity():btVector3(0,0,0))
+ solverConstraint.m_relpos2CrossNormal.dot(body1?body1->getAngularVelocity():btVector3(0,0,0));
rel_vel = vel1Dotn-vel2Dotn;
rel_vel = vel1Dotn+vel2Dotn;
btScalar positionalError = 0.f;
positionalError = 0;//-solverConstraint.m_penetration * infoGlobal.m_erp/infoGlobal.m_timeStep;
@@ -508,9 +503,9 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCol
{
btScalar rel_vel;
btScalar vel1Dotn = solverConstraint.m_contactNormal.dot(rbA.getLinearVelocity()) + solverConstraint.m_relpos1CrossNormal.dot(rbA.getAngularVelocity());
btScalar vel2Dotn = solverConstraint.m_contactNormal.dot(rbB.getLinearVelocity()) + solverConstraint.m_relpos2CrossNormal.dot(rbB.getAngularVelocity());
btScalar vel2Dotn = -solverConstraint.m_contactNormal.dot(rbB.getLinearVelocity()) + solverConstraint.m_relpos2CrossNormal.dot(rbB.getAngularVelocity());
rel_vel = vel1Dotn-vel2Dotn;
rel_vel = vel1Dotn+vel2Dotn;
btScalar positionalError = solverConstraint.m_rhs;//already filled in by getConstraintInfo2
solverConstraint.m_restitution = 0.f;
@@ -588,7 +583,7 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCol
btVector3 torqueAxis0 = rel_pos1.cross(cp.m_normalWorldOnB);
solverConstraint.m_angularComponentA = rb0 ? rb0->getInvInertiaTensorWorld()*torqueAxis0 : btVector3(0,0,0);
btVector3 torqueAxis1 = rel_pos2.cross(cp.m_normalWorldOnB);
solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld()*torqueAxis1 : btVector3(0,0,0);
solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld()*-torqueAxis1 : btVector3(0,0,0);
{
#ifdef COMPUTE_IMPULSE_DENOM
btScalar denom0 = rb0->computeImpulseDenominator(pos1,cp.m_normalWorldOnB);
@@ -604,7 +599,7 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCol
}
if (rb1)
{
vec = ( solverConstraint.m_angularComponentB).cross(rel_pos2);
vec = ( -solverConstraint.m_angularComponentB).cross(rel_pos2);
denom1 = rb1->getInvMass() + cp.m_normalWorldOnB.dot(vec);
}
#endif //COMPUTE_IMPULSE_DENOM
@@ -615,7 +610,7 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCol
solverConstraint.m_contactNormal = cp.m_normalWorldOnB;
solverConstraint.m_relpos1CrossNormal = rel_pos1.cross(cp.m_normalWorldOnB);
solverConstraint.m_relpos2CrossNormal = rel_pos2.cross(cp.m_normalWorldOnB);
solverConstraint.m_relpos2CrossNormal = rel_pos2.cross(-cp.m_normalWorldOnB);
btVector3 vel1 = rb0 ? rb0->getVelocityInLocalPoint(rel_pos1) : btVector3(0,0,0);
@@ -658,7 +653,7 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCol
if (rb0)
m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdA].applyImpulse(solverConstraint.m_contactNormal*rb0->getInvMass(),solverConstraint.m_angularComponentA,solverConstraint.m_appliedImpulse);
if (rb1)
m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdB].applyImpulse(solverConstraint.m_contactNormal*rb1->getInvMass(),solverConstraint.m_angularComponentB,-solverConstraint.m_appliedImpulse);
m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdB].applyImpulse(solverConstraint.m_contactNormal*rb1->getInvMass(),-solverConstraint.m_angularComponentB,-solverConstraint.m_appliedImpulse);
} else
{
solverConstraint.m_appliedImpulse = 0.f;
@@ -670,10 +665,10 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCol
btScalar rel_vel;
btScalar vel1Dotn = solverConstraint.m_contactNormal.dot(rb0?rb0->getLinearVelocity():btVector3(0,0,0))
+ solverConstraint.m_relpos1CrossNormal.dot(rb0?rb0->getAngularVelocity():btVector3(0,0,0));
btScalar vel2Dotn = solverConstraint.m_contactNormal.dot(rb1?rb1->getLinearVelocity():btVector3(0,0,0))
btScalar vel2Dotn = -solverConstraint.m_contactNormal.dot(rb1?rb1->getLinearVelocity():btVector3(0,0,0))
+ solverConstraint.m_relpos2CrossNormal.dot(rb1?rb1->getAngularVelocity():btVector3(0,0,0));
rel_vel = vel1Dotn-vel2Dotn;
rel_vel = vel1Dotn+vel2Dotn;
btScalar positionalError = 0.f;
positionalError = -solverConstraint.m_penetration * infoGlobal.m_erp/infoGlobal.m_timeStep;
@@ -747,7 +742,7 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCol
if (rb0)
m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdA].applyImpulse(frictionConstraint1.m_contactNormal*rb0->getInvMass(),frictionConstraint1.m_angularComponentA,frictionConstraint1.m_appliedImpulse);
if (rb1)
m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdB].applyImpulse(frictionConstraint1.m_contactNormal*rb1->getInvMass(),frictionConstraint1.m_angularComponentB,-frictionConstraint1.m_appliedImpulse);
m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdB].applyImpulse(frictionConstraint1.m_contactNormal*rb1->getInvMass(),-frictionConstraint1.m_angularComponentB,-frictionConstraint1.m_appliedImpulse);
} else
{
frictionConstraint1.m_appliedImpulse = 0.f;
@@ -761,7 +756,7 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCol
if (rb0)
m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdA].applyImpulse(frictionConstraint2.m_contactNormal*rb0->getInvMass(),frictionConstraint2.m_angularComponentA,frictionConstraint2.m_appliedImpulse);
if (rb1)
m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdB].applyImpulse(frictionConstraint2.m_contactNormal*rb1->getInvMass(),frictionConstraint2.m_angularComponentB,-frictionConstraint2.m_appliedImpulse);
m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdB].applyImpulse(frictionConstraint2.m_contactNormal*rb1->getInvMass(),-frictionConstraint2.m_angularComponentB,-frictionConstraint2.m_appliedImpulse);
} else
{
frictionConstraint2.m_appliedImpulse = 0.f;
@@ -861,6 +856,7 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyIterations(
{
const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
resolveSingleConstraintRowLowerLimitSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
}
///solve all friction constraints, using SIMD, if available
int numFrictionPoolConstraints = m_tmpSolverContactFrictionConstraintPool.size();
@@ -874,8 +870,7 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyIterations(
solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse);
solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse;
resolveSingleConstraintRowGenericSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],
m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
resolveSingleConstraintRowGenericSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA], m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
}
}
} else
@@ -917,8 +912,7 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyIterations(
solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse);
solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse;
resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],
m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA], m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
}
}
}

View File

@@ -34,8 +34,9 @@ ATTRIBUTE_ALIGNED16 (struct) btSolverConstraint
btVector3 m_contactNormal;
btVector3 m_relpos2CrossNormal;
btVector3 m_angularComponentA;
//btVector3 m_contactNormal2;//usually m_contactNormal2 == -m_contactNormal
btVector3 m_angularComponentA;
btVector3 m_angularComponentB;
mutable btSimdScalar m_appliedPushImpulse;