more work on parallel dispatching of simulation islands

This commit is contained in:
ejcoumans
2006-07-01 03:33:05 +00:00
parent 57e8bd87d1
commit a359212fb3
13 changed files with 694 additions and 353 deletions

View File

@@ -14,4 +14,513 @@ subject to the following restrictions:
*/
#include "SimulationIsland.h"
#include "SimdTransform.h"
#include "CcdPhysicsController.h"
#include "BroadphaseCollision/OverlappingPairCache.h"
#include "CollisionShapes/CollisionShape.h"
#include "BroadphaseCollision/Dispatcher.h"
#include "ConstraintSolver/ContactSolverInfo.h"
#include "ConstraintSolver/ConstraintSolver.h"
extern float gContactBreakingTreshold;
bool SimulationIsland::Simulate(Dispatcher* dispatcher,BroadphaseInterface* broadphase,class ConstraintSolver* solver,float timeStep)
{
//then execute all stuff below for each simulation island
#ifdef USE_QUICKPROF
Profiler::endBlock("BuildIslands");
#endif //USE_QUICKPROF
///build simulation islands, and add them to a job queue, which can be processed in parallel
///or on the GPU
//printf("CcdPhysicsEnvironment::proceedDeltaTime\n");
if (SimdFuzzyZero(timeStep))
return true;
// if (m_debugDrawer)
// {
// gDisableDeactivation = (m_debugDrawer->GetDebugMode() & IDebugDraw::DBG_NoDeactivation);
// }
#ifdef USE_QUICKPROF
Profiler::beginBlock("SyncMotionStates");
#endif //USE_QUICKPROF
//this is needed because scaling is not known in advance, and scaling has to propagate to the shape
//if (!m_scalingPropagated)
//{
// SyncMotionStates(timeStep);
// m_scalingPropagated = true;
//}
#ifdef USE_QUICKPROF
Profiler::endBlock("SyncMotionStates");
Profiler::beginBlock("predictIntegratedTransform");
#endif //USE_QUICKPROF
{
// std::vector<CcdPhysicsController*>::iterator i;
int k;
for (k=0;k<GetNumControllers();k++)
{
CcdPhysicsController* ctrl = m_controllers[k];
// SimdTransform predictedTrans;
RigidBody* body = ctrl->GetRigidBody();
if (body->IsActive())
{
if (!body->IsStatic())
{
body->applyForces( timeStep);
body->integrateVelocities( timeStep);
body->predictIntegratedTransform(timeStep,body->m_interpolationWorldTransform);
}
}
}
}
#ifdef USE_QUICKPROF
Profiler::endBlock("predictIntegratedTransform");
#endif //USE_QUICKPROF
//BroadphaseInterface* scene = GetBroadphase();
//
// collision detection (?)
//
#ifdef USE_QUICKPROF
Profiler::beginBlock("DispatchAllCollisionPairs");
#endif //USE_QUICKPROF
// int numsubstep = m_numIterations;
DispatcherInfo dispatchInfo;
dispatchInfo.m_timeStep = timeStep;
dispatchInfo.m_stepCount = 0;
dispatchInfo.m_enableSatConvex = false;//m_enableSatCollisionDetection;
//pairCache->RefreshOverlappingPairs();
if (m_overlappingPairs.size())
{
dispatcher->DispatchAllCollisionPairs(&m_overlappingPairs[0],m_overlappingPairs.size(),dispatchInfo);///numsubstep,g);
}
#ifdef USE_QUICKPROF
Profiler::endBlock("DispatchAllCollisionPairs");
#endif //USE_QUICKPROF
/*
int numRigidBodies = m_controllers.size();
//contacts
#ifdef USE_QUICKPROF
Profiler::beginBlock("SolveConstraint");
#endif //USE_QUICKPROF
//solve the regular constraints (point 2 point, hinge, etc)
for (int g=0;g<numsubstep;g++)
{
//
// constraint solving
//
int i;
int numConstraints = m_constraints.size();
//point to point constraints
for (i=0;i< numConstraints ; i++ )
{
TypedConstraint* constraint = m_constraints[i];
constraint->BuildJacobian();
constraint->SolveConstraint( timeStep );
}
}
#ifdef USE_QUICKPROF
Profiler::endBlock("SolveConstraint");
#endif //USE_QUICKPROF
//solve the vehicles
#ifdef NEW_BULLET_VEHICLE_SUPPORT
//vehicles
int numVehicles = m_wrapperVehicles.size();
for (int i=0;i<numVehicles;i++)
{
WrapperVehicle* wrapperVehicle = m_wrapperVehicles[i];
RaycastVehicle* vehicle = wrapperVehicle->GetVehicle();
vehicle->UpdateVehicle( timeStep);
}
#endif //NEW_BULLET_VEHICLE_SUPPORT
struct InplaceSolverIslandCallback : public ParallelIslandDispatcher::IslandCallback
{
ContactSolverInfo& m_solverInfo;
ConstraintSolver* m_solver;
IDebugDraw* m_debugDrawer;
InplaceSolverIslandCallback(
ContactSolverInfo& solverInfo,
ConstraintSolver* solver,
IDebugDraw* debugDrawer)
:m_solverInfo(solverInfo),
m_solver(solver),
m_debugDrawer(debugDrawer)
{
}
virtual void ProcessIsland(PersistentManifold** manifolds,int numManifolds)
{
m_solver->SolveGroup( manifolds, numManifolds,m_solverInfo,m_debugDrawer);
}
};
m_solverInfo.m_friction = 0.9f;
m_solverInfo.m_numIterations = m_numIterations;
m_solverInfo.m_timeStep = timeStep;
m_solverInfo.m_restitution = 0.f;//m_restitution;
InplaceSolverIslandCallback solverCallback(
m_solverInfo,
m_solver,
m_debugDrawer);
#ifdef USE_QUICKPROF
Profiler::beginBlock("BuildAndProcessIslands");
#endif //USE_QUICKPROF
/// solve all the contact points and contact friction
GetDispatcher()->BuildAndProcessIslands(m_collisionWorld->GetCollisionObjectArray(),&solverCallback);
#ifdef USE_QUICKPROF
Profiler::endBlock("BuildAndProcessIslands");
Profiler::beginBlock("CallbackTriggers");
#endif //USE_QUICKPROF
CallbackTriggers();
#ifdef USE_QUICKPROF
Profiler::endBlock("CallbackTriggers");
}
*/
//OverlappingPairCache* scene = GetCollisionWorld()->GetPairCache();
ContactSolverInfo solverInfo;
solverInfo.m_friction = 0.9f;
solverInfo.m_numIterations = 10;//m_numIterations;
solverInfo.m_timeStep = timeStep;
solverInfo.m_restitution = 0.f;//m_restitution;
if (m_manifolds.size())
{
solver->SolveGroup( &m_manifolds[0],m_manifolds.size(),solverInfo,0);
}
#ifdef USE_QUICKPROF
Profiler::beginBlock("proceedToTransform");
#endif //USE_QUICKPROF
{
{
UpdateAabbs(broadphase,timeStep);
float toi = 1.f;
/* if (m_ccdMode == 3)
{
DispatcherInfo dispatchInfo;
dispatchInfo.m_timeStep = timeStep;
dispatchInfo.m_stepCount = 0;
dispatchInfo.m_dispatchFunc = DispatcherInfo::DISPATCH_CONTINUOUS;
// GetCollisionWorld()->GetDispatcher()->DispatchAllCollisionPairs(scene,dispatchInfo);
toi = dispatchInfo.m_timeOfImpact;
}
*/
//
// integrating solution
//
{
std::vector<CcdPhysicsController*>::iterator i;
for (i=m_controllers.begin();
!(i==m_controllers.end()); i++)
{
CcdPhysicsController* ctrl = *i;
SimdTransform predictedTrans;
RigidBody* body = ctrl->GetRigidBody();
if (body->IsActive())
{
if (!body->IsStatic())
{
body->predictIntegratedTransform(timeStep* toi, predictedTrans);
body->proceedToTransform( predictedTrans);
}
}
}
}
//
// disable sleeping physics objects
//
std::vector<CcdPhysicsController*> m_sleepingControllers;
std::vector<CcdPhysicsController*>::iterator i;
for (i=m_controllers.begin();
!(i==m_controllers.end()); i++)
{
CcdPhysicsController* ctrl = (*i);
RigidBody* body = ctrl->GetRigidBody();
ctrl->UpdateDeactivation(timeStep);
if (ctrl->wantsSleeping())
{
if (body->GetActivationState() == ACTIVE_TAG)
body->SetActivationState( WANTS_DEACTIVATION );
} else
{
if (body->GetActivationState() != DISABLE_DEACTIVATION)
body->SetActivationState( ACTIVE_TAG );
}
if (true)
{
if (body->GetActivationState() == ISLAND_SLEEPING)
{
m_sleepingControllers.push_back(ctrl);
}
} else
{
if (ctrl->wantsSleeping())
{
m_sleepingControllers.push_back(ctrl);
}
}
}
}
#ifdef USE_QUICKPROF
Profiler::endBlock("proceedToTransform");
Profiler::beginBlock("SyncMotionStates");
#endif //USE_QUICKPROF
SyncMotionStates(timeStep);
#ifdef USE_QUICKPROF
Profiler::endBlock("SyncMotionStates");
Profiler::endProfilingCycle();
#endif //USE_QUICKPROF
#ifdef NEW_BULLET_VEHICLE_SUPPORT
//sync wheels for vehicles
int numVehicles = m_wrapperVehicles.size();
for (int i=0;i<numVehicles;i++)
{
WrapperVehicle* wrapperVehicle = m_wrapperVehicles[i];
wrapperVehicle->SyncWheels();
}
#endif //NEW_BULLET_VEHICLE_SUPPORT
return true;
}
}
void SimulationIsland::SyncMotionStates(float timeStep)
{
std::vector<CcdPhysicsController*>::iterator i;
//
// synchronize the physics and graphics transformations
//
for (i=m_controllers.begin();
!(i==m_controllers.end()); i++)
{
CcdPhysicsController* ctrl = (*i);
ctrl->SynchronizeMotionStates(timeStep);
}
}
void SimulationIsland::UpdateAabbs(BroadphaseInterface* scene,float timeStep)
{
std::vector<CcdPhysicsController*>::iterator i;
//
// update aabbs, only for moving objects (!)
//
for (i=m_controllers.begin();
!(i==m_controllers.end()); i++)
{
CcdPhysicsController* ctrl = (*i);
RigidBody* body = ctrl->GetRigidBody();
SimdPoint3 minAabb,maxAabb;
CollisionShape* shapeinterface = ctrl->GetCollisionShape();
shapeinterface->CalculateTemporalAabb(body->getCenterOfMassTransform(),
body->getLinearVelocity(),
//body->getAngularVelocity(),
SimdVector3(0.f,0.f,0.f),//no angular effect for now //body->getAngularVelocity(),
timeStep,minAabb,maxAabb);
SimdVector3 manifoldExtraExtents(gContactBreakingTreshold,gContactBreakingTreshold,gContactBreakingTreshold);
minAabb -= manifoldExtraExtents;
maxAabb += manifoldExtraExtents;
BroadphaseProxy* bp = body->m_broadphaseHandle;
if (bp)
{
SimdVector3 color (1,1,0);
class IDebugDraw* m_debugDrawer = 0;
/*
if (m_debugDrawer)
{
//draw aabb
switch (body->GetActivationState())
{
case ISLAND_SLEEPING:
{
color.setValue(1,1,1);
break;
}
case WANTS_DEACTIVATION:
{
color.setValue(0,0,1);
break;
}
case ACTIVE_TAG:
{
break;
}
case DISABLE_DEACTIVATION:
{
color.setValue(1,0,1);
};
};
if (m_debugDrawer->GetDebugMode() & IDebugDraw::DBG_DrawAabb)
{
DrawAabb(m_debugDrawer,minAabb,maxAabb,color);
}
}
*/
if ( (maxAabb-minAabb).length2() < 1e12f)
{
scene->SetAabb(bp,minAabb,maxAabb);
} else
{
//something went wrong, investigate
//removeCcdPhysicsController(ctrl);
body->SetActivationState(DISABLE_SIMULATION);
static bool reportMe = true;
if (reportMe)
{
reportMe = false;
printf("Overflow in AABB, object removed from simulation \n");
printf("If you can reproduce this, please email bugs@continuousphysics.com\n");
printf("Please include above information, your Platform, version of OS.\n");
printf("Thanks.\n");
}
}
}
}
}