make sure that the pre-trained galloping and trotting policies work for the minitaur_reactive_env and minitaur_trotting_env environments.
This commit is contained in:
@@ -0,0 +1,157 @@
|
||||
# Copyright 2017 The TensorFlow Agents Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
r"""Script to render videos of the Proximal Policy Gradient algorithm.
|
||||
|
||||
Command line:
|
||||
|
||||
python3 -m agents.scripts.visualize \
|
||||
--logdir=/path/to/logdir/<time>-<config> --outdir=/path/to/outdir/
|
||||
"""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import functools
|
||||
import os
|
||||
|
||||
import gym
|
||||
import tensorflow as tf
|
||||
|
||||
from pybullet_envs.minitaur.agents import tools
|
||||
from pybullet_envs.minitaur.agents.scripts import utility
|
||||
|
||||
|
||||
def _create_environment(config, outdir):
|
||||
"""Constructor for an instance of the environment.
|
||||
|
||||
Args:
|
||||
config: Object providing configurations via attributes.
|
||||
outdir: Directory to store videos in.
|
||||
|
||||
Returns:
|
||||
Wrapped OpenAI Gym environment.
|
||||
"""
|
||||
if isinstance(config.env, str):
|
||||
env = gym.make(config.env)
|
||||
else:
|
||||
env = config.env()
|
||||
# Ensure that the environment has the specification attribute set as expected
|
||||
# by the monitor wrapper.
|
||||
if not hasattr(env, 'spec'):
|
||||
setattr(env, 'spec', getattr(env, 'spec', None))
|
||||
if config.max_length:
|
||||
env = tools.wrappers.LimitDuration(env, config.max_length)
|
||||
# env = gym.wrappers.Monitor(
|
||||
# env, outdir, lambda unused_episode_number: True)
|
||||
env = tools.wrappers.RangeNormalize(env)
|
||||
env = tools.wrappers.ClipAction(env)
|
||||
env = tools.wrappers.ConvertTo32Bit(env)
|
||||
return env
|
||||
|
||||
|
||||
def _define_loop(graph, eval_steps):
|
||||
"""Create and configure an evaluation loop.
|
||||
|
||||
Args:
|
||||
graph: Object providing graph elements via attributes.
|
||||
eval_steps: Number of evaluation steps per epoch.
|
||||
|
||||
Returns:
|
||||
Loop object.
|
||||
"""
|
||||
loop = tools.Loop(
|
||||
None, graph.step, graph.should_log, graph.do_report, graph.force_reset)
|
||||
loop.add_phase(
|
||||
'eval', graph.done, graph.score, graph.summary, eval_steps,
|
||||
report_every=eval_steps,
|
||||
log_every=None,
|
||||
checkpoint_every=None,
|
||||
feed={graph.is_training: False})
|
||||
return loop
|
||||
|
||||
|
||||
def visualize(
|
||||
logdir, outdir, num_agents, num_episodes, checkpoint=None,
|
||||
env_processes=True):
|
||||
"""Recover checkpoint and render videos from it.
|
||||
|
||||
Args:
|
||||
logdir: Logging directory of the trained algorithm.
|
||||
outdir: Directory to store rendered videos in.
|
||||
num_agents: Number of environments to simulate in parallel.
|
||||
num_episodes: Total number of episodes to simulate.
|
||||
checkpoint: Checkpoint name to load; defaults to most recent.
|
||||
env_processes: Whether to step environments in separate processes.
|
||||
"""
|
||||
config = utility.load_config(logdir)
|
||||
with config.unlocked:
|
||||
config.network = functools.partial(
|
||||
utility.define_network, config.network, config)
|
||||
config.policy_optimizer = getattr(tf.train, config.policy_optimizer)
|
||||
config.value_optimizer = getattr(tf.train, config.value_optimizer)
|
||||
with tf.device('/cpu:0'):
|
||||
batch_env = utility.define_batch_env(
|
||||
lambda: _create_environment(config, outdir),
|
||||
num_agents, env_processes)
|
||||
graph = utility.define_simulation_graph(
|
||||
batch_env, config.algorithm, config)
|
||||
total_steps = num_episodes * config.max_length
|
||||
loop = _define_loop(graph, total_steps)
|
||||
saver = utility.define_saver(
|
||||
exclude=(r'.*_temporary/.*', r'global_step'))
|
||||
sess_config = tf.ConfigProto(allow_soft_placement=True)
|
||||
sess_config.gpu_options.allow_growth = True
|
||||
with tf.Session(config=sess_config) as sess:
|
||||
utility.initialize_variables(
|
||||
sess, saver, config.logdir, checkpoint, resume=True)
|
||||
for unused_score in loop.run(sess, saver, total_steps):
|
||||
pass
|
||||
batch_env.close()
|
||||
|
||||
|
||||
def main(_):
|
||||
"""Load a trained algorithm and render videos."""
|
||||
utility.set_up_logging()
|
||||
if not FLAGS.logdir or not FLAGS.outdir:
|
||||
raise KeyError('You must specify logging and outdirs directories.')
|
||||
FLAGS.logdir = os.path.expanduser(FLAGS.logdir)
|
||||
FLAGS.outdir = os.path.expanduser(FLAGS.outdir)
|
||||
visualize(
|
||||
FLAGS.logdir, FLAGS.outdir, FLAGS.num_agents, FLAGS.num_episodes,
|
||||
FLAGS.checkpoint, FLAGS.env_processes)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
FLAGS = tf.app.flags.FLAGS
|
||||
tf.app.flags.DEFINE_string(
|
||||
'logdir', None,
|
||||
'Directory to the checkpoint of a training run.')
|
||||
tf.app.flags.DEFINE_string(
|
||||
'outdir', None,
|
||||
'Local directory for storing the monitoring outdir.')
|
||||
tf.app.flags.DEFINE_string(
|
||||
'checkpoint', None,
|
||||
'Checkpoint name to load; defaults to most recent.')
|
||||
tf.app.flags.DEFINE_integer(
|
||||
'num_agents', 1,
|
||||
'How many environments to step in parallel.')
|
||||
tf.app.flags.DEFINE_integer(
|
||||
'num_episodes', 5,
|
||||
'Minimum number of episodes to render.')
|
||||
tf.app.flags.DEFINE_boolean(
|
||||
'env_processes', True,
|
||||
'Step environments in separate processes to circumvent the GIL.')
|
||||
tf.app.run()
|
||||
Reference in New Issue
Block a user