Merge pull request #2580 from erwincoumans/master

add --mp4fps=30 command line parameter for ExampleBrowser, various other fixes
This commit is contained in:
erwincoumans
2020-01-11 15:14:11 -08:00
committed by GitHub
15 changed files with 216 additions and 60 deletions

View File

@@ -93,6 +93,7 @@ struct CommonGraphicsApp
if (blue) if (blue)
*blue = m_backgroundColorRGB[2]; *blue = m_backgroundColorRGB[2];
} }
virtual void setMp4Fps(int fps) {}
virtual void setBackgroundColor(float red, float green, float blue) virtual void setBackgroundColor(float red, float green, float blue)
{ {
m_backgroundColorRGB[0] = red; m_backgroundColorRGB[0] = red;

View File

@@ -921,6 +921,13 @@ bool OpenGLExampleBrowser::init(int argc, char* argv[])
m_internalData->m_app = s_app; m_internalData->m_app = s_app;
char* gVideoFileName = 0; char* gVideoFileName = 0;
args.GetCmdLineArgument("mp4", gVideoFileName); args.GetCmdLineArgument("mp4", gVideoFileName);
int gVideoFps = 0;
args.GetCmdLineArgument("mp4fps", gVideoFps);
if (gVideoFps)
{
simpleApp->setMp4Fps(gVideoFps);
}
#ifndef NO_OPENGL3 #ifndef NO_OPENGL3
if (gVideoFileName) if (gVideoFileName)
simpleApp->dumpFramesToVideo(gVideoFileName); simpleApp->dumpFramesToVideo(gVideoFileName);

View File

@@ -100,7 +100,7 @@ void DoUpdateStep(double Tstep, Tree& treeY, Jacobian* jacob, int ikMethod)
jacob->SetJendActive(); jacob->SetJendActive();
} }
jacob->ComputeJacobian(targetaa); // Set up Jacobian and deltaS vectors jacob->ComputeJacobian(targetaa); // Set up Jacobian and deltaS vectors
MatrixRmn AugMat;
// Calculate the change in theta values // Calculate the change in theta values
switch (ikMethod) switch (ikMethod)
{ {
@@ -108,7 +108,7 @@ void DoUpdateStep(double Tstep, Tree& treeY, Jacobian* jacob, int ikMethod)
jacob->CalcDeltaThetasTranspose(); // Jacobian transpose method jacob->CalcDeltaThetasTranspose(); // Jacobian transpose method
break; break;
case IK_DLS: case IK_DLS:
jacob->CalcDeltaThetasDLS(); // Damped least squares method jacob->CalcDeltaThetasDLS(AugMat); // Damped least squares method
break; break;
case IK_DLS_SVD: case IK_DLS_SVD:
jacob->CalcDeltaThetasDLSwithSVD(); jacob->CalcDeltaThetasDLSwithSVD();

View File

@@ -66,6 +66,8 @@ struct SimpleInternalData
int m_upAxis; //y=1 or z=2 is supported int m_upAxis; //y=1 or z=2 is supported
int m_customViewPortWidth; int m_customViewPortWidth;
int m_customViewPortHeight; int m_customViewPortHeight;
int m_mp4Fps;
SimpleInternalData() SimpleInternalData()
: m_fontTextureId(0), : m_fontTextureId(0),
m_largeFontTextureId(0), m_largeFontTextureId(0),
@@ -82,7 +84,8 @@ struct SimpleInternalData
m_userPointer(0), m_userPointer(0),
m_upAxis(1), m_upAxis(1),
m_customViewPortWidth(-1), m_customViewPortWidth(-1),
m_customViewPortHeight(-1) m_customViewPortHeight(-1),
m_mp4Fps(60)
{ {
} }
}; };
@@ -1089,6 +1092,11 @@ void SimpleOpenGL3App::swapBuffer()
m_window->startRendering(); m_window->startRendering();
} }
void SimpleOpenGL3App::setMp4Fps(int fps)
{
m_data->m_mp4Fps = fps;
}
// see also http://blog.mmacklin.com/2013/06/11/real-time-video-capture-with-ffmpeg/ // see also http://blog.mmacklin.com/2013/06/11/real-time-video-capture-with-ffmpeg/
void SimpleOpenGL3App::dumpFramesToVideo(const char* mp4FileName) void SimpleOpenGL3App::dumpFramesToVideo(const char* mp4FileName)
{ {
@@ -1100,12 +1108,12 @@ void SimpleOpenGL3App::dumpFramesToVideo(const char* mp4FileName)
#ifdef _WIN32 #ifdef _WIN32
sprintf(cmd, sprintf(cmd,
"ffmpeg -r 60 -f rawvideo -pix_fmt rgba -s %dx%d -i - " "ffmpeg -r %d -f rawvideo -pix_fmt rgba -s %dx%d -i - "
"-threads 0 -y -b:v 50000k -c:v libx264 -preset slow -crf 22 -an -pix_fmt yuv420p -vf vflip %s", "-threads 0 -y -b:v 50000k -c:v libx264 -preset slow -crf 22 -an -pix_fmt yuv420p -vf vflip %s",
width, height, mp4FileName); m_data->m_mp4Fps, width, height, mp4FileName);
//sprintf(cmd, "ffmpeg -r 60 -f rawvideo -pix_fmt rgba -s %dx%d -i - " //sprintf(cmd, "ffmpeg -r %d -f rawvideo -pix_fmt rgba -s %dx%d -i - "
// "-y -crf 0 -b:v 1500000 -an -vcodec h264 -vf vflip %s", width, height, mp4FileName); // "-y -crf 0 -b:v 1500000 -an -vcodec h264 -vf vflip %s", m_data->m_mp4Fps, width, height, mp4FileName);
#else #else
sprintf(cmd, sprintf(cmd,

View File

@@ -14,6 +14,7 @@ struct SimpleOpenGL3App : public CommonGraphicsApp
class GLPrimitiveRenderer* m_primRenderer; class GLPrimitiveRenderer* m_primRenderer;
class GLInstancingRenderer* m_instancingRenderer; class GLInstancingRenderer* m_instancingRenderer;
virtual void setBackgroundColor(float red, float green, float blue); virtual void setBackgroundColor(float red, float green, float blue);
virtual void setMp4Fps(int fps);
SimpleOpenGL3App(const char* title, int width, int height, bool allowRetina = true, int windowType = 0, int renderDevice = -1, int maxNumObjectCapacity = 128 * 1024, int maxShapeCapacityInBytes = 128 * 1024 * 1024); SimpleOpenGL3App(const char* title, int width, int height, bool allowRetina = true, int windowType = 0, int renderDevice = -1, int maxNumObjectCapacity = 128 * 1024, int maxShapeCapacityInBytes = 128 * 1024 * 1024);

View File

@@ -44,6 +44,7 @@ bool IKTrajectoryHelper::computeIK(const double endEffectorTargetPosition[3],
const double* q_current, int numQ, int endEffectorIndex, const double* q_current, int numQ, int endEffectorIndex,
double* q_new, int ikMethod, const double* linear_jacobian, const double* angular_jacobian, int jacobian_size, const double dampIk[6]) double* q_new, int ikMethod, const double* linear_jacobian, const double* angular_jacobian, int jacobian_size, const double dampIk[6])
{ {
MatrixRmn AugMat;
bool useAngularPart = (ikMethod == IK2_VEL_DLS_WITH_ORIENTATION || ikMethod == IK2_VEL_DLS_WITH_ORIENTATION_NULLSPACE || ikMethod == IK2_VEL_SDLS_WITH_ORIENTATION) ? true : false; bool useAngularPart = (ikMethod == IK2_VEL_DLS_WITH_ORIENTATION || ikMethod == IK2_VEL_DLS_WITH_ORIENTATION_NULLSPACE || ikMethod == IK2_VEL_SDLS_WITH_ORIENTATION) ? true : false;
Jacobian ikJacobian(useAngularPart, numQ, 1); Jacobian ikJacobian(useAngularPart, numQ, 1);
@@ -142,12 +143,12 @@ bool IKTrajectoryHelper::computeIK(const double endEffectorTargetPosition[3],
case IK2_VEL_DLS: case IK2_VEL_DLS:
//ikJacobian.CalcDeltaThetasDLS(); // Damped least squares method //ikJacobian.CalcDeltaThetasDLS(); // Damped least squares method
assert(m_data->m_dampingCoeff.GetLength() == numQ); assert(m_data->m_dampingCoeff.GetLength() == numQ);
ikJacobian.CalcDeltaThetasDLS2(m_data->m_dampingCoeff); ikJacobian.CalcDeltaThetasDLS2(m_data->m_dampingCoeff, AugMat);
break; break;
case IK2_VEL_DLS_WITH_NULLSPACE: case IK2_VEL_DLS_WITH_NULLSPACE:
case IK2_VEL_DLS_WITH_ORIENTATION_NULLSPACE: case IK2_VEL_DLS_WITH_ORIENTATION_NULLSPACE:
assert(m_data->m_nullSpaceVelocity.GetLength() == numQ); assert(m_data->m_nullSpaceVelocity.GetLength() == numQ);
ikJacobian.CalcDeltaThetasDLSwithNullspace(m_data->m_nullSpaceVelocity); ikJacobian.CalcDeltaThetasDLSwithNullspace(m_data->m_nullSpaceVelocity, AugMat);
break; break;
case IK2_DLS_SVD: case IK2_DLS_SVD:
ikJacobian.CalcDeltaThetasDLSwithSVD(); ikJacobian.CalcDeltaThetasDLSwithSVD();
@@ -193,6 +194,7 @@ bool IKTrajectoryHelper::computeIK2(
const double* q_current, int numQ, const double* q_current, int numQ,
double* q_new, int ikMethod, const double* linear_jacobians, const double dampIk[6]) double* q_new, int ikMethod, const double* linear_jacobians, const double dampIk[6])
{ {
MatrixRmn AugMat;
bool useAngularPart = false;//for now (ikMethod == IK2_VEL_DLS_WITH_ORIENTATION || ikMethod == IK2_VEL_DLS_WITH_ORIENTATION_NULLSPACE || ikMethod == IK2_VEL_SDLS_WITH_ORIENTATION) ? true : false; bool useAngularPart = false;//for now (ikMethod == IK2_VEL_DLS_WITH_ORIENTATION || ikMethod == IK2_VEL_DLS_WITH_ORIENTATION_NULLSPACE || ikMethod == IK2_VEL_SDLS_WITH_ORIENTATION) ? true : false;
Jacobian ikJacobian(useAngularPart, numQ, numEndEffectors); Jacobian ikJacobian(useAngularPart, numQ, numEndEffectors);
@@ -250,12 +252,12 @@ bool IKTrajectoryHelper::computeIK2(
case IK2_VEL_DLS: case IK2_VEL_DLS:
//ikJacobian.CalcDeltaThetasDLS(); // Damped least squares method //ikJacobian.CalcDeltaThetasDLS(); // Damped least squares method
assert(m_data->m_dampingCoeff.GetLength() == numQ); assert(m_data->m_dampingCoeff.GetLength() == numQ);
ikJacobian.CalcDeltaThetasDLS2(m_data->m_dampingCoeff); ikJacobian.CalcDeltaThetasDLS2(m_data->m_dampingCoeff, AugMat);
break; break;
case IK2_VEL_DLS_WITH_NULLSPACE: case IK2_VEL_DLS_WITH_NULLSPACE:
case IK2_VEL_DLS_WITH_ORIENTATION_NULLSPACE: case IK2_VEL_DLS_WITH_ORIENTATION_NULLSPACE:
assert(m_data->m_nullSpaceVelocity.GetLength() == numQ); assert(m_data->m_nullSpaceVelocity.GetLength() == numQ);
ikJacobian.CalcDeltaThetasDLSwithNullspace(m_data->m_nullSpaceVelocity); ikJacobian.CalcDeltaThetasDLSwithNullspace(m_data->m_nullSpaceVelocity, AugMat);
break; break;
case IK2_DLS_SVD: case IK2_DLS_SVD:
ikJacobian.CalcDeltaThetasDLSwithSVD(); ikJacobian.CalcDeltaThetasDLSwithSVD();

View File

@@ -789,22 +789,6 @@ struct CalculateInverseKinematicsResultArgs
double m_jointPositions[MAX_DEGREE_OF_FREEDOM]; double m_jointPositions[MAX_DEGREE_OF_FREEDOM];
}; };
enum EnumUserConstraintFlags
{
USER_CONSTRAINT_ADD_CONSTRAINT = 1,
USER_CONSTRAINT_REMOVE_CONSTRAINT = 2,
USER_CONSTRAINT_CHANGE_CONSTRAINT = 4,
USER_CONSTRAINT_CHANGE_PIVOT_IN_B = 8,
USER_CONSTRAINT_CHANGE_FRAME_ORN_IN_B = 16,
USER_CONSTRAINT_CHANGE_MAX_FORCE = 32,
USER_CONSTRAINT_REQUEST_INFO = 64,
USER_CONSTRAINT_CHANGE_GEAR_RATIO = 128,
USER_CONSTRAINT_CHANGE_GEAR_AUX_LINK = 256,
USER_CONSTRAINT_CHANGE_RELATIVE_POSITION_TARGET = 512,
USER_CONSTRAINT_CHANGE_ERP = 1024,
USER_CONSTRAINT_REQUEST_STATE = 2048,
USER_CONSTRAINT_ADD_SOFT_BODY_ANCHOR = 4096,
};
enum EnumBodyChangeFlags enum EnumBodyChangeFlags
{ {

View File

@@ -309,6 +309,23 @@ struct b3UserDataValue
const char* m_data1; const char* m_data1;
}; };
enum EnumUserConstraintFlags
{
USER_CONSTRAINT_ADD_CONSTRAINT = 1,
USER_CONSTRAINT_REMOVE_CONSTRAINT = 2,
USER_CONSTRAINT_CHANGE_CONSTRAINT = 4,
USER_CONSTRAINT_CHANGE_PIVOT_IN_B = 8,
USER_CONSTRAINT_CHANGE_FRAME_ORN_IN_B = 16,
USER_CONSTRAINT_CHANGE_MAX_FORCE = 32,
USER_CONSTRAINT_REQUEST_INFO = 64,
USER_CONSTRAINT_CHANGE_GEAR_RATIO = 128,
USER_CONSTRAINT_CHANGE_GEAR_AUX_LINK = 256,
USER_CONSTRAINT_CHANGE_RELATIVE_POSITION_TARGET = 512,
USER_CONSTRAINT_CHANGE_ERP = 1024,
USER_CONSTRAINT_REQUEST_STATE = 2048,
USER_CONSTRAINT_ADD_SOFT_BODY_ANCHOR = 4096,
};
struct b3UserConstraint struct b3UserConstraint
{ {
int m_parentBodyIndex; int m_parentBodyIndex;

View File

@@ -620,7 +620,7 @@ int b3RobotSimulatorClientAPI_NoDirect::createConstraint(int parentBodyIndex, in
return -1; return -1;
} }
int b3RobotSimulatorClientAPI_NoDirect::changeConstraint(int constraintId, b3JointInfo* jointInfo) int b3RobotSimulatorClientAPI_NoDirect::changeConstraint(int constraintId, b3RobotUserConstraint* jointInfo)
{ {
if (!isConnected()) if (!isConnected())
{ {
@@ -629,16 +629,35 @@ int b3RobotSimulatorClientAPI_NoDirect::changeConstraint(int constraintId, b3Joi
} }
b3SharedMemoryCommandHandle commandHandle = b3InitChangeUserConstraintCommand(m_data->m_physicsClientHandle, constraintId); b3SharedMemoryCommandHandle commandHandle = b3InitChangeUserConstraintCommand(m_data->m_physicsClientHandle, constraintId);
if (jointInfo->m_flags & eJointChangeMaxForce) if (jointInfo->m_userUpdateFlags & USER_CONSTRAINT_CHANGE_MAX_FORCE)
{ {
b3InitChangeUserConstraintSetMaxForce(commandHandle, jointInfo->m_jointMaxForce); b3InitChangeUserConstraintSetMaxForce(commandHandle, jointInfo->m_maxAppliedForce);
} }
if (jointInfo->m_flags & eJointChangeChildFramePosition) if (jointInfo->m_userUpdateFlags & USER_CONSTRAINT_CHANGE_GEAR_RATIO)
{
b3InitChangeUserConstraintSetGearRatio(commandHandle, jointInfo->m_gearRatio);
}
if (jointInfo->m_userUpdateFlags & USER_CONSTRAINT_CHANGE_ERP)
{
b3InitChangeUserConstraintSetERP(commandHandle, jointInfo->m_erp);
}
if (jointInfo->m_userUpdateFlags & USER_CONSTRAINT_CHANGE_GEAR_AUX_LINK)
{
b3InitChangeUserConstraintSetGearAuxLink(commandHandle, jointInfo->m_gearAuxLink);
}
if (jointInfo->m_userUpdateFlags & USER_CONSTRAINT_CHANGE_RELATIVE_POSITION_TARGET)
{
b3InitChangeUserConstraintSetRelativePositionTarget(commandHandle, jointInfo->m_relativePositionTarget);
}
if (jointInfo->m_userUpdateFlags & USER_CONSTRAINT_CHANGE_PIVOT_IN_B)
{ {
b3InitChangeUserConstraintSetPivotInB(commandHandle, &jointInfo->m_childFrame[0]); b3InitChangeUserConstraintSetPivotInB(commandHandle, &jointInfo->m_childFrame[0]);
} }
if (jointInfo->m_flags & eJointChangeChildFrameOrientation) if (jointInfo->m_userUpdateFlags & USER_CONSTRAINT_CHANGE_FRAME_ORN_IN_B)
{ {
b3InitChangeUserConstraintSetFrameInB(commandHandle, &jointInfo->m_childFrame[3]); b3InitChangeUserConstraintSetFrameInB(commandHandle, &jointInfo->m_childFrame[3]);
} }
@@ -1131,7 +1150,7 @@ void b3RobotSimulatorClientAPI_NoDirect::resetDebugVisualizerCamera(double camer
} }
} }
void b3RobotSimulatorClientAPI_NoDirect::submitProfileTiming(const std::string& profileName, int durationInMicroSeconds) void b3RobotSimulatorClientAPI_NoDirect::submitProfileTiming(const std::string& profileName)
{ {
if (!isConnected()) if (!isConnected())
{ {
@@ -1140,10 +1159,16 @@ void b3RobotSimulatorClientAPI_NoDirect::submitProfileTiming(const std::string&
} }
b3SharedMemoryCommandHandle commandHandle = b3ProfileTimingCommandInit(m_data->m_physicsClientHandle, profileName.c_str()); b3SharedMemoryCommandHandle commandHandle = b3ProfileTimingCommandInit(m_data->m_physicsClientHandle, profileName.c_str());
if (durationInMicroSeconds >= 0)
if (profileName.length())
{ {
b3SetProfileTimingDuractionInMicroSeconds(commandHandle, durationInMicroSeconds); b3SetProfileTimingType(commandHandle, 0);
} }
else
{
b3SetProfileTimingType(commandHandle, 1);
}
b3SubmitClientCommandAndWaitStatus(m_data->m_physicsClientHandle, commandHandle); b3SubmitClientCommandAndWaitStatus(m_data->m_physicsClientHandle, commandHandle);
} }

View File

@@ -526,6 +526,100 @@ struct b3RobotSimulatorCreateMultiBodyArgs
} }
}; };
struct b3RobotUserConstraint : public b3UserConstraint
{
int m_userUpdateFlags;//see EnumUserConstraintFlags
void setErp(double erp)
{
m_erp = erp;
m_userUpdateFlags |= USER_CONSTRAINT_CHANGE_ERP;
}
void setMaxAppliedForce(double maxForce)
{
m_maxAppliedForce = maxForce;
m_userUpdateFlags |= USER_CONSTRAINT_CHANGE_MAX_FORCE;
}
void setGearRatio(double gearRatio)
{
m_gearRatio = gearRatio;
m_userUpdateFlags |= USER_CONSTRAINT_CHANGE_GEAR_RATIO;
}
void setGearAuxLink(int link)
{
m_gearAuxLink = link;
m_userUpdateFlags |= USER_CONSTRAINT_CHANGE_GEAR_AUX_LINK;
}
void setRelativePositionTarget(double target)
{
m_relativePositionTarget = target;
m_userUpdateFlags |= USER_CONSTRAINT_CHANGE_RELATIVE_POSITION_TARGET;
}
void setChildPivot(double pivot[3])
{
m_childFrame[0] = pivot[0];
m_childFrame[1] = pivot[1];
m_childFrame[2] = pivot[2];
m_userUpdateFlags |= USER_CONSTRAINT_CHANGE_PIVOT_IN_B;
}
void setChildFrameOrientation(double orn[4])
{
m_childFrame[3] = orn[0];
m_childFrame[4] = orn[1];
m_childFrame[5] = orn[2];
m_childFrame[6] = orn[3];
m_userUpdateFlags |= USER_CONSTRAINT_CHANGE_FRAME_ORN_IN_B;
}
b3RobotUserConstraint()
:m_userUpdateFlags(0)
{
m_parentBodyIndex = -1;
m_parentJointIndex = -1;
m_childBodyIndex = -1;
m_childJointIndex = -1;
//position
m_parentFrame[0] = 0;
m_parentFrame[1] = 0;
m_parentFrame[2] = 0;
//orientation quaternion [x,y,z,w]
m_parentFrame[3] = 0;
m_parentFrame[4] = 0;
m_parentFrame[5] = 0;
m_parentFrame[6] = 1;
//position
m_childFrame[0] = 0;
m_childFrame[1] = 0;
m_childFrame[2] = 0;
//orientation quaternion [x,y,z,w]
m_childFrame[3] = 0;
m_childFrame[4] = 0;
m_childFrame[5] = 0;
m_childFrame[6] = 1;
m_jointAxis[0] = 0;
m_jointAxis[1] = 0;
m_jointAxis[2] = 1;
m_jointType = eFixedType;
m_maxAppliedForce = 500;
m_userConstraintUniqueId = -1;
m_gearRatio = -1;
m_gearAuxLink = -1;
m_relativePositionTarget = 0;
m_erp = 0;
}
};
struct b3RobotJointInfo : public b3JointInfo struct b3RobotJointInfo : public b3JointInfo
{ {
b3RobotJointInfo() b3RobotJointInfo()
@@ -624,7 +718,7 @@ public:
int createConstraint(int parentBodyIndex, int parentJointIndex, int childBodyIndex, int childJointIndex, b3JointInfo *jointInfo); int createConstraint(int parentBodyIndex, int parentJointIndex, int childBodyIndex, int childJointIndex, b3JointInfo *jointInfo);
int changeConstraint(int constraintId, b3JointInfo *jointInfo); int changeConstraint(int constraintId, b3RobotUserConstraint*jointInfo);
void removeConstraint(int constraintId); void removeConstraint(int constraintId);
@@ -670,7 +764,7 @@ public:
void getVREvents(b3VREventsData *vrEventsData, int deviceTypeFilter); void getVREvents(b3VREventsData *vrEventsData, int deviceTypeFilter);
void getKeyboardEvents(b3KeyboardEventsData *keyboardEventsData); void getKeyboardEvents(b3KeyboardEventsData *keyboardEventsData);
void submitProfileTiming(const std::string &profileName, int durationInMicroSeconds = 1); void submitProfileTiming(const std::string &profileName);
// JFC: added these 24 methods // JFC: added these 24 methods

View File

@@ -243,7 +243,7 @@ void Jacobian::UpdateThetaDot()
m_tree->Compute(); m_tree->Compute();
} }
void Jacobian::CalcDeltaThetas() void Jacobian::CalcDeltaThetas(MatrixRmn& AugMat)
{ {
switch (CurrentUpdateMode) switch (CurrentUpdateMode)
{ {
@@ -257,7 +257,7 @@ void Jacobian::CalcDeltaThetas()
CalcDeltaThetasPseudoinverse(); CalcDeltaThetasPseudoinverse();
break; break;
case JACOB_DLS: case JACOB_DLS:
CalcDeltaThetasDLS(); CalcDeltaThetasDLS(AugMat);
break; break;
case JACOB_SDLS: case JACOB_SDLS:
CalcDeltaThetasSDLS(); CalcDeltaThetasSDLS();
@@ -327,7 +327,7 @@ void Jacobian::CalcDeltaThetasPseudoinverse()
} }
} }
void Jacobian::CalcDeltaThetasDLSwithNullspace(const VectorRn& desiredV) void Jacobian::CalcDeltaThetasDLSwithNullspace(const VectorRn& desiredV, MatrixRmn& AugMat)
{ {
const MatrixRmn& J = ActiveJacobian(); const MatrixRmn& J = ActiveJacobian();
@@ -341,7 +341,7 @@ void Jacobian::CalcDeltaThetasDLSwithNullspace(const VectorRn& desiredV)
// J.MultiplyTranspose( dTextra, dTheta ); // J.MultiplyTranspose( dTextra, dTheta );
// Use these two lines for the traditional DLS method // Use these two lines for the traditional DLS method
U.Solve(dS, &dT1); U.Solve(dS, &dT1, AugMat);
J.MultiplyTranspose(dT1, dTheta); J.MultiplyTranspose(dT1, dTheta);
// Compute JInv in damped least square form // Compute JInv in damped least square form
@@ -379,7 +379,7 @@ void Jacobian::CalcDeltaThetasDLSwithNullspace(const VectorRn& desiredV)
} }
} }
void Jacobian::CalcDeltaThetasDLS() void Jacobian::CalcDeltaThetasDLS(MatrixRmn& AugMat)
{ {
const MatrixRmn& J = ActiveJacobian(); const MatrixRmn& J = ActiveJacobian();
@@ -393,7 +393,7 @@ void Jacobian::CalcDeltaThetasDLS()
// J.MultiplyTranspose( dTextra, dTheta ); // J.MultiplyTranspose( dTextra, dTheta );
// Use these two lines for the traditional DLS method // Use these two lines for the traditional DLS method
U.Solve(dS, &dT1); U.Solve(dS, &dT1, AugMat);
J.MultiplyTranspose(dT1, dTheta); J.MultiplyTranspose(dT1, dTheta);
// Scale back to not exceed maximum angle changes // Scale back to not exceed maximum angle changes
@@ -404,7 +404,7 @@ void Jacobian::CalcDeltaThetasDLS()
} }
} }
void Jacobian::CalcDeltaThetasDLS2(const VectorRn& dVec) void Jacobian::CalcDeltaThetasDLS2(const VectorRn& dVec, MatrixRmn& AugMat)
{ {
const MatrixRmn& J = ActiveJacobian(); const MatrixRmn& J = ActiveJacobian();
@@ -414,7 +414,7 @@ void Jacobian::CalcDeltaThetasDLS2(const VectorRn& dVec)
dT1.SetLength(J.GetNumColumns()); dT1.SetLength(J.GetNumColumns());
J.MultiplyTranspose(dS, dT1); J.MultiplyTranspose(dS, dT1);
U.Solve(dT1, &dTheta); U.Solve(dT1, &dTheta, AugMat);
// Scale back to not exceed maximum angle changes // Scale back to not exceed maximum angle changes
double maxChange = dTheta.MaxAbs(); double maxChange = dTheta.MaxAbs();

View File

@@ -66,15 +66,15 @@ public:
void SetJendTrans(MatrixRmn& J); void SetJendTrans(MatrixRmn& J);
void SetDeltaS(VectorRn& S); void SetDeltaS(VectorRn& S);
void CalcDeltaThetas(); // Use this only if the Current Mode has been set. void CalcDeltaThetas(MatrixRmn& AugMat); // Use this only if the Current Mode has been set.
void ZeroDeltaThetas(); void ZeroDeltaThetas();
void CalcDeltaThetasTranspose(); void CalcDeltaThetasTranspose();
void CalcDeltaThetasPseudoinverse(); void CalcDeltaThetasPseudoinverse();
void CalcDeltaThetasDLS(); void CalcDeltaThetasDLS(MatrixRmn& AugMat);
void CalcDeltaThetasDLS2(const VectorRn& dVec); void CalcDeltaThetasDLS2(const VectorRn& dVec, MatrixRmn& AugMat);
void CalcDeltaThetasDLSwithSVD(); void CalcDeltaThetasDLSwithSVD();
void CalcDeltaThetasSDLS(); void CalcDeltaThetasSDLS();
void CalcDeltaThetasDLSwithNullspace(const VectorRn& desiredV); void CalcDeltaThetasDLSwithNullspace(const VectorRn& desiredV, MatrixRmn& AugMat);
void UpdateThetas(); void UpdateThetas();
void UpdateThetaDot(); void UpdateThetaDot();

View File

@@ -30,7 +30,6 @@ subject to the following restrictions:
#include "MatrixRmn.h" #include "MatrixRmn.h"
MatrixRmn MatrixRmn::WorkMatrix; // Temporary work matrix
// Fill the diagonal entries with the value d. The rest of the matrix is unchanged. // Fill the diagonal entries with the value d. The rest of the matrix is unchanged.
void MatrixRmn::SetDiagonalEntries(double d) void MatrixRmn::SetDiagonalEntries(double d)
@@ -354,12 +353,13 @@ MatrixRmn& MatrixRmn::MultiplyTranspose(const MatrixRmn& A, const MatrixRmn& B,
// Solves the equation (*this)*xVec = b; // Solves the equation (*this)*xVec = b;
// Uses row operations. Assumes *this is square and invertible. // Uses row operations. Assumes *this is square and invertible.
// No error checking for divide by zero or instability (except with asserts) // No error checking for divide by zero or instability (except with asserts)
void MatrixRmn::Solve(const VectorRn& b, VectorRn* xVec) const void MatrixRmn::Solve(const VectorRn& b, VectorRn* xVec, MatrixRmn& AugMat) const
{ {
assert(NumRows == NumCols && NumCols == xVec->GetLength() && NumRows == b.GetLength()); assert(NumRows == NumCols && NumCols == xVec->GetLength() && NumRows == b.GetLength());
// Copy this matrix and b into an Augmented Matrix // Copy this matrix and b into an Augmented Matrix
MatrixRmn& AugMat = GetWorkMatrix(NumRows, NumCols + 1);
AugMat.SetSize(NumRows, NumCols + 1);
AugMat.LoadAsSubmatrix(*this); AugMat.LoadAsSubmatrix(*this);
AugMat.SetColumn(NumRows, b); AugMat.SetColumn(NumRows, b);

View File

@@ -117,7 +117,7 @@ public:
MatrixRmn& AddToDiagonal(const VectorRn& dVec); MatrixRmn& AddToDiagonal(const VectorRn& dVec);
// Solving systems of linear equations // Solving systems of linear equations
void Solve(const VectorRn& b, VectorRn* x) const; // Solves the equation (*this)*x = b; Uses row operations. Assumes *this is invertible. void Solve(const VectorRn& b, VectorRn* x, MatrixRmn& AugMat) const; // Solves the equation (*this)*x = b; Uses row operations. Assumes *this is invertible.
// Row Echelon Form and Reduced Row Echelon Form routines // Row Echelon Form and Reduced Row Echelon Form routines
// Row echelon form here allows non-negative entries (instead of 1's) in the positions of lead variables. // Row echelon form here allows non-negative entries (instead of 1's) in the positions of lead variables.
@@ -150,13 +150,6 @@ private:
double* x; // Array of vector entries - stored in column order double* x; // Array of vector entries - stored in column order
long AllocSize; // Allocated size of the x array long AllocSize; // Allocated size of the x array
static MatrixRmn WorkMatrix; // Temporary work matrix
static MatrixRmn& GetWorkMatrix() { return WorkMatrix; }
static MatrixRmn& GetWorkMatrix(long numRows, long numCols)
{
WorkMatrix.SetSize(numRows, numCols);
return WorkMatrix;
}
// Internal helper routines for SVD calculations // Internal helper routines for SVD calculations
static void CalcBidiagonal(MatrixRmn& U, MatrixRmn& V, VectorRn& w, VectorRn& superDiag); static void CalcBidiagonal(MatrixRmn& U, MatrixRmn& V, VectorRn& w, VectorRn& superDiag);

View File

@@ -0,0 +1,24 @@
import pybullet as p
import time
#by default, PyBullet runs at 240Hz
p.connect(p.GUI, options="--mp4=\"test.mp4\" --mp4fps=240")
p.configureDebugVisualizer(p.COV_ENABLE_SINGLE_STEP_RENDERING,1)
p.loadURDF("plane.urdf")
#in 3 seconds, the object travels about 0.5*g*t^2 meter ~ 45 meter.
r2d2 = p.loadURDF("r2d2.urdf",[0,0,45])
#disable linear damping
p.changeDynamics(r2d2,-1, linearDamping=0)
p.setGravity(0,0,-10)
for i in range (3*240):
txt = "frame "+str(i)
item = p.addUserDebugText(txt, [0,1,0])
p.stepSimulation()
#synchronize the visualizer (rendering frames for the video mp4) with stepSimulation
p.configureDebugVisualizer(p.COV_ENABLE_SINGLE_STEP_RENDERING,1)
#print("r2d2 vel=", p.getBaseVelocity(r2d2)[0][2])
p.removeUserDebugItem(item)
p.disconnect()