deformable code refactor

This commit is contained in:
Xuchen Han
2019-07-21 18:32:54 -07:00
parent dc10336d45
commit a90cad2a96
17 changed files with 1065 additions and 382 deletions

View File

@@ -0,0 +1,488 @@
//
// btDeformableContactProjection.cpp
// BulletSoftBody
//
// Created by Xuchen Han on 7/4/19.
//
#include "btDeformableContactProjection.h"
#include "btDeformableRigidDynamicsWorld.h"
#include <algorithm>
static void findJacobian(const btMultiBodyLinkCollider* multibodyLinkCol,
btMultiBodyJacobianData& jacobianData,
const btVector3& contact_point,
const btVector3& dir)
{
const int ndof = multibodyLinkCol->m_multiBody->getNumDofs() + 6;
jacobianData.m_jacobians.resize(ndof);
jacobianData.m_deltaVelocitiesUnitImpulse.resize(ndof);
btScalar* jac = &jacobianData.m_jacobians[0];
multibodyLinkCol->m_multiBody->fillContactJacobianMultiDof(multibodyLinkCol->m_link, contact_point, dir, jac, jacobianData.scratch_r, jacobianData.scratch_v, jacobianData.scratch_m);
multibodyLinkCol->m_multiBody->calcAccelerationDeltasMultiDof(&jacobianData.m_jacobians[0], &jacobianData.m_deltaVelocitiesUnitImpulse[0], jacobianData.scratch_r, jacobianData.scratch_v);
}
static btVector3 generateUnitOrthogonalVector(const btVector3& u)
{
btScalar ux = u.getX();
btScalar uy = u.getY();
btScalar uz = u.getZ();
btScalar ax = std::abs(ux);
btScalar ay = std::abs(uy);
btScalar az = std::abs(uz);
btVector3 v;
if (ax <= ay && ax <= az)
v = btVector3(0, -uz, uy);
else if (ay <= ax && ay <= az)
v = btVector3(-uz, 0, ux);
else
v = btVector3(-uy, ux, 0);
v.normalize();
return v;
}
void btDeformableContactProjection::update()
{
///solve rigid body constraints
m_world->getSolverInfo().m_numIterations = 10;
m_world->btMultiBodyDynamicsWorld::solveConstraints(m_world->getSolverInfo());
// loop through constraints to set constrained values
for (auto& it : m_constraints)
{
btAlignedObjectArray<DeformableFrictionConstraint>& frictions = m_frictions[it.first];
btAlignedObjectArray<DeformableContactConstraint>& constraints = it.second;
for (int i = 0; i < constraints.size(); ++i)
{
DeformableContactConstraint& constraint = constraints[i];
DeformableFrictionConstraint& friction = frictions[i];
for (int j = 0; j < constraint.m_contact.size(); ++j)
{
if (constraint.m_contact[j] == nullptr)
{
// nothing needs to be done for dirichelet constraints
continue;
}
const btSoftBody::RContact* c = constraint.m_contact[j];
const btSoftBody::sCti& cti = c->m_cti;
// normal jacobian is precompute but tangent jacobian is not
const btMultiBodyJacobianData& jacobianData_normal = constraint.m_normal_jacobian[j];
const btMultiBodyJacobianData& jacobianData_complementary = friction.m_complementary_jacobian[j];
if (cti.m_colObj->hasContactResponse())
{
btVector3 va(0, 0, 0);
btRigidBody* rigidCol = 0;
btMultiBodyLinkCollider* multibodyLinkCol = 0;
const btScalar* deltaV_normal;
// grab the velocity of the rigid body
if (cti.m_colObj->getInternalType() == btCollisionObject::CO_RIGID_BODY)
{
rigidCol = (btRigidBody*)btRigidBody::upcast(cti.m_colObj);
va = rigidCol ? (rigidCol->getVelocityInLocalPoint(c->m_c1)) * m_dt : btVector3(0, 0, 0);
}
else if (cti.m_colObj->getInternalType() == btCollisionObject::CO_FEATHERSTONE_LINK)
{
multibodyLinkCol = (btMultiBodyLinkCollider*)btMultiBodyLinkCollider::upcast(cti.m_colObj);
if (multibodyLinkCol)
{
const int ndof = multibodyLinkCol->m_multiBody->getNumDofs() + 6;
const btScalar* jac_normal = &jacobianData_normal.m_jacobians[0];
deltaV_normal = &jacobianData_normal.m_deltaVelocitiesUnitImpulse[0];
// add in the normal component of the va
btScalar vel = 0.0;
for (int k = 0; k < ndof; ++k)
{
vel += multibodyLinkCol->m_multiBody->getVelocityVector()[k] * jac_normal[k];
}
va = cti.m_normal * vel * m_dt;
// add in complementary direction of va
const btScalar* jac_complementary = &jacobianData_complementary.m_jacobians[0];
vel = 0.0;
for (int k = 0; k < ndof; ++k)
{
vel += multibodyLinkCol->m_multiBody->getVelocityVector()[k] * jac_complementary[k];
}
va += friction.m_complementaryDirection[j] * vel * m_dt;
}
}
const btVector3 vb = c->m_node->m_v * m_dt;
const btVector3 vr = vb - va;
const btScalar dn = btDot(vr, cti.m_normal);
btVector3 impulse = c->m_c0 * vr;
const btVector3 impulse_normal = c->m_c0 * (cti.m_normal * dn);
const btVector3 impulse_tangent = impulse - impulse_normal;
// start friction handling
// copy old data
friction.m_impulse_prev[j] = friction.m_impulse[j];
friction.m_dv_prev[j] = friction.m_dv[j];
friction.m_static_prev[j] = friction.m_static[j];
// get the current tangent direction
btScalar local_tangent_norm = impulse_tangent.norm();
btVector3 local_tangent_dir = btVector3(0,0,0);
if (local_tangent_norm > SIMD_EPSILON)
local_tangent_dir = impulse_tangent.normalized();
// accumulated impulse on the rb in this and all prev cg iterations
constraint.m_accumulated_normal_impulse[j] += impulse_normal.dot(cti.m_normal);
const btScalar& accumulated_normal = constraint.m_accumulated_normal_impulse[j];
// the total tangential impulse required to stop sliding
btVector3 tangent = friction.m_accumulated_tangent_impulse[j] + impulse_tangent;
btScalar tangent_norm = tangent.norm();
if (accumulated_normal < 0)
{
friction.m_direction[j] = -local_tangent_dir;
// do not allow switching from static friction to dynamic friction
// it causes cg to explode
if (-accumulated_normal*c->m_c3 < tangent_norm && friction.m_static_prev[j] == false && friction.m_released[j] == false)
{
friction.m_static[j] = false;
friction.m_impulse[j] = -accumulated_normal*c->m_c3;
}
else
{
friction.m_static[j] = true;
friction.m_impulse[j] = tangent_norm;
}
}
else
{
friction.m_released[j] = true;
friction.m_static[j] = false;
friction.m_impulse[j] = 0;
friction.m_direction[j] = btVector3(0,0,0);
}
friction.m_dv[j] = friction.m_impulse[j] * c->m_c2/m_dt;
friction.m_accumulated_tangent_impulse[j] = -friction.m_impulse[j] * friction.m_direction[j];
// the incremental impulse applied to rb in the tangential direction
btVector3 incremental_tangent = (friction.m_impulse_prev[j] * friction.m_direction_prev[j])-(friction.m_impulse[j] * friction.m_direction[j]);
// TODO cleanup
if (1) // in the same CG solve, the set of constraits doesn't change
{
// c0 is the impulse matrix, c3 is 1 - the friction coefficient or 0, c4 is the contact hardness coefficient
// dv = new_impulse + accumulated velocity change in previous CG iterations
// so we have the invariant node->m_v = backupVelocity + dv;
btScalar dvn = -accumulated_normal * c->m_c2/m_dt;
// the following is equivalent
/*
btVector3 dv = -impulse_normal * c->m_c2/m_dt + c->m_node->m_v - backupVelocity[m_indices[c->m_node]];
btScalar dvn = dv.dot(cti.m_normal);
*/
constraint.m_value[j] = dvn;
// the incremental impulse:
// in the normal direction it's the normal component of "impulse"
// in the tangent direction it's the difference between the frictional impulse in the iteration and the previous iteration
impulse = impulse_normal + incremental_tangent;
if (cti.m_colObj->getInternalType() == btCollisionObject::CO_RIGID_BODY)
{
if (rigidCol)
rigidCol->applyImpulse(impulse, c->m_c1);
}
else if (cti.m_colObj->getInternalType() == btCollisionObject::CO_FEATHERSTONE_LINK)
{
if (multibodyLinkCol)
{
double multiplier = 1;
multibodyLinkCol->m_multiBody->applyDeltaVeeMultiDof(deltaV_normal, -impulse_normal.length() * multiplier);
if (incremental_tangent.norm() > SIMD_EPSILON)
{
btMultiBodyJacobianData jacobian_tangent;
btVector3 tangent = incremental_tangent.normalized();
findJacobian(multibodyLinkCol, jacobian_tangent, c->m_node->m_x, tangent);
const btScalar* deltaV_tangent = &jacobian_tangent.m_deltaVelocitiesUnitImpulse[0];
multibodyLinkCol->m_multiBody->applyDeltaVeeMultiDof(deltaV_tangent, incremental_tangent.length() * multiplier);
}
}
}
}
}
}
}
}
}
void btDeformableContactProjection::setConstraints()
{
// set Dirichlet constraint
for (int i = 0; i < m_softBodies.size(); ++i)
{
btSoftBody* psb = m_softBodies[i];
for (int j = 0; j < psb->m_nodes.size(); ++j)
{
if (psb->m_nodes[j].m_im == 0)
{
btAlignedObjectArray<DeformableContactConstraint> c;
c.push_back(DeformableContactConstraint(btVector3(1,0,0)));
c.push_back(DeformableContactConstraint(btVector3(0,1,0)));
c.push_back(DeformableContactConstraint(btVector3(0,0,1)));
m_constraints[&(psb->m_nodes[j])] = c;
btAlignedObjectArray<DeformableFrictionConstraint> f;
f.push_back(DeformableFrictionConstraint());
f.push_back(DeformableFrictionConstraint());
f.push_back(DeformableFrictionConstraint());
m_frictions[&(psb->m_nodes[j])] = f;
}
}
}
for (int i = 0; i < m_softBodies.size(); ++i)
{
btSoftBody* psb = m_softBodies[i];
btMultiBodyJacobianData jacobianData_normal;
btMultiBodyJacobianData jacobianData_complementary;
for (int j = 0; j < psb->m_rcontacts.size(); ++j)
{
const btSoftBody::RContact& c = psb->m_rcontacts[j];
// skip anchor points
if (c.m_node->m_im == 0)
{
continue;
}
const btSoftBody::sCti& cti = c.m_cti;
if (cti.m_colObj->hasContactResponse())
{
btVector3 va(0, 0, 0);
btRigidBody* rigidCol = 0;
btMultiBodyLinkCollider* multibodyLinkCol = 0;
// grab the velocity of the rigid body
if (cti.m_colObj->getInternalType() == btCollisionObject::CO_RIGID_BODY)
{
rigidCol = (btRigidBody*)btRigidBody::upcast(cti.m_colObj);
va = rigidCol ? (rigidCol->getVelocityInLocalPoint(c.m_c1)) * m_dt : btVector3(0, 0, 0);
}
else if (cti.m_colObj->getInternalType() == btCollisionObject::CO_FEATHERSTONE_LINK)
{
multibodyLinkCol = (btMultiBodyLinkCollider*)btMultiBodyLinkCollider::upcast(cti.m_colObj);
if (multibodyLinkCol)
{
findJacobian(multibodyLinkCol, jacobianData_normal, c.m_node->m_x, cti.m_normal);
btScalar vel = 0.0;
const btScalar* jac = &jacobianData_normal.m_jacobians[0];
const int ndof = multibodyLinkCol->m_multiBody->getNumDofs() + 6;
for (int j = 0; j < ndof; ++j)
{
vel += multibodyLinkCol->m_multiBody->getVelocityVector()[j] * jac[j];
std::cout << multibodyLinkCol->m_multiBody->getVelocityVector()[j] << std::endl;
std::cout << jac[j] << std::endl;
}
va = cti.m_normal * vel * m_dt;
}
}
const btVector3 vb = c.m_node->m_v * m_dt;
const btVector3 vr = vb - va;
const btScalar dn = btDot(vr, cti.m_normal);
if (dn < SIMD_EPSILON)
{
// find complementary jacobian
btVector3 complementaryDirection;
if (cti.m_colObj->getInternalType() == btCollisionObject::CO_FEATHERSTONE_LINK)
{
multibodyLinkCol = (btMultiBodyLinkCollider*)btMultiBodyLinkCollider::upcast(cti.m_colObj);
if (multibodyLinkCol)
{
complementaryDirection = generateUnitOrthogonalVector(cti.m_normal);
findJacobian(multibodyLinkCol, jacobianData_complementary, c.m_node->m_x, complementaryDirection);
}
}
if (m_constraints.find(c.m_node) == m_constraints.end())
{
btAlignedObjectArray<DeformableContactConstraint> constraints;
constraints.push_back(DeformableContactConstraint(c, jacobianData_normal));
m_constraints[c.m_node] = constraints;
btAlignedObjectArray<DeformableFrictionConstraint> frictions;
frictions.push_back(DeformableFrictionConstraint(complementaryDirection, jacobianData_complementary));
m_frictions[c.m_node] = frictions;
}
else
{
// group colinear constraints into one
const btScalar angle_epsilon = 0.015192247; // less than 10 degree
bool merged = false;
btAlignedObjectArray<DeformableContactConstraint>& constraints = m_constraints[c.m_node];
btAlignedObjectArray<DeformableFrictionConstraint>& frictions = m_frictions[c.m_node];
for (int j = 0; j < constraints.size(); ++j)
{
const btAlignedObjectArray<btVector3>& dirs = constraints[j].m_direction;
btScalar dot_prod = dirs[0].dot(cti.m_normal);
if (std::abs(std::abs(dot_prod) - 1) < angle_epsilon)
{
// group the constraints
constraints[j].append(c, jacobianData_normal);
// push in an empty friction
frictions[j].append();
frictions[j].addJacobian(complementaryDirection, jacobianData_complementary);
merged = true;
break;
}
}
const int dim = 3;
// hard coded no more than 3 constraint directions
if (!merged && constraints.size() < dim)
{
constraints.push_back(DeformableContactConstraint(c, jacobianData_normal));
frictions.push_back(DeformableFrictionConstraint(complementaryDirection, jacobianData_complementary));
}
}
}
}
}
}
}
void btDeformableContactProjection::enforceConstraint(TVStack& x)
{
const int dim = 3;
for (auto& it : m_constraints)
{
const btAlignedObjectArray<DeformableContactConstraint>& constraints = it.second;
size_t i = m_indices[it.first];
const btAlignedObjectArray<DeformableFrictionConstraint>& frictions = m_frictions[it.first];
btAssert(constraints.size() <= dim);
btAssert(constraints.size() > 0);
if (constraints.size() == 1)
{
x[i] -= x[i].dot(constraints[0].m_direction[0]) * constraints[0].m_direction[0];
for (int j = 0; j < constraints[0].m_direction.size(); ++j)
x[i] += constraints[0].m_value[j] * constraints[0].m_direction[j];
}
else if (constraints.size() == 2)
{
btVector3 free_dir = btCross(constraints[0].m_direction[0], constraints[1].m_direction[0]);
btAssert(free_dir.norm() > SIMD_EPSILON)
free_dir.normalize();
x[i] = x[i].dot(free_dir) * free_dir;
for (int j = 0; j < constraints.size(); ++j)
{
for (int k = 0; k < constraints[j].m_direction.size(); ++k)
{
x[i] += constraints[j].m_value[k] * constraints[j].m_direction[k];
}
}
}
else
{
x[i].setZero();
for (int j = 0; j < constraints.size(); ++j)
{
for (int k = 0; k < constraints[j].m_direction.size(); ++k)
{
x[i] += constraints[j].m_value[k] * constraints[j].m_direction[k];
}
}
}
// apply friction if the node is not constrained in all directions
if (constraints.size() < 3)
{
for (int f = 0; f < frictions.size(); ++f)
{
const DeformableFrictionConstraint& friction= frictions[f];
for (int j = 0; j < friction.m_direction.size(); ++j)
{
// clear the old constraint
if (friction.m_static_prev[j] == true)
{
x[i] -= friction.m_direction_prev[j] * friction.m_dv_prev[j];
}
// add the new constraint
if (friction.m_static[j] == true)
{
x[i] += friction.m_direction[j] * friction.m_dv[j];
}
}
}
}
}
}
void btDeformableContactProjection::project(TVStack& x)
{
const int dim = 3;
for (auto& it : m_constraints)
{
const btAlignedObjectArray<DeformableContactConstraint>& constraints = it.second;
size_t i = m_indices[it.first];
btAlignedObjectArray<DeformableFrictionConstraint>& frictions = m_frictions[it.first];
btAssert(constraints.size() <= dim);
btAssert(constraints.size() > 0);
if (constraints.size() == 1)
{
x[i] -= x[i].dot(constraints[0].m_direction[0]) * constraints[0].m_direction[0];
}
else if (constraints.size() == 2)
{
btVector3 free_dir = btCross(constraints[0].m_direction[0], constraints[1].m_direction[0]);
btAssert(free_dir.norm() > SIMD_EPSILON)
free_dir.normalize();
x[i] = x[i].dot(free_dir) * free_dir;
}
else
x[i].setZero();
// apply friction if the node is not constrained in all directions
if (constraints.size() < 3)
{
bool has_static_constraint = false;
for (int f = 0; f < frictions.size(); ++f)
{
DeformableFrictionConstraint& friction= frictions[f];
for (int j = 0; j < friction.m_static.size(); ++j)
has_static_constraint = has_static_constraint || friction.m_static[j];
}
for (int f = 0; f < frictions.size(); ++f)
{
DeformableFrictionConstraint& friction= frictions[f];
for (int j = 0; j < friction.m_direction.size(); ++j)
{
// clear the old friction force
if (friction.m_static_prev[j] == false)
{
x[i] -= friction.m_direction_prev[j] * friction.m_impulse_prev[j];
}
// only add to the rhs if there is no static friction constraint on the node
if (friction.m_static[j] == false && !has_static_constraint)
{
x[i] += friction.m_direction[j] * friction.m_impulse[j];
}
}
}
}
}
}
void btDeformableContactProjection::reinitialize(bool nodeUpdated)
{
btCGProjection::reinitialize(nodeUpdated);
m_constraints.clear();
m_frictions.clear();
}