fixes in btCollisionWorld and Raytracer, to allow 'all hits' (work in progress)

This commit is contained in:
ejcoumans
2007-12-11 03:00:53 +00:00
parent c1c01ff1a0
commit a537fb68b6
5 changed files with 286 additions and 135 deletions

View File

@@ -48,7 +48,8 @@ Very basic raytracer, rendering into a texture.
#include "BulletCollision/CollisionShapes/btCylinderShape.h"
#include "BulletCollision/CollisionShapes/btMinkowskiSumShape.h"
#include "BulletCollision/CollisionDispatch/btDefaultCollisionConfiguration.h"
#include "BulletCollision/BroadphaseCollision/btAxisSweep3.h"
#include "RenderTexture.h"
@@ -58,7 +59,7 @@ static btVoronoiSimplexSolver simplexSolver;
static float yaw=0.f,pitch=0.f,roll=0.f;
static const int maxNumObjects = 4;
static const int numObjects = 1;
static const int numObjects = 3;
static btConvexShape* shapePtr[maxNumObjects];
@@ -67,13 +68,16 @@ static btTransform transforms[maxNumObjects];
renderTexture* raytracePicture = 0;
//this applies to the raytracer virtual screen/image buffer
static int screenWidth = 128;
static int screenWidth = 100;
//float aspectRatio = (3.f/4.f);
static int screenHeight = 128;//screenWidth * aspectRatio;
static int screenHeight = 80;//screenWidth * aspectRatio;
GLuint glTextureId;
btConeShape myCone(1,1);
btSphereShape mysphere(1);
btBoxShape mybox(btVector3(1,1,1));
btCollisionWorld* m_collisionWorld = 0;
@@ -83,29 +87,45 @@ btConeShape myCone(1,1);
void Raytracer::initPhysics()
{
raytracePicture = new renderTexture(screenWidth,screenHeight);
m_ele = 0;
raytracePicture = new renderTexture(screenWidth,screenHeight);
myCone.setMargin(0.2f);
/// convex hull of 5 spheres
#define NUM_SPHERES 5
btVector3 inertiaHalfExtents(10.f,10.f,10.f);
btVector3 positions[NUM_SPHERES] = {
btVector3(-1.2f, -0.3f, 0.f),
btVector3(0.8f, -0.3f, 0.f),
btVector3(0.5f, 0.6f, 0.f),
btVector3(-0.5f, 0.6f, 0.f),
btVector3(0.f, 0.f, 0.f)
};
btVector3 sphereOffset1(0,0,0);
btScalar sphereRadius = 2.f;
btVector3 nonUniformScaling(0.5,2,0.5);
//choose shape
shapePtr[0] = &myCone;
shapePtr[1] = &mysphere;
shapePtr[2] = &mybox;
for (int i=0;i<numObjects;i++)
{
transforms[i].setIdentity();
btVector3 pos(0.f,0.f,-(2.5* numObjects * 0.5)+i*2.5f);
transforms[i].setOrigin( pos );
btQuaternion orn;
if (i < 2)
{
orn.setEuler(yaw,pitch,roll);
transforms[i].setRotation(orn);
}
}
m_collisionConfiguration = new btDefaultCollisionConfiguration();
m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
btVector3 worldMin(-1000,-1000,-1000);
btVector3 worldMax(1000,1000,1000);
m_overlappingPairCache = new btAxisSweep3(worldMin,worldMax);
m_collisionWorld = new btCollisionWorld(m_dispatcher,m_overlappingPairCache,m_collisionConfiguration);
for (int s=0;s<numObjects;s++)
{
btCollisionObject* obj = new btCollisionObject();
obj->setCollisionShape(shapePtr[s]);
obj->setWorldTransform(transforms[s]);
m_collisionWorld->addCollisionObject(obj);
}
}
@@ -129,6 +149,165 @@ int once = 1;
bool Raytracer::worldRaytest(const btVector3& rayFrom,const btVector3& rayTo,btVector3& worldNormal,btVector3& worldHitPoint)
{
struct AllRayResultCallback : public btCollisionWorld::RayResultCallback
{
AllRayResultCallback(const btVector3& rayFromWorld,const btVector3& rayToWorld)
:m_rayFromWorld(rayFromWorld),
m_rayToWorld(rayToWorld)
{
}
btVector3 m_rayFromWorld;//used to calculate hitPointWorld from hitFraction
btVector3 m_rayToWorld;
btVector3 m_hitNormalWorld;
btVector3 m_hitPointWorld;
virtual btScalar AddSingleResult(btCollisionWorld::LocalRayResult& rayResult,bool normalInWorldSpace)
{
//caller already does the filter on the m_closestHitFraction
assert(rayResult.m_hitFraction <= m_closestHitFraction);
m_closestHitFraction = rayResult.m_hitFraction;
m_collisionObject = rayResult.m_collisionObject;
if (normalInWorldSpace)
{
m_hitNormalWorld = rayResult.m_hitNormalLocal;
} else
{
///need to transform normal into worldspace
m_hitNormalWorld = m_collisionObject->getWorldTransform().getBasis()*rayResult.m_hitNormalLocal;
}
m_hitPointWorld.setInterpolate3(m_rayFromWorld,m_rayToWorld,rayResult.m_hitFraction);
return 1.f;
}
};
AllRayResultCallback resultCallback(rayFrom,rayTo);
// btCollisionWorld::ClosestRayResultCallback resultCallback(rayFrom,rayTo);
m_collisionWorld->rayTest(rayFrom,rayTo,resultCallback);
if (resultCallback.HasHit())
{
worldNormal = resultCallback.m_hitNormalWorld;
return true;
}
return false;
}
bool Raytracer::singleObjectRaytest(const btVector3& rayFrom,const btVector3& rayTo,btVector3& worldNormal,btVector3& worldHitPoint)
{
btScalar closestHitResults = 1.f;
btCollisionWorld::ClosestRayResultCallback resultCallback(rayFrom,rayTo);
bool hasHit = false;
btConvexCast::CastResult rayResult;
btSphereShape pointShape(0.0f);
btTransform rayFromTrans;
btTransform rayToTrans;
rayFromTrans.setIdentity();
rayFromTrans.setOrigin(rayFrom);
rayToTrans.setIdentity();
rayToTrans.setOrigin(rayTo);
for (int s=0;s<numObjects;s++)
{
//comment-out next line to get all hits, instead of just the closest hit
//resultCallback.m_closestHitFraction = 1.f;
//do some culling, ray versus aabb
btVector3 aabbMin,aabbMax;
shapePtr[s]->getAabb(transforms[s],aabbMin,aabbMax);
btScalar hitLambda = 1.f;
btVector3 hitNormal;
btCollisionObject tmpObj;
tmpObj.setWorldTransform(transforms[s]);
if (btRayAabb(rayFrom,rayTo,aabbMin,aabbMax,hitLambda,hitNormal))
{
//reset previous result
btCollisionWorld::rayTestSingle(rayFromTrans,rayToTrans, &tmpObj, shapePtr[s], transforms[s], resultCallback);
if (resultCallback.HasHit())
{
//float fog = 1.f - 0.1f * rayResult.m_fraction;
resultCallback.m_hitNormalWorld.normalize();//.m_normal.normalize();
worldNormal = resultCallback.m_hitNormalWorld;
//worldNormal = transforms[s].getBasis() *rayResult.m_normal;
worldNormal.normalize();
hasHit = true;
}
}
}
return hasHit;
}
bool Raytracer::lowlevelRaytest(const btVector3& rayFrom,const btVector3& rayTo,btVector3& worldNormal,btVector3& worldHitPoint)
{
btScalar closestHitResults = 1.f;
bool hasHit = false;
btConvexCast::CastResult rayResult;
btSphereShape pointShape(0.0f);
btTransform rayFromTrans;
btTransform rayToTrans;
rayFromTrans.setIdentity();
rayFromTrans.setOrigin(rayFrom);
rayToTrans.setIdentity();
rayToTrans.setOrigin(rayTo);
for (int s=0;s<numObjects;s++)
{
//do some culling, ray versus aabb
btVector3 aabbMin,aabbMax;
shapePtr[s]->getAabb(transforms[s],aabbMin,aabbMax);
btScalar hitLambda = 1.f;
btVector3 hitNormal;
btCollisionObject tmpObj;
tmpObj.setWorldTransform(transforms[s]);
if (btRayAabb(rayFrom,rayTo,aabbMin,aabbMax,hitLambda,hitNormal))
{
//reset previous result
//choose the continuous collision detection method
//btSubsimplexConvexCast convexCaster(&pointShape,shapePtr[s],&simplexSolver);
//btGjkConvexCast convexCaster(&pointShape,shapePtr[0],&simplexSolver);
btContinuousConvexCollision convexCaster(&pointShape,shapePtr[0],&simplexSolver,0);
if (convexCaster.calcTimeOfImpact(rayFromTrans,rayToTrans,transforms[s],transforms[s],rayResult))
{
if (rayResult.m_fraction < closestHitResults)
{
closestHitResults = rayResult.m_fraction;
worldNormal = transforms[s].getBasis() *rayResult.m_normal;
worldNormal.normalize();
hasHit = true;
}
}
}
}
return hasHit;
}
void Raytracer::displayCallback()
@@ -139,13 +318,13 @@ void Raytracer::displayCallback()
for (int i=0;i<numObjects;i++)
{
transforms[i].setIdentity();
btVector3 pos(-(2.5* numObjects * 0.5)+i*2.5f,0.f,0.f);
btVector3 pos(0.f,0.f,-(2.5* numObjects * 0.5)+i*2.5f);
transforms[i].setOrigin( pos );
btQuaternion orn;
if (i < 2)
{
orn.setEuler(yaw,pitch,roll);
//transforms[i].setRotation(orn);
transforms[i].setRotation(orn);
}
}
@@ -168,13 +347,6 @@ void Raytracer::displayCallback()
glDisable(GL_TEXTURE_2D);
glDisable(GL_BLEND);
#define RAYTRACER
#ifdef RAYTRACER
btVector4 rgba(1.f,0.f,0.f,0.5f);
@@ -219,7 +391,7 @@ void Raytracer::displayCallback()
btTransform rayToLocal;
btSphereShape pointShape(0.0f);
int x;
@@ -234,77 +406,45 @@ void Raytracer::displayCallback()
}
#define USE_WORLD_RAYCAST 1
#ifndef USE_WORLD_RAYCAST
btConvexCast::CastResult rayResult;
#endif
btTransform rayToTrans;
rayToTrans.setIdentity();
btVector3 rayTo;
btTransform colObjWorldTransform;
colObjWorldTransform.setIdentity();
int mode = 0;
for (x=0;x<screenWidth;x++)
{
for (int y=0;y<screenHeight;y++)
{
rayTo = rayToCenter - 0.5f * hor + 0.5f * vertical;
rayTo += x * dHor;
rayTo -= y * dVert;
rayToTrans.setOrigin(rayTo);
for (int s=0;s<numObjects;s++)
btVector3 worldNormal(0,0,0);
btVector3 worldPoint(0,0,0);
bool hasHit = false;
int mode = 0;
switch (mode)
{
//do some culling, ray versus aabb
btVector3 aabbMin,aabbMax;
shapePtr[s]->getAabb(transforms[s],aabbMin,aabbMax);
btScalar hitLambda = 1.f;
btVector3 hitNormal;
btCollisionWorld::ClosestRayResultCallback resultCallback(rayFrom,rayTo);
btCollisionObject tmpObj;
tmpObj.setWorldTransform(transforms[s]);
if (btRayAabb(rayFrom,rayTo,aabbMin,aabbMax,hitLambda,hitNormal))
case 0:
hasHit = lowlevelRaytest(rayFrom,rayTo,worldNormal,worldPoint);
break;
case 1:
hasHit = singleObjectRaytest(rayFrom,rayTo,worldNormal,worldPoint);
break;
case 2:
hasHit = worldRaytest(rayFrom,rayTo,worldNormal,worldPoint);
break;
default:
{
}
}
#ifdef USE_WORLD_RAYCAST
btCollisionWorld::rayTestSingle(rayFromTrans,rayToTrans,
&tmpObj,
shapePtr[s],
transforms[s],
resultCallback);
if (resultCallback.HasHit())
if (hasHit)
{
//float fog = 1.f - 0.1f * rayResult.m_fraction;
resultCallback.m_hitNormalWorld.normalize();//.m_normal.normalize();
btVector3 worldNormal = resultCallback.m_hitNormalWorld;
#else //use USE_WORLD_RAYCAST
//reset previous result
rayResult.m_fraction = 1.f;
//choose the continuous collision detection method
btSubsimplexConvexCast convexCaster(&pointShape,shapePtr[s],&simplexSolver);
//btGjkConvexCast convexCaster(&pointShape,shapePtr[0],&simplexSolver);
//btContinuousConvexCollision convexCaster(&pointShape,shapePtr[0],&simplexSolver,0);
if (convexCaster.calcTimeOfImpact(rayFromTrans,rayToTrans,transforms[s],transforms[s],rayResult))
{
btVector3 worldNormal;
worldNormal = transforms[s].getBasis() *rayResult.m_normal;
worldNormal.normalize();
#endif // USE_WORLD_RAYCAST
//
float lightVec0 = worldNormal.dot(btVector3(0,-1,-1));//0.4f,-1.f,-0.4f));
float lightVec1= worldNormal.dot(btVector3(-1,0,-1));//-0.4f,-1.f,-0.4f));
@@ -315,26 +455,15 @@ void Raytracer::displayCallback()
rgba[3] = 1.f;
raytracePicture->setPixel(x,y,rgba);
} else
{
//clear is already done
//rgba = btVector4(0.f,0.f,0.f,0.f);
//raytracePicture->setPixel(x,y,rgba);
}
} else
{
btVector4 rgba = raytracePicture->getPixel(x,y);
if (!rgba.length2())
{
raytracePicture->setPixel(x,y,btVector4(1,1,1,1));
}
}
}
}
}
#define TEST_PRINTF
#ifdef TEST_PRINTF
extern BMF_FontData BMF_font_helv10;
@@ -344,9 +473,6 @@ void Raytracer::displayCallback()
sprintf(buffer,"%d RAYS / Frame",screenWidth*screenHeight*numObjects);
raytracePicture->grapicalPrintf(buffer,&BMF_font_helv10,0,10);
#endif //TEST_PRINTF
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadIdentity();
@@ -396,7 +522,6 @@ void Raytracer::displayCallback()
glPopMatrix();
glMatrixMode(GL_MODELVIEW);
#endif //RAYRACER
glDisable(GL_TEXTURE_2D);
glDisable(GL_DEPTH_TEST);
@@ -422,6 +547,7 @@ void Raytracer::displayCallback()
pitch += 0.005f;
yaw += 0.01f;
m_azi += 1.f;
glFlush();
glutSwapBuffers();

View File

@@ -17,9 +17,20 @@ subject to the following restrictions:
#include "DemoApplication.h"
class btDefaultCollisionConfiguration;
class btCollisionDispatcher;
class btAxisSweep3;
class btCollisionWorld;
///Raytracer shows the inner working of the ray casting, using ray tracing rendering into a texture.
class Raytracer : public DemoApplication
{
btDefaultCollisionConfiguration* m_collisionConfiguration;
btCollisionDispatcher* m_dispatcher;
btAxisSweep3* m_overlappingPairCache;
btCollisionWorld* m_collisionWorld;
public:
void initPhysics();
@@ -30,6 +41,15 @@ class Raytracer : public DemoApplication
virtual void displayCallback();
///worldRaytest performs a ray versus all objects in a collision world, returning true is a hit is found (filling in worldNormal and worldHitPoint)
bool worldRaytest(const btVector3& rayFrom,const btVector3& rayTo,btVector3& worldNormal,btVector3& worldHitPoint);
///singleObjectRaytest performs a ray versus one collision shape, returning true is a hit is found (filling in worldNormal and worldHitPoint)
bool singleObjectRaytest(const btVector3& rayFrom,const btVector3& rayTo,btVector3& worldNormal,btVector3& worldHitPoint);
///lowlevelRaytest performs a ray versus convex shape, returning true is a hit is found (filling in worldNormal and worldHitPoint)
bool lowlevelRaytest(const btVector3& rayFrom,const btVector3& rayTo,btVector3& worldNormal,btVector3& worldHitPoint);
static DemoApplication* Create()
{
Raytracer* demo = new Raytracer();

View File

@@ -230,7 +230,7 @@ void btCollisionWorld::rayTestSingle(const btTransform& rayFromTrans,const btTra
if (collisionShape->isConvex())
{
btConvexCast::CastResult castResult;
castResult.m_fraction = btScalar(1.);//??
castResult.m_fraction = resultCallback.m_closestHitFraction;
btConvexShape* convexShape = (btConvexShape*) collisionShape;
btVoronoiSimplexSolver simplexSolver;
@@ -602,6 +602,10 @@ void btCollisionWorld::rayTest(const btVector3& rayFromWorld, const btVector3& r
int i;
for (i=0;i<m_collisionObjects.size();i++)
{
///terminate further ray tests, once the closestHitFraction reached zero
if (resultCallback.m_closestHitFraction == btScalar(0.f))
break;
btCollisionObject* collisionObject= m_collisionObjects[i];
//only perform raycast if filterMask matches
if(collisionObject->getBroadphaseHandle()->m_collisionFilterGroup & collisionFilterMask) {
@@ -609,7 +613,7 @@ void btCollisionWorld::rayTest(const btVector3& rayFromWorld, const btVector3& r
btVector3 collisionObjectAabbMin,collisionObjectAabbMax;
collisionObject->getCollisionShape()->getAabb(collisionObject->getWorldTransform(),collisionObjectAabbMin,collisionObjectAabbMax);
btScalar hitLambda = btScalar(1.); //could use resultCallback.m_closestHitFraction, but needs testing
btScalar hitLambda = resultCallback.m_closestHitFraction;
btVector3 hitNormal;
if (btRayAabb(rayFromWorld,rayToWorld,collisionObjectAabbMin,collisionObjectAabbMax,hitLambda,hitNormal))
{
@@ -620,6 +624,7 @@ void btCollisionWorld::rayTest(const btVector3& rayFromWorld, const btVector3& r
resultCallback);
}
}
}
}

View File

@@ -166,17 +166,20 @@ public:
///RayResultCallback is used to report new raycast results
struct RayResultCallback
{
btScalar m_closestHitFraction;
btCollisionObject* m_collisionObject;
virtual ~RayResultCallback()
{
}
btScalar m_closestHitFraction;
bool HasHit()
{
return (m_closestHitFraction < btScalar(1.));
return (m_collisionObject != 0);
}
RayResultCallback()
:m_closestHitFraction(btScalar(1.))
:m_closestHitFraction(btScalar(1.)),
m_collisionObject(0)
{
}
virtual btScalar AddSingleResult(LocalRayResult& rayResult,bool normalInWorldSpace) = 0;
@@ -186,8 +189,7 @@ public:
{
ClosestRayResultCallback(const btVector3& rayFromWorld,const btVector3& rayToWorld)
:m_rayFromWorld(rayFromWorld),
m_rayToWorld(rayToWorld),
m_collisionObject(0)
m_rayToWorld(rayToWorld)
{
}
@@ -196,13 +198,11 @@ public:
btVector3 m_hitNormalWorld;
btVector3 m_hitPointWorld;
btCollisionObject* m_collisionObject;
virtual btScalar AddSingleResult(LocalRayResult& rayResult,bool normalInWorldSpace)
{
//caller already does the filter on the m_closestHitFraction
assert(rayResult.m_hitFraction <= m_closestHitFraction);
//caller already does the filter on the m_closestHitFraction
btAssert(rayResult.m_hitFraction <= m_closestHitFraction);
m_closestHitFraction = rayResult.m_hitFraction;
m_collisionObject = rayResult.m_collisionObject;