Merge pull request #2203 from erwincoumans/master

implement stablePD control version of testLaikago,  fix getCameraImage in VR,  only report solver analytics if enabled using setPhysicsEngineParameter
This commit is contained in:
erwincoumans
2019-04-15 08:52:03 -07:00
committed by GitHub
16 changed files with 857 additions and 52 deletions

View File

@@ -689,6 +689,17 @@ B3_SHARED_API int b3PhysicsParameterSetMinimumSolverIslandSize(b3SharedMemoryCom
return 0;
}
B3_SHARED_API int b3PhysicsParamSetSolverAnalytics(b3SharedMemoryCommandHandle commandHandle, int reportSolverAnalytics)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS);
command->m_physSimParamArgs.m_reportSolverAnalytics = reportSolverAnalytics;
command->m_updateFlags |= SIM_PARAM_REPORT_CONSTRAINT_SOLVER_ANALYTICS;
return 0;
}
B3_SHARED_API int b3PhysicsParamSetCollisionFilterMode(b3SharedMemoryCommandHandle commandHandle, int filterMode)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
@@ -2214,6 +2225,19 @@ B3_SHARED_API int b3GetStatusType(b3SharedMemoryStatusHandle statusHandle)
return CMD_INVALID_STATUS;
}
B3_SHARED_API int b3GetStatusForwardDynamicsAnalyticsData(b3SharedMemoryStatusHandle statusHandle, struct b3ForwardDynamicsAnalyticsArgs* analyticsData)
{
const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle;
//b3Assert(status);
if (status)
{
*analyticsData = status->m_forwardDynamicsAnalyticsArgs;
return status->m_forwardDynamicsAnalyticsArgs.m_numIslands;
}
return 0;
}
B3_SHARED_API int b3GetStatusBodyIndices(b3SharedMemoryStatusHandle statusHandle, int* bodyIndicesOut, int bodyIndicesCapacity)
{
int numBodies = 0;

View File

@@ -349,6 +349,7 @@ extern "C"
B3_SHARED_API int b3PhysicsParameterSetEnableSAT(b3SharedMemoryCommandHandle commandHandle, int enableSAT);
B3_SHARED_API int b3PhysicsParameterSetConstraintSolverType(b3SharedMemoryCommandHandle commandHandle, int constraintSolverType);
B3_SHARED_API int b3PhysicsParameterSetMinimumSolverIslandSize(b3SharedMemoryCommandHandle commandHandle, int minimumSolverIslandSize);
B3_SHARED_API int b3PhysicsParamSetSolverAnalytics(b3SharedMemoryCommandHandle commandHandle, int reportSolverAnalytics);
B3_SHARED_API b3SharedMemoryCommandHandle b3InitRequestPhysicsParamCommand(b3PhysicsClientHandle physClient);
B3_SHARED_API int b3GetStatusPhysicsSimulationParameters(b3SharedMemoryStatusHandle statusHandle, struct b3PhysicsSimulationParameters* params);
@@ -360,6 +361,9 @@ extern "C"
B3_SHARED_API b3SharedMemoryCommandHandle b3InitStepSimulationCommand(b3PhysicsClientHandle physClient);
B3_SHARED_API b3SharedMemoryCommandHandle b3InitStepSimulationCommand2(b3SharedMemoryCommandHandle commandHandle);
B3_SHARED_API int b3GetStatusForwardDynamicsAnalyticsData(b3SharedMemoryStatusHandle statusHandle, struct b3ForwardDynamicsAnalyticsArgs* analyticsData);
B3_SHARED_API b3SharedMemoryCommandHandle b3InitResetSimulationCommand(b3PhysicsClientHandle physClient);
B3_SHARED_API b3SharedMemoryCommandHandle b3InitResetSimulationCommand2(b3SharedMemoryCommandHandle commandHandle);

View File

@@ -7624,6 +7624,24 @@ bool PhysicsServerCommandProcessor::processForwardDynamicsCommand(const struct S
}
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_forwardDynamicsAnalyticsArgs.m_numSteps = numSteps;
btAlignedObjectArray<btSolverAnalyticsData> islandAnalyticsData;
m_data->m_dynamicsWorld->getAnalyticsData(islandAnalyticsData);
serverCmd.m_forwardDynamicsAnalyticsArgs.m_numIslands = islandAnalyticsData.size();
int numIslands = btMin(islandAnalyticsData.size(), MAX_ISLANDS_ANALYTICS);
for (int i=0;i<numIslands;i++)
{
serverCmd.m_forwardDynamicsAnalyticsArgs.m_numSolverCalls = islandAnalyticsData[i].m_numSolverCalls;
serverCmd.m_forwardDynamicsAnalyticsArgs.m_islandData[i].m_islandId = islandAnalyticsData[i].m_islandId;
serverCmd.m_forwardDynamicsAnalyticsArgs.m_islandData[i].m_numBodies = islandAnalyticsData[i].m_numBodies;
serverCmd.m_forwardDynamicsAnalyticsArgs.m_islandData[i].m_numIterationsUsed = islandAnalyticsData[i].m_numIterationsUsed;
serverCmd.m_forwardDynamicsAnalyticsArgs.m_islandData[i].m_remainingLeastSquaresResidual = islandAnalyticsData[i].m_remainingLeastSquaresResidual;
serverCmd.m_forwardDynamicsAnalyticsArgs.m_islandData[i].m_numContactManifolds = islandAnalyticsData[i].m_numContactManifolds;
}
serverCmd.m_type = CMD_STEP_FORWARD_SIMULATION_COMPLETED;
return hasStatus;
@@ -8408,6 +8426,11 @@ bool PhysicsServerCommandProcessor::processSendPhysicsParametersCommand(const st
m_data->m_pluginManager.getFileIOInterface()->enableFileCaching(clientCmd.m_physSimParamArgs.m_enableFileCaching!=0);
}
if (clientCmd.m_updateFlags & SIM_PARAM_REPORT_CONSTRAINT_SOLVER_ANALYTICS)
{
m_data->m_dynamicsWorld->getSolverInfo().m_reportSolverAnalytics = clientCmd.m_physSimParamArgs.m_reportSolverAnalytics;
}
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED;
return hasStatus;

View File

@@ -456,31 +456,32 @@ enum EnumSimDesiredStateUpdateFlags
enum EnumSimParamUpdateFlags
{
SIM_PARAM_UPDATE_DELTA_TIME = 1,
SIM_PARAM_UPDATE_GRAVITY = 2,
SIM_PARAM_UPDATE_NUM_SOLVER_ITERATIONS = 4,
SIM_PARAM_UPDATE_NUM_SIMULATION_SUB_STEPS = 8,
SIM_PARAM_UPDATE_REAL_TIME_SIMULATION = 16,
SIM_PARAM_UPDATE_DEFAULT_CONTACT_ERP = 32,
SIM_PARAM_UPDATE_INTERNAL_SIMULATION_FLAGS = 64,
SIM_PARAM_UPDATE_USE_SPLIT_IMPULSE = 128,
SIM_PARAM_UPDATE_SPLIT_IMPULSE_PENETRATION_THRESHOLD = 256,
SIM_PARAM_UPDATE_COLLISION_FILTER_MODE = 512,
SIM_PARAM_UPDATE_CONTACT_BREAKING_THRESHOLD = 1024,
SIM_PARAM_ENABLE_CONE_FRICTION = 2048,
SIM_PARAM_ENABLE_FILE_CACHING = 4096,
SIM_PARAM_UPDATE_RESTITUTION_VELOCITY_THRESHOLD = 8192,
SIM_PARAM_UPDATE_DEFAULT_NON_CONTACT_ERP = 16384,
SIM_PARAM_UPDATE_DEFAULT_FRICTION_ERP = 32768,
SIM_PARAM_UPDATE_DETERMINISTIC_OVERLAPPING_PAIRS = 65536,
SIM_PARAM_UPDATE_CCD_ALLOWED_PENETRATION = 131072,
SIM_PARAM_UPDATE_JOINT_FEEDBACK_MODE = 262144,
SIM_PARAM_UPDATE_DEFAULT_GLOBAL_CFM = 524288,
SIM_PARAM_UPDATE_DEFAULT_FRICTION_CFM = 1048576,
SIM_PARAM_UPDATE_SOLVER_RESIDULAL_THRESHOLD = 2097152,
SIM_PARAM_UPDATE_CONTACT_SLOP = 4194304,
SIM_PARAM_ENABLE_SAT = 8388608,
SIM_PARAM_CONSTRAINT_SOLVER_TYPE = 16777216,
SIM_PARAM_CONSTRAINT_MIN_SOLVER_ISLAND_SIZE = 33554432,
SIM_PARAM_UPDATE_GRAVITY = 1<<1,
SIM_PARAM_UPDATE_NUM_SOLVER_ITERATIONS = 1<<2,
SIM_PARAM_UPDATE_NUM_SIMULATION_SUB_STEPS = 1<<3,
SIM_PARAM_UPDATE_REAL_TIME_SIMULATION = 1<<4,
SIM_PARAM_UPDATE_DEFAULT_CONTACT_ERP = 1<<5,
SIM_PARAM_UPDATE_INTERNAL_SIMULATION_FLAGS = 1<<6,
SIM_PARAM_UPDATE_USE_SPLIT_IMPULSE = 1<<7,
SIM_PARAM_UPDATE_SPLIT_IMPULSE_PENETRATION_THRESHOLD = 1<<8,
SIM_PARAM_UPDATE_COLLISION_FILTER_MODE = 1 << 9,
SIM_PARAM_UPDATE_CONTACT_BREAKING_THRESHOLD = 1 << 10,
SIM_PARAM_ENABLE_CONE_FRICTION = 1 << 11,
SIM_PARAM_ENABLE_FILE_CACHING = 1 << 12,
SIM_PARAM_UPDATE_RESTITUTION_VELOCITY_THRESHOLD = 1 << 13,
SIM_PARAM_UPDATE_DEFAULT_NON_CONTACT_ERP = 1 << 14,
SIM_PARAM_UPDATE_DEFAULT_FRICTION_ERP = 1 << 15,
SIM_PARAM_UPDATE_DETERMINISTIC_OVERLAPPING_PAIRS = 1 << 16,
SIM_PARAM_UPDATE_CCD_ALLOWED_PENETRATION = 1 << 17,
SIM_PARAM_UPDATE_JOINT_FEEDBACK_MODE = 1 << 18,
SIM_PARAM_UPDATE_DEFAULT_GLOBAL_CFM = 1 << 19,
SIM_PARAM_UPDATE_DEFAULT_FRICTION_CFM = 1 << 20,
SIM_PARAM_UPDATE_SOLVER_RESIDULAL_THRESHOLD = 1 << 21,
SIM_PARAM_UPDATE_CONTACT_SLOP = 1 << 22,
SIM_PARAM_ENABLE_SAT = 1 << 23,
SIM_PARAM_CONSTRAINT_SOLVER_TYPE = 1 << 24,
SIM_PARAM_CONSTRAINT_MIN_SOLVER_ISLAND_SIZE = 1 << 25,
SIM_PARAM_REPORT_CONSTRAINT_SOLVER_ANALYTICS = 1 << 26,
};
@@ -957,6 +958,8 @@ struct b3CreateUserShapeArgs
b3CreateUserShapeData m_shapes[MAX_COMPOUND_COLLISION_SHAPES];
};
struct b3CreateUserShapeResultArgs
{
int m_userShapeUniqueId;
@@ -1180,6 +1183,7 @@ struct SharedMemoryStatus
struct SyncUserDataArgs m_syncUserDataArgs;
struct UserDataResponseArgs m_userDataResponseArgs;
struct UserDataRequestArgs m_removeUserDataResponseArgs;
struct b3ForwardDynamicsAnalyticsArgs m_forwardDynamicsAnalyticsArgs;
};
};

View File

@@ -903,7 +903,7 @@ struct b3PluginArguments
struct b3PhysicsSimulationParameters
{
double m_deltaTime;
double m_simulationTimestamp; // Output only timestamp of simulation.
double m_simulationTimestamp; // user logging timestamp of simulation.
double m_gravityAcceleration[3];
int m_numSimulationSubSteps;
int m_numSolverIterations;
@@ -929,8 +929,10 @@ struct b3PhysicsSimulationParameters
int m_enableSAT;
int m_constraintSolverType;
int m_minimumSolverIslandSize;
int m_reportSolverAnalytics;
};
enum eConstraintSolverTypes
{
eConstraintSolverLCP_SI = 1,
@@ -941,6 +943,25 @@ enum eConstraintSolverTypes
eConstraintSolverLCP_BLOCK_PGS,
};
struct b3ForwardDynamicsAnalyticsIslandData
{
int m_islandId;
int m_numBodies;
int m_numContactManifolds;
int m_numIterationsUsed;
double m_remainingLeastSquaresResidual;
};
#define MAX_ISLANDS_ANALYTICS 1024
struct b3ForwardDynamicsAnalyticsArgs
{
int m_numSteps;
int m_numIslands;
int m_numSolverCalls;
struct b3ForwardDynamicsAnalyticsIslandData m_islandData[MAX_ISLANDS_ANALYTICS];
};
enum eFileIOActions
{
eAddFileIOAction = 1024,//avoid collision with eFileIOTypes

View File

@@ -1792,6 +1792,7 @@ void CMainApplication::RenderStereoTargets()
//m_app->drawGrid(gridUp);
m_app->m_instancingRenderer->setRenderFrameBuffer(0);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glDisable(GL_MULTISAMPLE);

View File

@@ -36,8 +36,11 @@ class QuadrupedPoseInterpolator(object):
self._baseOrn = bullet_client.getQuaternionSlerp(baseOrn1Start,baseOrn1Next,frameFraction)
self._baseAngVel = self.ComputeAngVel(baseOrn1Start,baseOrn1Next, keyFrameDuration, bullet_client)
jointPositions=[]
jointVelocities=[]
jointPositions=[self._basePos[0],self._basePos[1],self._basePos[2],
self._baseOrn[0],self._baseOrn[1],self._baseOrn[2],self._baseOrn[3]]
jointVelocities=[self._baseLinVel[0],self._baseLinVel[1],self._baseLinVel[2],
self._baseAngVel[0],self._baseAngVel[1],self._baseAngVel[2]]
for j in range (12):
index=j+8
jointPosStart=frameData[index]

View File

@@ -0,0 +1,577 @@
from pybullet_utils import pd_controller_stable
from pybullet_envs.deep_mimic.env import quadruped_pose_interpolator
import math
class QuadrupedStablePD(object):
def __init__(self, pybullet_client, mocap_data, timeStep, useFixedBase=True):
self._pybullet_client = pybullet_client
self._mocap_data = mocap_data
print("LOADING quadruped!")
startPos=[0.007058990464444105, 0.03149299192130908, 0.4918981912395484]
startOrn=[0.005934649695708604, 0.7065453990917289, 0.7076373820553712, -0.0027774940359030264]
self._sim_model = self._pybullet_client.loadURDF("laikago/laikago.urdf",startPos,startOrn, flags = urdfFlags,useFixedBase=False)
self._pybullet_client.resetBasePositionAndOrientation(_sim_model,startPos,startOrn)
self._end_effectors = [] #ankle and wrist, both left and right
self._kin_model = self._pybullet_client.loadURDF("laikago/laikago.urdf",startPos,startOrn,useFixedBase=True)
self._pybullet_client.changeDynamics(self._sim_model, -1, lateralFriction=0.9)
for j in range (self._pybullet_client.getNumJoints(self._sim_model)):
self._pybullet_client.changeDynamics(self._sim_model, j, lateralFriction=0.9)
self._pybullet_client.changeDynamics(self._sim_model, -1, linearDamping=0, angularDamping=0)
self._pybullet_client.changeDynamics(self._kin_model, -1, linearDamping=0, angularDamping=0)
#todo: add feature to disable simulation for a particular object. Until then, disable all collisions
self._pybullet_client.setCollisionFilterGroupMask(self._kin_model,-1,collisionFilterGroup=0,collisionFilterMask=0)
self._pybullet_client.changeDynamics(self._kin_model,-1,activationState=self._pybullet_client.ACTIVATION_STATE_SLEEP+self._pybullet_client.ACTIVATION_STATE_ENABLE_SLEEPING+self._pybullet_client.ACTIVATION_STATE_DISABLE_WAKEUP)
alpha = 0.4
self._pybullet_client.changeVisualShape(self._kin_model,-1, rgbaColor=[1,1,1,alpha])
for j in range (self._pybullet_client.getNumJoints(self._kin_model)):
self._pybullet_client.setCollisionFilterGroupMask(self._kin_model,j,collisionFilterGroup=0,collisionFilterMask=0)
self._pybullet_client.changeDynamics(self._kin_model,j,activationState=self._pybullet_client.ACTIVATION_STATE_SLEEP+self._pybullet_client.ACTIVATION_STATE_ENABLE_SLEEPING+self._pybullet_client.ACTIVATION_STATE_DISABLE_WAKEUP)
self._pybullet_client.changeVisualShape(self._kin_model,j, rgbaColor=[1,1,1,alpha])
self._poseInterpolator = humanoid_pose_interpolator.HumanoidPoseInterpolator()
for i in range (self._mocap_data.NumFrames()-1):
frameData = self._mocap_data._motion_data['Frames'][i]
self._poseInterpolator.PostProcessMotionData(frameData)
self._stablePD = pd_controller_stable.PDControllerStableMultiDof(self._pybullet_client)
self._timeStep = timeStep
#todo: kp/pd
self._kpOrg = [0,0,0,0,0,0,0,1000,1000,1000,1000,100,100,100,100,500,500,500,500,500,400,400,400,400,400,400,400,400,300,500,500,500,500,500,400,400,400,400,400,400,400,400,300]
self._kdOrg = [0,0,0,0,0,0,0,100,100,100,100,10,10,10,10,50,50,50,50,50,40,40,40,40,40,40,40,40,30,50,50,50,50,50,40,40,40,40,40,40,40,40,30]
self._jointIndicesAll = [chest,neck, rightHip,rightKnee,rightAnkle,rightShoulder,rightElbow,leftHip,leftKnee,leftAnkle,leftShoulder,leftElbow]
for j in self._jointIndicesAll:
#self._pybullet_client.setJointMotorControlMultiDof(self._sim_model, j, self._pybullet_client.POSITION_CONTROL, force=[1,1,1])
self._pybullet_client.setJointMotorControl2(self._sim_model, j, self._pybullet_client.POSITION_CONTROL, targetPosition=0, positionGain=0, targetVelocity=0,force=jointFrictionForce)
self._pybullet_client.setJointMotorControlMultiDof(self._sim_model, j, self._pybullet_client.POSITION_CONTROL,targetPosition=[0,0,0,1], targetVelocity=[0,0,0], positionGain=0,velocityGain=1,force=[jointFrictionForce,jointFrictionForce,jointFrictionForce])
self._pybullet_client.setJointMotorControl2(self._kin_model, j, self._pybullet_client.POSITION_CONTROL, targetPosition=0, positionGain=0, targetVelocity=0,force=0)
self._pybullet_client.setJointMotorControlMultiDof(self._kin_model, j, self._pybullet_client.POSITION_CONTROL,targetPosition=[0,0,0,1], targetVelocity=[0,0,0], positionGain=0,velocityGain=1,force=[jointFrictionForce,jointFrictionForce,0])
self._jointDofCounts=[4,4,4,1,4,4,1,4,1,4,4,1]
#only those body parts/links are allowed to touch the ground, otherwise the episode terminates
self._allowed_body_parts=[5,11]
#[x,y,z] base position and [x,y,z,w] base orientation!
self._totalDofs = 7
for dof in self._jointDofCounts:
self._totalDofs += dof
self.setSimTime(0)
self.resetPose()
def resetPose(self):
#print("resetPose with self._frame=", self._frame, " and self._frameFraction=",self._frameFraction)
pose = self.computePose(self._frameFraction)
self.initializePose(self._poseInterpolator, self._sim_model, initBase=True)
self.initializePose(self._poseInterpolator, self._kin_model, initBase=False)
def initializePose(self, pose, phys_model,initBase, initializeVelocity = True):
if initializeVelocity:
if initBase:
self._pybullet_client.resetBasePositionAndOrientation(phys_model, pose._basePos, pose._baseOrn)
self._pybullet_client.resetBaseVelocity(phys_model, pose._baseLinVel, pose._baseAngVel)
self._pybullet_client.resetJointStateMultiDof(phys_model,chest,pose._chestRot, pose._chestVel)
self._pybullet_client.resetJointStateMultiDof(phys_model,neck,pose._neckRot, pose._neckVel)
self._pybullet_client.resetJointStateMultiDof(phys_model,rightHip,pose._rightHipRot, pose._rightHipVel)
self._pybullet_client.resetJointStateMultiDof(phys_model,rightKnee,pose._rightKneeRot, pose._rightKneeVel)
self._pybullet_client.resetJointStateMultiDof(phys_model,rightAnkle,pose._rightAnkleRot, pose._rightAnkleVel)
self._pybullet_client.resetJointStateMultiDof(phys_model,rightShoulder,pose._rightShoulderRot, pose._rightShoulderVel)
self._pybullet_client.resetJointStateMultiDof(phys_model,rightElbow, pose._rightElbowRot, pose._rightElbowVel)
self._pybullet_client.resetJointStateMultiDof(phys_model,leftHip, pose._leftHipRot, pose._leftHipVel)
self._pybullet_client.resetJointStateMultiDof(phys_model,leftKnee, pose._leftKneeRot, pose._leftKneeVel)
self._pybullet_client.resetJointStateMultiDof(phys_model,leftAnkle, pose._leftAnkleRot, pose._leftAnkleVel)
self._pybullet_client.resetJointStateMultiDof(phys_model,leftShoulder, pose._leftShoulderRot, pose._leftShoulderVel)
self._pybullet_client.resetJointStateMultiDof(phys_model,leftElbow, pose._leftElbowRot, pose._leftElbowVel)
else:
if initBase:
self._pybullet_client.resetBasePositionAndOrientation(phys_model, pose._basePos, pose._baseOrn)
self._pybullet_client.resetJointStateMultiDof(phys_model,chest,pose._chestRot, [0,0,0])
self._pybullet_client.resetJointStateMultiDof(phys_model,neck,pose._neckRot, [0,0,0])
self._pybullet_client.resetJointStateMultiDof(phys_model,rightHip,pose._rightHipRot, [0,0,0])
self._pybullet_client.resetJointStateMultiDof(phys_model,rightKnee,pose._rightKneeRot, [0])
self._pybullet_client.resetJointStateMultiDof(phys_model,rightAnkle,pose._rightAnkleRot, [0,0,0])
self._pybullet_client.resetJointStateMultiDof(phys_model,rightShoulder,pose._rightShoulderRot, [0,0,0])
self._pybullet_client.resetJointStateMultiDof(phys_model,rightElbow, pose._rightElbowRot, [0])
self._pybullet_client.resetJointStateMultiDof(phys_model,leftHip, pose._leftHipRot, [0,0,0])
self._pybullet_client.resetJointStateMultiDof(phys_model,leftKnee, pose._leftKneeRot, [0])
self._pybullet_client.resetJointStateMultiDof(phys_model,leftAnkle, pose._leftAnkleRot, [0,0,0])
self._pybullet_client.resetJointStateMultiDof(phys_model,leftShoulder, pose._leftShoulderRot, [0,0,0])
self._pybullet_client.resetJointStateMultiDof(phys_model,leftElbow, pose._leftElbowRot, [0])
def calcCycleCount(self, simTime, cycleTime):
phases = simTime / cycleTime;
count = math.floor(phases)
loop = True
#count = (loop) ? count : cMathUtil::Clamp(count, 0, 1);
return count
def getCycleTime(self):
keyFrameDuration = self._mocap_data.KeyFrameDuraction()
cycleTime = keyFrameDuration*(self._mocap_data.NumFrames()-1)
return cycleTime
def setSimTime(self, t):
self._simTime = t
#print("SetTimeTime time =",t)
keyFrameDuration = self._mocap_data.KeyFrameDuraction()
cycleTime = self.getCycleTime()
#print("self._motion_data.NumFrames()=",self._mocap_data.NumFrames())
self._cycleCount = self.calcCycleCount(t, cycleTime)
#print("cycles=",cycles)
frameTime = t - self._cycleCount*cycleTime
if (frameTime<0):
frameTime += cycleTime
#print("keyFrameDuration=",keyFrameDuration)
#print("frameTime=",frameTime)
self._frame = int(frameTime/keyFrameDuration)
#print("self._frame=",self._frame)
self._frameNext = self._frame+1
if (self._frameNext >= self._mocap_data.NumFrames()):
self._frameNext = self._frame
self._frameFraction = (frameTime - self._frame*keyFrameDuration)/(keyFrameDuration)
def computeCycleOffset(self):
firstFrame=0
lastFrame = self._mocap_data.NumFrames()-1
frameData = self._mocap_data._motion_data['Frames'][0]
frameDataNext = self._mocap_data._motion_data['Frames'][lastFrame]
basePosStart = [frameData[1],frameData[2],frameData[3]]
basePosEnd = [frameDataNext[1],frameDataNext[2],frameDataNext[3]]
self._cycleOffset = [basePosEnd[0]-basePosStart[0],basePosEnd[1]-basePosStart[1],basePosEnd[2]-basePosStart[2]]
return self._cycleOffset
def computePose(self, frameFraction):
frameData = self._mocap_data._motion_data['Frames'][self._frame]
frameDataNext = self._mocap_data._motion_data['Frames'][self._frameNext]
self._poseInterpolator.Slerp(frameFraction, frameData, frameDataNext, self._pybullet_client)
#print("self._poseInterpolator.Slerp(", frameFraction,")=", pose)
self.computeCycleOffset()
oldPos = self._poseInterpolator._basePos
self._poseInterpolator._basePos = [oldPos[0]+self._cycleCount*self._cycleOffset[0],oldPos[1]+self._cycleCount*self._cycleOffset[1],oldPos[2]+self._cycleCount*self._cycleOffset[2]]
pose = self._poseInterpolator.GetPose()
return pose
def convertActionToPose(self, action):
pose = self._poseInterpolator.ConvertFromAction(self._pybullet_client, action)
return pose
def computePDForces(self, desiredPositions, desiredVelocities, maxForces):
if desiredVelocities==None:
desiredVelocities = [0]*self._totalDofs
taus = self._stablePD.computePD(bodyUniqueId=self._sim_model,
jointIndices = self._jointIndicesAll,
desiredPositions = desiredPositions,
desiredVelocities = desiredVelocities,
kps = self._kpOrg,
kds = self._kdOrg,
maxForces = maxForces,
timeStep=self._timeStep)
return taus
def applyPDForces(self, taus):
dofIndex=7
scaling = 1
for index in range (len(self._jointIndicesAll)):
jointIndex = self._jointIndicesAll[index]
if self._jointDofCounts[index]==4:
force=[scaling*taus[dofIndex+0],scaling*taus[dofIndex+1],scaling*taus[dofIndex+2]]
#print("force[", jointIndex,"]=",force)
self._pybullet_client.setJointMotorControlMultiDof(self._sim_model,jointIndex,self._pybullet_client.TORQUE_CONTROL,force=force)
if self._jointDofCounts[index]==1:
force=[scaling*taus[dofIndex]]
#print("force[", jointIndex,"]=",force)
self._pybullet_client.setJointMotorControlMultiDof(self._sim_model, jointIndex, controlMode=self._pybullet_client.TORQUE_CONTROL, force=force)
dofIndex+=self._jointDofCounts[index]
def setJointMotors(self, desiredPositions, maxForces):
controlMode = self._pybullet_client.POSITION_CONTROL
startIndex=7
chest=1
neck=2
rightHip=3
rightKnee=4
rightAnkle=5
rightShoulder=6
rightElbow=7
leftHip=9
leftKnee=10
leftAnkle=11
leftShoulder=12
leftElbow=13
kp = 0.2
forceScale=1
#self._jointDofCounts=[4,4,4,1,4,4,1,4,1,4,4,1]
maxForce = [forceScale*maxForces[startIndex],forceScale*maxForces[startIndex+1],forceScale*maxForces[startIndex+2],forceScale*maxForces[startIndex+3]]
startIndex+=4
self._pybullet_client.setJointMotorControlMultiDof(self._sim_model,chest,controlMode, targetPosition=self._poseInterpolator._chestRot,positionGain=kp, force=maxForce)
maxForce = [maxForces[startIndex],maxForces[startIndex+1],maxForces[startIndex+2],maxForces[startIndex+3]]
startIndex+=4
self._pybullet_client.setJointMotorControlMultiDof(self._sim_model,neck,controlMode,targetPosition=self._poseInterpolator._neckRot,positionGain=kp, force=maxForce)
maxForce = [maxForces[startIndex],maxForces[startIndex+1],maxForces[startIndex+2],maxForces[startIndex+3]]
startIndex+=4
self._pybullet_client.setJointMotorControlMultiDof(self._sim_model,rightHip,controlMode,targetPosition=self._poseInterpolator._rightHipRot,positionGain=kp, force=maxForce)
maxForce = [forceScale*maxForces[startIndex]]
startIndex+=1
self._pybullet_client.setJointMotorControlMultiDof(self._sim_model,rightKnee,controlMode,targetPosition=self._poseInterpolator._rightKneeRot,positionGain=kp, force=maxForce)
maxForce = [maxForces[startIndex],maxForces[startIndex+1],maxForces[startIndex+2],maxForces[startIndex+3]]
startIndex+=4
self._pybullet_client.setJointMotorControlMultiDof(self._sim_model,rightAnkle,controlMode,targetPosition=self._poseInterpolator._rightAnkleRot,positionGain=kp, force=maxForce)
maxForce = [forceScale*maxForces[startIndex],forceScale*maxForces[startIndex+1],forceScale*maxForces[startIndex+2],forceScale*maxForces[startIndex+3]]
startIndex+=4
maxForce = [forceScale*maxForces[startIndex]]
startIndex+=1
self._pybullet_client.setJointMotorControlMultiDof(self._sim_model,rightElbow, controlMode,targetPosition=self._poseInterpolator._rightElbowRot,positionGain=kp, force=maxForce)
maxForce = [maxForces[startIndex],maxForces[startIndex+1],maxForces[startIndex+2],maxForces[startIndex+3]]
startIndex+=4
self._pybullet_client.setJointMotorControlMultiDof(self._sim_model,leftHip, controlMode,targetPosition=self._poseInterpolator._leftHipRot,positionGain=kp, force=maxForce)
maxForce = [forceScale*maxForces[startIndex]]
startIndex+=1
self._pybullet_client.setJointMotorControlMultiDof(self._sim_model,leftKnee, controlMode,targetPosition=self._poseInterpolator._leftKneeRot,positionGain=kp, force=maxForce)
maxForce = [maxForces[startIndex],maxForces[startIndex+1],maxForces[startIndex+2],maxForces[startIndex+3]]
startIndex+=4
self._pybullet_client.setJointMotorControlMultiDof(self._sim_model,leftAnkle, controlMode,targetPosition=self._poseInterpolator._leftAnkleRot,positionGain=kp, force=maxForce)
maxForce = [maxForces[startIndex],maxForces[startIndex+1],maxForces[startIndex+2],maxForces[startIndex+3]]
startIndex+=4
self._pybullet_client.setJointMotorControlMultiDof(self._sim_model,leftShoulder, controlMode,targetPosition=self._poseInterpolator._leftShoulderRot,positionGain=kp, force=maxForce)
maxForce = [forceScale*maxForces[startIndex]]
startIndex+=1
self._pybullet_client.setJointMotorControlMultiDof(self._sim_model,leftElbow, controlMode,targetPosition=self._poseInterpolator._leftElbowRot,positionGain=kp, force=maxForce)
#print("startIndex=",startIndex)
def getPhase(self):
keyFrameDuration = self._mocap_data.KeyFrameDuraction()
cycleTime = keyFrameDuration*(self._mocap_data.NumFrames()-1)
phase = self._simTime / cycleTime
phase = math.fmod(phase,1.0)
if (phase<0):
phase += 1
return phase
def buildHeadingTrans(self, rootOrn):
#align root transform 'forward' with world-space x axis
eul = self._pybullet_client.getEulerFromQuaternion(rootOrn)
refDir = [1,0,0]
rotVec = self._pybullet_client.rotateVector(rootOrn, refDir)
heading = math.atan2(-rotVec[2], rotVec[0])
heading2=eul[1]
#print("heading=",heading)
headingOrn = self._pybullet_client.getQuaternionFromAxisAngle([0,1,0],-heading)
return headingOrn
def buildOriginTrans(self):
rootPos,rootOrn = self._pybullet_client.getBasePositionAndOrientation(self._sim_model)
#print("rootPos=",rootPos, " rootOrn=",rootOrn)
invRootPos=[-rootPos[0], 0, -rootPos[2]]
#invOrigTransPos, invOrigTransOrn = self._pybullet_client.invertTransform(rootPos,rootOrn)
headingOrn = self.buildHeadingTrans(rootOrn)
#print("headingOrn=",headingOrn)
headingMat = self._pybullet_client.getMatrixFromQuaternion(headingOrn)
#print("headingMat=",headingMat)
#dummy, rootOrnWithoutHeading = self._pybullet_client.multiplyTransforms([0,0,0],headingOrn, [0,0,0], rootOrn)
#dummy, invOrigTransOrn = self._pybullet_client.multiplyTransforms([0,0,0],rootOrnWithoutHeading, invOrigTransPos, invOrigTransOrn)
invOrigTransPos, invOrigTransOrn = self._pybullet_client.multiplyTransforms( [0,0,0],headingOrn, invRootPos,[0,0,0,1])
#print("invOrigTransPos=",invOrigTransPos)
#print("invOrigTransOrn=",invOrigTransOrn)
invOrigTransMat = self._pybullet_client.getMatrixFromQuaternion(invOrigTransOrn)
#print("invOrigTransMat =",invOrigTransMat )
return invOrigTransPos, invOrigTransOrn
def getState(self):
stateVector = []
phase = self.getPhase()
#print("phase=",phase)
stateVector.append(phase)
rootTransPos, rootTransOrn=self.buildOriginTrans()
basePos,baseOrn = self._pybullet_client.getBasePositionAndOrientation(self._sim_model)
rootPosRel, dummy = self._pybullet_client.multiplyTransforms(rootTransPos, rootTransOrn, basePos,[0,0,0,1])
#print("!!!rootPosRel =",rootPosRel )
#print("rootTransPos=",rootTransPos)
#print("basePos=",basePos)
localPos,localOrn = self._pybullet_client.multiplyTransforms( rootTransPos, rootTransOrn , basePos,baseOrn )
localPos=[localPos[0]-rootPosRel[0],localPos[1]-rootPosRel[1],localPos[2]-rootPosRel[2]]
#print("localPos=",localPos)
stateVector.append(rootPosRel[1])
#self.pb2dmJoints=[0,1,2,9,10,11,3,4,5,12,13,14,6,7,8]
self.pb2dmJoints=[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14]
for pbJoint in range (self._pybullet_client.getNumJoints(self._sim_model)):
j = self.pb2dmJoints[pbJoint]
#print("joint order:",j)
ls = self._pybullet_client.getLinkState(self._sim_model, j, computeForwardKinematics=True)
linkPos = ls[0]
linkOrn = ls[1]
linkPosLocal, linkOrnLocal = self._pybullet_client.multiplyTransforms(rootTransPos, rootTransOrn, linkPos,linkOrn)
if (linkOrnLocal[3]<0):
linkOrnLocal=[-linkOrnLocal[0],-linkOrnLocal[1],-linkOrnLocal[2],-linkOrnLocal[3]]
linkPosLocal=[linkPosLocal[0]-rootPosRel[0],linkPosLocal[1]-rootPosRel[1],linkPosLocal[2]-rootPosRel[2]]
for l in linkPosLocal:
stateVector.append(l)
#re-order the quaternion, DeepMimic uses w,x,y,z
if (linkOrnLocal[3]<0):
linkOrnLocal[0]*=-1
linkOrnLocal[1]*=-1
linkOrnLocal[2]*=-1
linkOrnLocal[3]*=-1
stateVector.append(linkOrnLocal[3])
stateVector.append(linkOrnLocal[0])
stateVector.append(linkOrnLocal[1])
stateVector.append(linkOrnLocal[2])
for pbJoint in range (self._pybullet_client.getNumJoints(self._sim_model)):
j = self.pb2dmJoints[pbJoint]
ls = self._pybullet_client.getLinkState(self._sim_model, j, computeLinkVelocity=True)
linkLinVel = ls[6]
linkAngVel = ls[7]
linkLinVelLocal , unused = self._pybullet_client.multiplyTransforms([0,0,0], rootTransOrn, linkLinVel,[0,0,0,1])
#linkLinVelLocal=[linkLinVelLocal[0]-rootPosRel[0],linkLinVelLocal[1]-rootPosRel[1],linkLinVelLocal[2]-rootPosRel[2]]
linkAngVelLocal ,unused = self._pybullet_client.multiplyTransforms([0,0,0], rootTransOrn, linkAngVel,[0,0,0,1])
for l in linkLinVelLocal:
stateVector.append(l)
for l in linkAngVelLocal:
stateVector.append(l)
#print("stateVector len=",len(stateVector))
#for st in range (len(stateVector)):
# print("state[",st,"]=",stateVector[st])
return stateVector
def terminates(self):
#check if any non-allowed body part hits the ground
terminates=False
pts = self._pybullet_client.getContactPoints()
for p in pts:
part = -1
#ignore self-collision
if (p[1]==p[2]):
continue
if (p[1]==self._sim_model):
part=p[3]
if (p[2]==self._sim_model):
part=p[4]
if (part >=0 and part not in self._allowed_body_parts):
#print("terminating part:", part)
terminates=True
return terminates
def quatMul(self, q1, q2):
return [ q1[3] * q2[0] + q1[0] * q2[3] + q1[1] * q2[2] - q1[2] * q2[1],
q1[3] * q2[1] + q1[1] * q2[3] + q1[2] * q2[0] - q1[0] * q2[2],
q1[3] * q2[2] + q1[2] * q2[3] + q1[0] * q2[1] - q1[1] * q2[0],
q1[3] * q2[3] - q1[0] * q2[0] - q1[1] * q2[1] - q1[2] * q2[2]]
def calcRootAngVelErr(self, vel0, vel1):
diff = [vel0[0]-vel1[0],vel0[1]-vel1[1], vel0[2]-vel1[2]]
return diff[0]*diff[0]+diff[1]*diff[1]+diff[2]*diff[2]
def calcRootRotDiff(self,orn0, orn1):
orn0Conj = [-orn0[0],-orn0[1],-orn0[2],orn0[3]]
q_diff = self.quatMul(orn1, orn0Conj)
axis,angle = self._pybullet_client.getAxisAngleFromQuaternion(q_diff)
return angle*angle
def getReward(self, pose):
#from DeepMimic double cSceneImitate::CalcRewardImitate
#todo: compensate for ground height in some parts, once we move to non-flat terrain
pose_w = 0.5
vel_w = 0.05
end_eff_w = 0.15
root_w = 0.2
com_w = 0 #0.1
total_w = pose_w + vel_w + end_eff_w + root_w + com_w
pose_w /= total_w
vel_w /= total_w
end_eff_w /= total_w
root_w /= total_w
com_w /= total_w
pose_scale = 2
vel_scale = 0.1
end_eff_scale = 40
root_scale = 5
com_scale = 10
err_scale = 1
reward = 0
pose_err = 0
vel_err = 0
end_eff_err = 0
root_err = 0
com_err = 0
heading_err = 0
#create a mimic reward, comparing the dynamics humanoid with a kinematic one
#pose = self.InitializePoseFromMotionData()
#print("self._kin_model=",self._kin_model)
#print("kinematicHumanoid #joints=",self._pybullet_client.getNumJoints(self._kin_model))
#self.ApplyPose(pose, True, True, self._kin_model, self._pybullet_client)
#const Eigen::VectorXd& pose0 = sim_char.GetPose();
#const Eigen::VectorXd& vel0 = sim_char.GetVel();
#const Eigen::VectorXd& pose1 = kin_char.GetPose();
#const Eigen::VectorXd& vel1 = kin_char.GetVel();
#tMatrix origin_trans = sim_char.BuildOriginTrans();
#tMatrix kin_origin_trans = kin_char.BuildOriginTrans();
#
#tVector com0_world = sim_char.CalcCOM();
#tVector com_vel0_world = sim_char.CalcCOMVel();
#tVector com1_world;
#tVector com_vel1_world;
#cRBDUtil::CalcCoM(joint_mat, body_defs, pose1, vel1, com1_world, com_vel1_world);
#
root_id = 0
#tVector root_pos0 = cKinTree::GetRootPos(joint_mat, pose0);
#tVector root_pos1 = cKinTree::GetRootPos(joint_mat, pose1);
#tQuaternion root_rot0 = cKinTree::GetRootRot(joint_mat, pose0);
#tQuaternion root_rot1 = cKinTree::GetRootRot(joint_mat, pose1);
#tVector root_vel0 = cKinTree::GetRootVel(joint_mat, vel0);
#tVector root_vel1 = cKinTree::GetRootVel(joint_mat, vel1);
#tVector root_ang_vel0 = cKinTree::GetRootAngVel(joint_mat, vel0);
#tVector root_ang_vel1 = cKinTree::GetRootAngVel(joint_mat, vel1);
mJointWeights = [0.20833,0.10416, 0.0625, 0.10416,
0.0625, 0.041666666666666671, 0.0625, 0.0416,
0.00, 0.10416, 0.0625, 0.0416, 0.0625, 0.0416, 0.0000]
num_end_effs = 0
num_joints = 15
root_rot_w = mJointWeights[root_id]
rootPosSim,rootOrnSim = self._pybullet_client.getBasePositionAndOrientation(self._sim_model)
rootPosKin ,rootOrnKin = self._pybullet_client.getBasePositionAndOrientation(self._kin_model)
linVelSim, angVelSim = self._pybullet_client.getBaseVelocity(self._sim_model)
linVelKin, angVelKin = self._pybullet_client.getBaseVelocity(self._kin_model)
root_rot_err = self.calcRootRotDiff(rootOrnSim,rootOrnKin)
pose_err += root_rot_w * root_rot_err
root_vel_diff = [linVelSim[0]-linVelKin[0],linVelSim[1]-linVelKin[1],linVelSim[2]-linVelKin[2]]
root_vel_err = root_vel_diff[0]*root_vel_diff[0]+root_vel_diff[1]*root_vel_diff[1]+root_vel_diff[2]*root_vel_diff[2]
root_ang_vel_err = self.calcRootAngVelErr( angVelSim, angVelKin)
vel_err += root_rot_w * root_ang_vel_err
for j in range (num_joints):
curr_pose_err = 0
curr_vel_err = 0
w = mJointWeights[j];
simJointInfo = self._pybullet_client.getJointStateMultiDof(self._sim_model, j)
#print("simJointInfo.pos=",simJointInfo[0])
#print("simJointInfo.vel=",simJointInfo[1])
kinJointInfo = self._pybullet_client.getJointStateMultiDof(self._kin_model,j)
#print("kinJointInfo.pos=",kinJointInfo[0])
#print("kinJointInfo.vel=",kinJointInfo[1])
if (len(simJointInfo[0])==1):
angle = simJointInfo[0][0]-kinJointInfo[0][0]
curr_pose_err = angle*angle
velDiff = simJointInfo[1][0]-kinJointInfo[1][0]
curr_vel_err = velDiff*velDiff
if (len(simJointInfo[0])==4):
#print("quaternion diff")
diffQuat = self._pybullet_client.getDifferenceQuaternion(simJointInfo[0],kinJointInfo[0])
axis,angle = self._pybullet_client.getAxisAngleFromQuaternion(diffQuat)
curr_pose_err = angle*angle
diffVel = [simJointInfo[1][0]-kinJointInfo[1][0],simJointInfo[1][1]-kinJointInfo[1][1],simJointInfo[1][2]-kinJointInfo[1][2]]
curr_vel_err = diffVel[0]*diffVel[0]+diffVel[1]*diffVel[1]+diffVel[2]*diffVel[2]
pose_err += w * curr_pose_err
vel_err += w * curr_vel_err
is_end_eff = j in self._end_effectors
if is_end_eff:
linkStateSim = self._pybullet_client.getLinkState(self._sim_model, j)
linkStateKin = self._pybullet_client.getLinkState(self._kin_model, j)
linkPosSim = linkStateSim[0]
linkPosKin = linkStateKin[0]
linkPosDiff = [linkPosSim[0]-linkPosKin[0],linkPosSim[1]-linkPosKin[1],linkPosSim[2]-linkPosKin[2]]
curr_end_err = linkPosDiff[0]*linkPosDiff[0]+linkPosDiff[1]*linkPosDiff[1]+linkPosDiff[2]*linkPosDiff[2]
end_eff_err += curr_end_err
num_end_effs+=1
if (num_end_effs > 0):
end_eff_err /= num_end_effs
#double root_ground_h0 = mGround->SampleHeight(sim_char.GetRootPos())
#double root_ground_h1 = kin_char.GetOriginPos()[1]
#root_pos0[1] -= root_ground_h0
#root_pos1[1] -= root_ground_h1
root_pos_diff = [rootPosSim[0]-rootPosKin[0],rootPosSim[1]-rootPosKin[1],rootPosSim[2]-rootPosKin[2]]
root_pos_err = root_pos_diff[0]*root_pos_diff[0]+root_pos_diff[1]*root_pos_diff[1]+root_pos_diff[2]*root_pos_diff[2]
#
#root_rot_err = cMathUtil::QuatDiffTheta(root_rot0, root_rot1)
#root_rot_err *= root_rot_err
#root_vel_err = (root_vel1 - root_vel0).squaredNorm()
#root_ang_vel_err = (root_ang_vel1 - root_ang_vel0).squaredNorm()
root_err = root_pos_err + 0.1 * root_rot_err+ 0.01 * root_vel_err+ 0.001 * root_ang_vel_err
#com_err = 0.1 * (com_vel1_world - com_vel0_world).squaredNorm()
#print("pose_err=",pose_err)
#print("vel_err=",vel_err)
pose_reward = math.exp(-err_scale * pose_scale * pose_err)
vel_reward = math.exp(-err_scale * vel_scale * vel_err)
end_eff_reward = math.exp(-err_scale * end_eff_scale * end_eff_err)
root_reward = math.exp(-err_scale * root_scale * root_err)
com_reward = math.exp(-err_scale * com_scale * com_err)
reward = pose_w * pose_reward + vel_w * vel_reward + end_eff_w * end_eff_reward + root_w * root_reward + com_w * com_reward
# pose_reward,vel_reward,end_eff_reward, root_reward, com_reward);
#print("reward=",reward)
#print("pose_reward=",pose_reward)
#print("vel_reward=",vel_reward)
#print("end_eff_reward=",end_eff_reward)
#print("root_reward=",root_reward)
#print("com_reward=",com_reward)
return reward

View File

@@ -1,15 +1,19 @@
import pybullet as p
import pybullet as p1
from pybullet_utils import bullet_client
import pybullet_data
from pybullet_utils import pd_controller_stable
import time
import motion_capture_data
import quadrupedPoseInterpolator
p.connect(p.GUI)
useConstraints = False
p = bullet_client.BulletClient(connection_mode=p1.GUI)
p.setAdditionalSearchPath(pybullet_data.getDataPath())
plane = p.loadURDF("plane.urdf")
p.setGravity(0,0,-9.8)
p.setGravity(0,0,-10)
timeStep=1./500
p.setTimeStep(timeStep)
#p.setDefaultContactERP(0)
@@ -21,6 +25,9 @@ startPos=[0.007058990464444105, 0.03149299192130908, 0.4918981912395484]
startOrn=[0.005934649695708604, 0.7065453990917289, 0.7076373820553712, -0.0027774940359030264]
quadruped = p.loadURDF("laikago/laikago.urdf",startPos,startOrn, flags = urdfFlags,useFixedBase=False)
p.resetBasePositionAndOrientation(quadruped,startPos,startOrn)
if not useConstraints:
for j in range(p.getNumJoints(quadruped)):
p.setJointMotorControl2(quadruped,j,p.POSITION_CONTROL,force=0)
#This cube is added as a soft constraint to keep the laikago from falling
#since we didn't train it yet, it doesn't balance
@@ -117,6 +124,7 @@ print("mocapData.KeyFrameDuraction=",mocapData.KeyFrameDuraction())
print("mocapData.getCycleTime=",mocapData.getCycleTime())
print("mocapData.computeCycleOffset=",mocapData.computeCycleOffset())
stablePD = pd_controller_stable.PDControllerStable(p)
cycleTime = mocapData.getCycleTime()
t=0
@@ -146,12 +154,50 @@ while t<10.*cycleTime:
frameData = mocapData._motion_data['Frames'][frame]
frameDataNext = mocapData._motion_data['Frames'][frameNext]
joints,qdot=qpi.Slerp(frameFraction, frameData, frameDataNext, p)
jointsStr,qdot=qpi.Slerp(frameFraction, frameData, frameDataNext, p)
maxForce = p.readUserDebugParameter(maxForceId)
print("jointIds=",jointIds)
if useConstraints:
for j in range (12):
targetPos = float(joints[j])
#skip the base positional dofs
targetPos = float(jointsStr[j+7])
p.setJointMotorControl2(quadruped,jointIds[j],p.POSITION_CONTROL,jointDirections[j]*targetPos+jointOffsets[j], force=maxForce)
else:
desiredPositions=[]
for j in range (7):
targetPosUnmodified = float(jointsStr[j])
desiredPositions.append(targetPosUnmodified)
for j in range (12):
targetPosUnmodified = float(jointsStr[j+7])
targetPos=jointDirections[j]*targetPosUnmodified+jointOffsets[j]
desiredPositions.append(targetPos)
numBaseDofs=6
totalDofs=12+numBaseDofs
desiredVelocities=None
if desiredVelocities==None:
desiredVelocities = [0]*totalDofs
taus = stablePD.computePD(bodyUniqueId=quadruped,
jointIndices = jointIds,
desiredPositions = desiredPositions,
desiredVelocities = desiredVelocities,
kps = [4000]*totalDofs,
kds = [40]*totalDofs,
maxForces = [500]*totalDofs,
timeStep=timeStep)
dofIndex=6
scaling = 1
for index in range (len(jointIds)):
jointIndex = jointIds[index]
force=[scaling*taus[dofIndex]]
print("force[", jointIndex,"]=",force)
p.setJointMotorControlMultiDof(quadruped, jointIndex, controlMode=p.TORQUE_CONTROL, force=force)
dofIndex+=1
p.stepSimulation()
t+=timeStep
time.sleep(timeStep)

View File

@@ -165,11 +165,25 @@ class PDControllerStable(object):
self._pb = pb
def computePD(self, bodyUniqueId, jointIndices, desiredPositions, desiredVelocities, kps, kds, maxForces, timeStep):
numJoints = self._pb.getNumJoints(bodyUniqueId)
jointStates = self._pb.getJointStates(bodyUniqueId, jointIndices)
numBaseDofs = 0
numPosBaseDofs=0
baseMass = self._pb.getDynamicsInfo(bodyUniqueId,-1)[0]
curPos,curOrn = self._pb.getBasePositionAndOrientation(bodyUniqueId)
q1 = []
qdot1 = []
zeroAccelerations = []
qError=[]
if (baseMass>0):
numBaseDofs=6
numPosBaseDofs=7
q1 = [curPos[0],curPos[1],curPos[2],curOrn[0],curOrn[1],curOrn[2],curOrn[3]]
qdot1=[0]*numBaseDofs
zeroAccelerations = [0]*numBaseDofs
angDiff=[0,0,0]
qError=[ desiredPositions[0]-curPos[0], desiredPositions[1]-curPos[1], desiredPositions[2]-curPos[2],angDiff[0],angDiff[1],angDiff[2]]
numJoints = self._pb.getNumJoints(bodyUniqueId)
jointStates = self._pb.getJointStates(bodyUniqueId, jointIndices)
for i in range (numJoints):
q1.append(jointStates[i][0])
qdot1.append(jointStates[i][1])
@@ -178,7 +192,10 @@ class PDControllerStable(object):
qdot=np.array(qdot1)
qdes = np.array(desiredPositions)
qdotdes = np.array(desiredVelocities)
qError = qdes - q
#qError = qdes - q
for j in range(numJoints):
qError.append(desiredPositions[j+numPosBaseDofs]-q1[j+numPosBaseDofs])
#print("qError=",qError)
qdotError = qdotdes - qdot
Kp = np.diagflat(kps)
Kd = np.diagflat(kds)

View File

@@ -330,6 +330,28 @@ static PyObject* pybullet_stepSimulation(PyObject* self, PyObject* args, PyObjec
statusHandle = b3SubmitClientCommandAndWaitStatus(
sm, b3InitStepSimulationCommand(sm));
statusType = b3GetStatusType(statusHandle);
if (statusType == CMD_STEP_FORWARD_SIMULATION_COMPLETED)
{
struct b3ForwardDynamicsAnalyticsArgs analyticsData;
int numIslands = 0;
int i;
numIslands = b3GetStatusForwardDynamicsAnalyticsData(statusHandle, &analyticsData);
PyObject* pyAnalyticsData = PyTuple_New(numIslands);
for (i=0;i<numIslands;i++)
{
int numFields = 4;
PyObject* pyIslandData = PyTuple_New(numFields);
PyTuple_SetItem(pyIslandData, 0, PyLong_FromLong(analyticsData.m_islandData[i].m_islandId));
PyTuple_SetItem(pyIslandData, 1, PyLong_FromLong(analyticsData.m_islandData[i].m_numBodies));
PyTuple_SetItem(pyIslandData, 2, PyLong_FromLong(analyticsData.m_islandData[i].m_numIterationsUsed));
PyTuple_SetItem(pyIslandData, 3, PyFloat_FromDouble(analyticsData.m_islandData[i].m_remainingLeastSquaresResidual));
PyTuple_SetItem(pyAnalyticsData, i, pyIslandData);
}
return pyAnalyticsData;
}
}
}
@@ -1545,8 +1567,9 @@ static PyObject* pybullet_setPhysicsEngineParameter(PyObject* self, PyObject* ar
double globalCFM = -1;
int minimumSolverIslandSize = -1;
int reportSolverAnalytics = -1;
int physicsClientId = 0;
static char* kwlist[] = {"fixedTimeStep",
"numSolverIterations",
"useSplitImpulse",
@@ -1570,10 +1593,12 @@ static PyObject* pybullet_setPhysicsEngineParameter(PyObject* self, PyObject* ar
"constraintSolverType",
"globalCFM",
"minimumSolverIslandSize",
"reportSolverAnalytics",
"physicsClientId", NULL};
if (!PyArg_ParseTupleAndKeywords(args, keywds, "|diidiidiiddddiididdiidii", kwlist, &fixedTimeStep, &numSolverIterations, &useSplitImpulse, &splitImpulsePenetrationThreshold, &numSubSteps,
&collisionFilterMode, &contactBreakingThreshold, &maxNumCmdPer1ms, &enableFileCaching, &restitutionVelocityThreshold, &erp, &contactERP, &frictionERP, &enableConeFriction, &deterministicOverlappingPairs, &allowedCcdPenetration, &jointFeedbackMode, &solverResidualThreshold, &contactSlop, &enableSAT, &constraintSolverType, &globalCFM, &minimumSolverIslandSize, &physicsClientId))
if (!PyArg_ParseTupleAndKeywords(args, keywds, "|diidiidiiddddiididdiidiii", kwlist, &fixedTimeStep, &numSolverIterations, &useSplitImpulse, &splitImpulsePenetrationThreshold, &numSubSteps,
&collisionFilterMode, &contactBreakingThreshold, &maxNumCmdPer1ms, &enableFileCaching, &restitutionVelocityThreshold, &erp, &contactERP, &frictionERP, &enableConeFriction, &deterministicOverlappingPairs, &allowedCcdPenetration, &jointFeedbackMode, &solverResidualThreshold, &contactSlop, &enableSAT, &constraintSolverType, &globalCFM, &minimumSolverIslandSize,
&reportSolverAnalytics, &physicsClientId))
{
return NULL;
}
@@ -1690,6 +1715,10 @@ static PyObject* pybullet_setPhysicsEngineParameter(PyObject* self, PyObject* ar
{
b3PhysicsParamSetDefaultGlobalCFM(command, globalCFM);
}
if (reportSolverAnalytics >= 0)
{
b3PhysicsParamSetSolverAnalytics(command, reportSolverAnalytics);
}
statusHandle = b3SubmitClientCommandAndWaitStatus(sm, command);
}

View File

@@ -64,6 +64,7 @@ struct btContactSolverInfoData
btScalar m_restitutionVelocityThreshold;
bool m_jointFeedbackInWorldSpace;
bool m_jointFeedbackInJointFrame;
int m_reportSolverAnalytics;
};
struct btContactSolverInfo : public btContactSolverInfoData
@@ -98,6 +99,7 @@ struct btContactSolverInfo : public btContactSolverInfoData
m_restitutionVelocityThreshold = 0.2f; //if the relative velocity is below this threshold, there is zero restitution
m_jointFeedbackInWorldSpace = false;
m_jointFeedbackInJointFrame = false;
m_reportSolverAnalytics = 0;
}
};

View File

@@ -2239,6 +2239,14 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyIterations(
#ifdef VERBOSE_RESIDUAL_PRINTF
printf("residual = %f at iteration #%d\n", m_leastSquaresResidual, iteration);
#endif
m_analyticsData.m_numSolverCalls++;
m_analyticsData.m_numIterationsUsed = iteration+1;
m_analyticsData.m_islandId = -2;
if (numBodies>0)
m_analyticsData.m_islandId = bodies[0]->getCompanionId();
m_analyticsData.m_numBodies = numBodies;
m_analyticsData.m_numContactManifolds = numManifolds;
m_analyticsData.m_remainingLeastSquaresResidual = m_leastSquaresResidual;
break;
}
}

View File

@@ -91,10 +91,29 @@ struct btSISolverSingleIterationData
}
};
struct btSolverAnalyticsData
{
btSolverAnalyticsData()
{
m_numSolverCalls = 0;
m_numIterationsUsed = -1;
m_remainingLeastSquaresResidual = -1;
m_islandId = -2;
}
int m_islandId;
int m_numBodies;
int m_numContactManifolds;
int m_numSolverCalls;
int m_numIterationsUsed;
double m_remainingLeastSquaresResidual;
};
///The btSequentialImpulseConstraintSolver is a fast SIMD implementation of the Projected Gauss Seidel (iterative LCP) method.
ATTRIBUTE_ALIGNED16(class)
btSequentialImpulseConstraintSolver : public btConstraintSolver
{
protected:
btAlignedObjectArray<btSolverBody> m_tmpSolverBodyPool;
btConstraintArray m_tmpSolverContactConstraintPool;
@@ -283,6 +302,8 @@ public:
m_resolveSingleConstraintRowLowerLimit = rowSolver;
}
///Various implementations of solving a single constraint row using a generic equality constraint, using scalar reference, SSE2 or SSE4
static btSingleConstraintRowSolver getScalarConstraintRowSolverGeneric();
static btSingleConstraintRowSolver getSSE2ConstraintRowSolverGeneric();
@@ -296,6 +317,7 @@ public:
static btSingleConstraintRowSolver getScalarSplitPenetrationImpulseGeneric();
static btSingleConstraintRowSolver getSSE2SplitPenetrationImpulseGeneric();
btSolverAnalyticsData m_analyticsData;
};
#endif //BT_SEQUENTIAL_IMPULSE_CONSTRAINT_SOLVER_H

View File

@@ -207,6 +207,7 @@ public:
}
};
struct MultiBodyInplaceSolverIslandCallback : public btSimulationIslandManager::IslandCallback
{
btContactSolverInfo* m_solverInfo;
@@ -224,6 +225,8 @@ struct MultiBodyInplaceSolverIslandCallback : public btSimulationIslandManager::
btAlignedObjectArray<btTypedConstraint*> m_constraints;
btAlignedObjectArray<btMultiBodyConstraint*> m_multiBodyConstraints;
btAlignedObjectArray<btSolverAnalyticsData> m_islandAnalyticsData;
MultiBodyInplaceSolverIslandCallback(btMultiBodyConstraintSolver* solver,
btDispatcher* dispatcher)
: m_solverInfo(NULL),
@@ -244,6 +247,7 @@ struct MultiBodyInplaceSolverIslandCallback : public btSimulationIslandManager::
SIMD_FORCE_INLINE void setup(btContactSolverInfo* solverInfo, btTypedConstraint** sortedConstraints, int numConstraints, btMultiBodyConstraint** sortedMultiBodyConstraints, int numMultiBodyConstraints, btIDebugDraw* debugDrawer)
{
m_islandAnalyticsData.clear();
btAssert(solverInfo);
m_solverInfo = solverInfo;
@@ -270,6 +274,11 @@ struct MultiBodyInplaceSolverIslandCallback : public btSimulationIslandManager::
{
///we don't split islands, so all constraints/contact manifolds/bodies are passed into the solver regardless the island id
m_solver->solveMultiBodyGroup(bodies, numBodies, manifolds, numManifolds, m_sortedConstraints, m_numConstraints, &m_multiBodySortedConstraints[0], m_numConstraints, *m_solverInfo, m_debugDrawer, m_dispatcher);
if (m_solverInfo->m_reportSolverAnalytics&1)
{
m_solver->m_analyticsData.m_islandId = islandId;
m_islandAnalyticsData.push_back(m_solver->m_analyticsData);
}
}
else
{
@@ -335,7 +344,7 @@ struct MultiBodyInplaceSolverIslandCallback : public btSimulationIslandManager::
if ((m_multiBodyConstraints.size() + m_constraints.size() + m_manifolds.size()) > m_solverInfo->m_minimumSolverBatchSize)
{
processConstraints();
processConstraints(islandId);
}
else
{
@@ -344,7 +353,7 @@ struct MultiBodyInplaceSolverIslandCallback : public btSimulationIslandManager::
}
}
}
void processConstraints()
void processConstraints(int islandId=-1)
{
btCollisionObject** bodies = m_bodies.size() ? &m_bodies[0] : 0;
btPersistentManifold** manifold = m_manifolds.size() ? &m_manifolds[0] : 0;
@@ -354,6 +363,11 @@ struct MultiBodyInplaceSolverIslandCallback : public btSimulationIslandManager::
//printf("mb contacts = %d, mb constraints = %d\n", mbContacts, m_multiBodyConstraints.size());
m_solver->solveMultiBodyGroup(bodies, m_bodies.size(), manifold, m_manifolds.size(), constraints, m_constraints.size(), multiBodyConstraints, m_multiBodyConstraints.size(), *m_solverInfo, m_debugDrawer, m_dispatcher);
if (m_bodies.size() && (m_solverInfo->m_reportSolverAnalytics&1))
{
m_solver->m_analyticsData.m_islandId = islandId;
m_islandAnalyticsData.push_back(m_solver->m_analyticsData);
}
m_bodies.resize(0);
m_manifolds.resize(0);
m_constraints.resize(0);
@@ -361,6 +375,11 @@ struct MultiBodyInplaceSolverIslandCallback : public btSimulationIslandManager::
}
};
void btMultiBodyDynamicsWorld::getAnalyticsData(btAlignedObjectArray<btSolverAnalyticsData>& islandAnalyticsData) const
{
islandAnalyticsData = m_solverMultiBodyIslandCallback->m_islandAnalyticsData;
}
btMultiBodyDynamicsWorld::btMultiBodyDynamicsWorld(btDispatcher* dispatcher, btBroadphaseInterface* pairCache, btMultiBodyConstraintSolver* constraintSolver, btCollisionConfiguration* collisionConfiguration)
: btDiscreteDynamicsWorld(dispatcher, pairCache, constraintSolver, collisionConfiguration),
m_multiBodyConstraintSolver(constraintSolver)
@@ -720,6 +739,8 @@ void btMultiBodyDynamicsWorld::solveConstraints(btContactSolverInfo& solverInfo)
if (bod->internalNeedsJointFeedback())
{
if (!bod->isUsingRK4Integration())
{
if (bod->internalNeedsJointFeedback())
{
bool isConstraintPass = true;
bod->computeAccelerationsArticulatedBodyAlgorithmMultiDof(solverInfo.m_timeStep, m_scratch_r, m_scratch_v, m_scratch_m, isConstraintPass,
@@ -730,6 +751,7 @@ void btMultiBodyDynamicsWorld::solveConstraints(btContactSolverInfo& solverInfo)
}
}
}
}
for (int i = 0; i < this->m_multiBodies.size(); i++)
{

View File

@@ -109,5 +109,7 @@ public:
virtual void serialize(btSerializer* serializer);
virtual void setMultiBodyConstraintSolver(btMultiBodyConstraintSolver* solver);
virtual void setConstraintSolver(btConstraintSolver* solver);
virtual void getAnalyticsData(btAlignedObjectArray<struct btSolverAnalyticsData>& m_islandAnalyticsData) const;
};
#endif //BT_MULTIBODY_DYNAMICS_WORLD_H