Code-style consistency improvement:
Apply clang-format-all.sh using the _clang-format file through all the cpp/.h files. make sure not to apply it to certain serialization structures, since some parser expects the * as part of the name, instead of type. This commit contains no other changes aside from adding and applying clang-format-all.sh
This commit is contained in:
@@ -17,7 +17,7 @@ subject to the following restrictions:
|
||||
#define BT_OBJECT_ARRAY__
|
||||
|
||||
#include "btAlignedAllocator.h"
|
||||
#include "btScalar.h" // has definitions like SIMD_FORCE_INLINE
|
||||
#include "btScalar.h" // has definitions like SIMD_FORCE_INLINE
|
||||
|
||||
///If the platform doesn't support placement new, you can disable BT_USE_PLACEMENT_NEW
|
||||
///then the btAlignedObjectArray doesn't support objects with virtual methods, and non-trivial constructors/destructors
|
||||
@@ -27,422 +27,448 @@ subject to the following restrictions:
|
||||
|
||||
#define BT_USE_PLACEMENT_NEW 1
|
||||
//#define BT_USE_MEMCPY 1 //disable, because it is cumbersome to find out for each platform where memcpy is defined. It can be in <memory.h> or <string.h> or otherwise...
|
||||
#define BT_ALLOW_ARRAY_COPY_OPERATOR // enabling this can accidently perform deep copies of data if you are not careful
|
||||
#define BT_ALLOW_ARRAY_COPY_OPERATOR // enabling this can accidently perform deep copies of data if you are not careful
|
||||
|
||||
#ifdef BT_USE_MEMCPY
|
||||
#include <memory.h>
|
||||
#include <string.h>
|
||||
#endif //BT_USE_MEMCPY
|
||||
#endif //BT_USE_MEMCPY
|
||||
|
||||
#ifdef BT_USE_PLACEMENT_NEW
|
||||
#include <new> //for placement new
|
||||
#endif //BT_USE_PLACEMENT_NEW
|
||||
#include <new> //for placement new
|
||||
#endif //BT_USE_PLACEMENT_NEW
|
||||
|
||||
///The btAlignedObjectArray template class uses a subset of the stl::vector interface for its methods
|
||||
///It is developed to replace stl::vector to avoid portability issues, including STL alignment issues to add SIMD/SSE data
|
||||
template <typename T>
|
||||
//template <class T>
|
||||
class btAlignedObjectArray {
|
||||
btAlignedAllocator<T, 16> m_allocator;
|
||||
class btAlignedObjectArray
|
||||
{
|
||||
btAlignedAllocator<T, 16> m_allocator;
|
||||
|
||||
int m_size;
|
||||
int m_capacity;
|
||||
T* m_data;
|
||||
//PCK: added this line
|
||||
bool m_ownsMemory;
|
||||
int m_size;
|
||||
int m_capacity;
|
||||
T* m_data;
|
||||
//PCK: added this line
|
||||
bool m_ownsMemory;
|
||||
|
||||
#ifdef BT_ALLOW_ARRAY_COPY_OPERATOR
|
||||
public:
|
||||
SIMD_FORCE_INLINE btAlignedObjectArray<T>& operator=(const btAlignedObjectArray<T>& other)
|
||||
{
|
||||
copyFromArray(other);
|
||||
return *this;
|
||||
}
|
||||
#else //BT_ALLOW_ARRAY_COPY_OPERATOR
|
||||
SIMD_FORCE_INLINE btAlignedObjectArray<T>& operator=(const btAlignedObjectArray<T>& other)
|
||||
{
|
||||
copyFromArray(other);
|
||||
return *this;
|
||||
}
|
||||
#else //BT_ALLOW_ARRAY_COPY_OPERATOR
|
||||
private:
|
||||
SIMD_FORCE_INLINE btAlignedObjectArray<T>& operator=(const btAlignedObjectArray<T>& other);
|
||||
#endif //BT_ALLOW_ARRAY_COPY_OPERATOR
|
||||
SIMD_FORCE_INLINE btAlignedObjectArray<T>& operator=(const btAlignedObjectArray<T>& other);
|
||||
#endif //BT_ALLOW_ARRAY_COPY_OPERATOR
|
||||
|
||||
protected:
|
||||
SIMD_FORCE_INLINE int allocSize(int size)
|
||||
{
|
||||
return (size ? size * 2 : 1);
|
||||
}
|
||||
SIMD_FORCE_INLINE void copy(int start, int end, T* dest) const
|
||||
{
|
||||
int i;
|
||||
for (i = start; i < end; ++i)
|
||||
SIMD_FORCE_INLINE int allocSize(int size)
|
||||
{
|
||||
return (size ? size * 2 : 1);
|
||||
}
|
||||
SIMD_FORCE_INLINE void copy(int start, int end, T* dest) const
|
||||
{
|
||||
int i;
|
||||
for (i = start; i < end; ++i)
|
||||
#ifdef BT_USE_PLACEMENT_NEW
|
||||
new (&dest[i]) T(m_data[i]);
|
||||
new (&dest[i]) T(m_data[i]);
|
||||
#else
|
||||
dest[i] = m_data[i];
|
||||
#endif //BT_USE_PLACEMENT_NEW
|
||||
}
|
||||
dest[i] = m_data[i];
|
||||
#endif //BT_USE_PLACEMENT_NEW
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE void init()
|
||||
{
|
||||
//PCK: added this line
|
||||
m_ownsMemory = true;
|
||||
m_data = 0;
|
||||
m_size = 0;
|
||||
m_capacity = 0;
|
||||
}
|
||||
SIMD_FORCE_INLINE void destroy(int first, int last)
|
||||
{
|
||||
int i;
|
||||
for (i = first; i < last; i++) {
|
||||
m_data[i].~T();
|
||||
}
|
||||
}
|
||||
SIMD_FORCE_INLINE void init()
|
||||
{
|
||||
//PCK: added this line
|
||||
m_ownsMemory = true;
|
||||
m_data = 0;
|
||||
m_size = 0;
|
||||
m_capacity = 0;
|
||||
}
|
||||
SIMD_FORCE_INLINE void destroy(int first, int last)
|
||||
{
|
||||
int i;
|
||||
for (i = first; i < last; i++)
|
||||
{
|
||||
m_data[i].~T();
|
||||
}
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE void* allocate(int size)
|
||||
{
|
||||
if (size)
|
||||
return m_allocator.allocate(size);
|
||||
return 0;
|
||||
}
|
||||
SIMD_FORCE_INLINE void* allocate(int size)
|
||||
{
|
||||
if (size)
|
||||
return m_allocator.allocate(size);
|
||||
return 0;
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE void deallocate()
|
||||
{
|
||||
if (m_data) {
|
||||
//PCK: enclosed the deallocation in this block
|
||||
if (m_ownsMemory) {
|
||||
m_allocator.deallocate(m_data);
|
||||
}
|
||||
m_data = 0;
|
||||
}
|
||||
}
|
||||
SIMD_FORCE_INLINE void deallocate()
|
||||
{
|
||||
if (m_data)
|
||||
{
|
||||
//PCK: enclosed the deallocation in this block
|
||||
if (m_ownsMemory)
|
||||
{
|
||||
m_allocator.deallocate(m_data);
|
||||
}
|
||||
m_data = 0;
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
btAlignedObjectArray()
|
||||
{
|
||||
init();
|
||||
}
|
||||
btAlignedObjectArray()
|
||||
{
|
||||
init();
|
||||
}
|
||||
|
||||
~btAlignedObjectArray()
|
||||
{
|
||||
clear();
|
||||
}
|
||||
~btAlignedObjectArray()
|
||||
{
|
||||
clear();
|
||||
}
|
||||
|
||||
///Generally it is best to avoid using the copy constructor of an btAlignedObjectArray, and use a (const) reference to the array instead.
|
||||
btAlignedObjectArray(const btAlignedObjectArray& otherArray)
|
||||
{
|
||||
init();
|
||||
///Generally it is best to avoid using the copy constructor of an btAlignedObjectArray, and use a (const) reference to the array instead.
|
||||
btAlignedObjectArray(const btAlignedObjectArray& otherArray)
|
||||
{
|
||||
init();
|
||||
|
||||
int otherSize = otherArray.size();
|
||||
resize(otherSize);
|
||||
otherArray.copy(0, otherSize, m_data);
|
||||
}
|
||||
int otherSize = otherArray.size();
|
||||
resize(otherSize);
|
||||
otherArray.copy(0, otherSize, m_data);
|
||||
}
|
||||
|
||||
/// return the number of elements in the array
|
||||
SIMD_FORCE_INLINE int size() const
|
||||
{
|
||||
return m_size;
|
||||
}
|
||||
/// return the number of elements in the array
|
||||
SIMD_FORCE_INLINE int size() const
|
||||
{
|
||||
return m_size;
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE const T& at(int n) const
|
||||
{
|
||||
btAssert(n >= 0);
|
||||
btAssert(n < size());
|
||||
return m_data[n];
|
||||
}
|
||||
SIMD_FORCE_INLINE const T& at(int n) const
|
||||
{
|
||||
btAssert(n >= 0);
|
||||
btAssert(n < size());
|
||||
return m_data[n];
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE T& at(int n)
|
||||
{
|
||||
btAssert(n >= 0);
|
||||
btAssert(n < size());
|
||||
return m_data[n];
|
||||
}
|
||||
SIMD_FORCE_INLINE T& at(int n)
|
||||
{
|
||||
btAssert(n >= 0);
|
||||
btAssert(n < size());
|
||||
return m_data[n];
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE const T& operator[](int n) const
|
||||
{
|
||||
btAssert(n >= 0);
|
||||
btAssert(n < size());
|
||||
return m_data[n];
|
||||
}
|
||||
SIMD_FORCE_INLINE const T& operator[](int n) const
|
||||
{
|
||||
btAssert(n >= 0);
|
||||
btAssert(n < size());
|
||||
return m_data[n];
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE T& operator[](int n)
|
||||
{
|
||||
btAssert(n >= 0);
|
||||
btAssert(n < size());
|
||||
return m_data[n];
|
||||
}
|
||||
SIMD_FORCE_INLINE T& operator[](int n)
|
||||
{
|
||||
btAssert(n >= 0);
|
||||
btAssert(n < size());
|
||||
return m_data[n];
|
||||
}
|
||||
|
||||
///clear the array, deallocated memory. Generally it is better to use array.resize(0), to reduce performance overhead of run-time memory (de)allocations.
|
||||
SIMD_FORCE_INLINE void clear()
|
||||
{
|
||||
destroy(0, size());
|
||||
///clear the array, deallocated memory. Generally it is better to use array.resize(0), to reduce performance overhead of run-time memory (de)allocations.
|
||||
SIMD_FORCE_INLINE void clear()
|
||||
{
|
||||
destroy(0, size());
|
||||
|
||||
deallocate();
|
||||
deallocate();
|
||||
|
||||
init();
|
||||
}
|
||||
init();
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE void pop_back()
|
||||
{
|
||||
btAssert(m_size > 0);
|
||||
m_size--;
|
||||
m_data[m_size].~T();
|
||||
}
|
||||
SIMD_FORCE_INLINE void pop_back()
|
||||
{
|
||||
btAssert(m_size > 0);
|
||||
m_size--;
|
||||
m_data[m_size].~T();
|
||||
}
|
||||
|
||||
///resize changes the number of elements in the array. If the new size is larger, the new elements will be constructed using the optional second argument.
|
||||
///when the new number of elements is smaller, the destructor will be called, but memory will not be freed, to reduce performance overhead of run-time memory (de)allocations.
|
||||
SIMD_FORCE_INLINE void resize(int newsize, const T& fillData = T())
|
||||
{
|
||||
int curSize = size();
|
||||
///resize changes the number of elements in the array. If the new size is larger, the new elements will be constructed using the optional second argument.
|
||||
///when the new number of elements is smaller, the destructor will be called, but memory will not be freed, to reduce performance overhead of run-time memory (de)allocations.
|
||||
SIMD_FORCE_INLINE void resize(int newsize, const T& fillData = T())
|
||||
{
|
||||
int curSize = size();
|
||||
|
||||
if (newsize < curSize) {
|
||||
for (int i = newsize; i < curSize; i++) {
|
||||
m_data[i].~T();
|
||||
}
|
||||
}
|
||||
else {
|
||||
if (newsize > size()) {
|
||||
reserve(newsize);
|
||||
}
|
||||
if (newsize < curSize)
|
||||
{
|
||||
for (int i = newsize; i < curSize; i++)
|
||||
{
|
||||
m_data[i].~T();
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (newsize > size())
|
||||
{
|
||||
reserve(newsize);
|
||||
}
|
||||
#ifdef BT_USE_PLACEMENT_NEW
|
||||
for (int i = curSize; i < newsize; i++) {
|
||||
new (&m_data[i]) T(fillData);
|
||||
}
|
||||
#endif //BT_USE_PLACEMENT_NEW
|
||||
}
|
||||
for (int i = curSize; i < newsize; i++)
|
||||
{
|
||||
new (&m_data[i]) T(fillData);
|
||||
}
|
||||
#endif //BT_USE_PLACEMENT_NEW
|
||||
}
|
||||
|
||||
m_size = newsize;
|
||||
}
|
||||
m_size = newsize;
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE T& expandNonInitializing()
|
||||
{
|
||||
int sz = size();
|
||||
if (sz == capacity()) {
|
||||
reserve(allocSize(size()));
|
||||
}
|
||||
m_size++;
|
||||
SIMD_FORCE_INLINE T& expandNonInitializing()
|
||||
{
|
||||
int sz = size();
|
||||
if (sz == capacity())
|
||||
{
|
||||
reserve(allocSize(size()));
|
||||
}
|
||||
m_size++;
|
||||
|
||||
return m_data[sz];
|
||||
}
|
||||
return m_data[sz];
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE T& expand(const T& fillValue = T())
|
||||
{
|
||||
int sz = size();
|
||||
if (sz == capacity()) {
|
||||
reserve(allocSize(size()));
|
||||
}
|
||||
m_size++;
|
||||
SIMD_FORCE_INLINE T& expand(const T& fillValue = T())
|
||||
{
|
||||
int sz = size();
|
||||
if (sz == capacity())
|
||||
{
|
||||
reserve(allocSize(size()));
|
||||
}
|
||||
m_size++;
|
||||
#ifdef BT_USE_PLACEMENT_NEW
|
||||
new (&m_data[sz]) T(fillValue); //use the in-place new (not really allocating heap memory)
|
||||
new (&m_data[sz]) T(fillValue); //use the in-place new (not really allocating heap memory)
|
||||
#endif
|
||||
|
||||
return m_data[sz];
|
||||
}
|
||||
return m_data[sz];
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE void push_back(const T& _Val)
|
||||
{
|
||||
int sz = size();
|
||||
if (sz == capacity()) {
|
||||
reserve(allocSize(size()));
|
||||
}
|
||||
SIMD_FORCE_INLINE void push_back(const T& _Val)
|
||||
{
|
||||
int sz = size();
|
||||
if (sz == capacity())
|
||||
{
|
||||
reserve(allocSize(size()));
|
||||
}
|
||||
|
||||
#ifdef BT_USE_PLACEMENT_NEW
|
||||
new (&m_data[m_size]) T(_Val);
|
||||
new (&m_data[m_size]) T(_Val);
|
||||
#else
|
||||
m_data[size()] = _Val;
|
||||
#endif //BT_USE_PLACEMENT_NEW
|
||||
m_data[size()] = _Val;
|
||||
#endif //BT_USE_PLACEMENT_NEW
|
||||
|
||||
m_size++;
|
||||
}
|
||||
m_size++;
|
||||
}
|
||||
|
||||
/// return the pre-allocated (reserved) elements, this is at least as large as the total number of elements,see size() and reserve()
|
||||
SIMD_FORCE_INLINE int capacity() const
|
||||
{
|
||||
return m_capacity;
|
||||
}
|
||||
/// return the pre-allocated (reserved) elements, this is at least as large as the total number of elements,see size() and reserve()
|
||||
SIMD_FORCE_INLINE int capacity() const
|
||||
{
|
||||
return m_capacity;
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE void reserve(int _Count)
|
||||
{ // determine new minimum length of allocated storage
|
||||
if (capacity() < _Count) { // not enough room, reallocate
|
||||
T* s = (T*)allocate(_Count);
|
||||
SIMD_FORCE_INLINE void reserve(int _Count)
|
||||
{ // determine new minimum length of allocated storage
|
||||
if (capacity() < _Count)
|
||||
{ // not enough room, reallocate
|
||||
T* s = (T*)allocate(_Count);
|
||||
|
||||
copy(0, size(), s);
|
||||
copy(0, size(), s);
|
||||
|
||||
destroy(0, size());
|
||||
destroy(0, size());
|
||||
|
||||
deallocate();
|
||||
deallocate();
|
||||
|
||||
//PCK: added this line
|
||||
m_ownsMemory = true;
|
||||
//PCK: added this line
|
||||
m_ownsMemory = true;
|
||||
|
||||
m_data = s;
|
||||
m_data = s;
|
||||
|
||||
m_capacity = _Count;
|
||||
}
|
||||
}
|
||||
m_capacity = _Count;
|
||||
}
|
||||
}
|
||||
|
||||
class less {
|
||||
public:
|
||||
bool operator()(const T& a, const T& b)
|
||||
{
|
||||
return (a < b);
|
||||
}
|
||||
};
|
||||
class less
|
||||
{
|
||||
public:
|
||||
bool operator()(const T& a, const T& b)
|
||||
{
|
||||
return (a < b);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename L>
|
||||
void quickSortInternal(const L& CompareFunc, int lo, int hi)
|
||||
{
|
||||
// lo is the lower index, hi is the upper index
|
||||
// of the region of array a that is to be sorted
|
||||
int i = lo, j = hi;
|
||||
T x = m_data[(lo + hi) / 2];
|
||||
template <typename L>
|
||||
void quickSortInternal(const L& CompareFunc, int lo, int hi)
|
||||
{
|
||||
// lo is the lower index, hi is the upper index
|
||||
// of the region of array a that is to be sorted
|
||||
int i = lo, j = hi;
|
||||
T x = m_data[(lo + hi) / 2];
|
||||
|
||||
// partition
|
||||
do {
|
||||
while (CompareFunc(m_data[i], x))
|
||||
i++;
|
||||
while (CompareFunc(x, m_data[j]))
|
||||
j--;
|
||||
if (i <= j) {
|
||||
swap(i, j);
|
||||
i++;
|
||||
j--;
|
||||
}
|
||||
} while (i <= j);
|
||||
// partition
|
||||
do
|
||||
{
|
||||
while (CompareFunc(m_data[i], x))
|
||||
i++;
|
||||
while (CompareFunc(x, m_data[j]))
|
||||
j--;
|
||||
if (i <= j)
|
||||
{
|
||||
swap(i, j);
|
||||
i++;
|
||||
j--;
|
||||
}
|
||||
} while (i <= j);
|
||||
|
||||
// recursion
|
||||
if (lo < j)
|
||||
quickSortInternal(CompareFunc, lo, j);
|
||||
if (i < hi)
|
||||
quickSortInternal(CompareFunc, i, hi);
|
||||
}
|
||||
// recursion
|
||||
if (lo < j)
|
||||
quickSortInternal(CompareFunc, lo, j);
|
||||
if (i < hi)
|
||||
quickSortInternal(CompareFunc, i, hi);
|
||||
}
|
||||
|
||||
template <typename L>
|
||||
void quickSort(const L& CompareFunc)
|
||||
{
|
||||
//don't sort 0 or 1 elements
|
||||
if (size() > 1) {
|
||||
quickSortInternal(CompareFunc, 0, size() - 1);
|
||||
}
|
||||
}
|
||||
template <typename L>
|
||||
void quickSort(const L& CompareFunc)
|
||||
{
|
||||
//don't sort 0 or 1 elements
|
||||
if (size() > 1)
|
||||
{
|
||||
quickSortInternal(CompareFunc, 0, size() - 1);
|
||||
}
|
||||
}
|
||||
|
||||
///heap sort from http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Sort/Heap/
|
||||
template <typename L>
|
||||
void downHeap(T* pArr, int k, int n, const L& CompareFunc)
|
||||
{
|
||||
/* PRE: a[k+1..N] is a heap */
|
||||
/* POST: a[k..N] is a heap */
|
||||
///heap sort from http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Sort/Heap/
|
||||
template <typename L>
|
||||
void downHeap(T* pArr, int k, int n, const L& CompareFunc)
|
||||
{
|
||||
/* PRE: a[k+1..N] is a heap */
|
||||
/* POST: a[k..N] is a heap */
|
||||
|
||||
T temp = pArr[k - 1];
|
||||
/* k has child(s) */
|
||||
while (k <= n / 2) {
|
||||
int child = 2 * k;
|
||||
T temp = pArr[k - 1];
|
||||
/* k has child(s) */
|
||||
while (k <= n / 2)
|
||||
{
|
||||
int child = 2 * k;
|
||||
|
||||
if ((child < n) && CompareFunc(pArr[child - 1], pArr[child])) {
|
||||
child++;
|
||||
}
|
||||
/* pick larger child */
|
||||
if (CompareFunc(temp, pArr[child - 1])) {
|
||||
/* move child up */
|
||||
pArr[k - 1] = pArr[child - 1];
|
||||
k = child;
|
||||
}
|
||||
else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
pArr[k - 1] = temp;
|
||||
} /*downHeap*/
|
||||
if ((child < n) && CompareFunc(pArr[child - 1], pArr[child]))
|
||||
{
|
||||
child++;
|
||||
}
|
||||
/* pick larger child */
|
||||
if (CompareFunc(temp, pArr[child - 1]))
|
||||
{
|
||||
/* move child up */
|
||||
pArr[k - 1] = pArr[child - 1];
|
||||
k = child;
|
||||
}
|
||||
else
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
pArr[k - 1] = temp;
|
||||
} /*downHeap*/
|
||||
|
||||
void swap(int index0, int index1)
|
||||
{
|
||||
void swap(int index0, int index1)
|
||||
{
|
||||
#ifdef BT_USE_MEMCPY
|
||||
char temp[sizeof(T)];
|
||||
memcpy(temp, &m_data[index0], sizeof(T));
|
||||
memcpy(&m_data[index0], &m_data[index1], sizeof(T));
|
||||
memcpy(&m_data[index1], temp, sizeof(T));
|
||||
char temp[sizeof(T)];
|
||||
memcpy(temp, &m_data[index0], sizeof(T));
|
||||
memcpy(&m_data[index0], &m_data[index1], sizeof(T));
|
||||
memcpy(&m_data[index1], temp, sizeof(T));
|
||||
#else
|
||||
T temp = m_data[index0];
|
||||
m_data[index0] = m_data[index1];
|
||||
m_data[index1] = temp;
|
||||
#endif //BT_USE_PLACEMENT_NEW
|
||||
}
|
||||
T temp = m_data[index0];
|
||||
m_data[index0] = m_data[index1];
|
||||
m_data[index1] = temp;
|
||||
#endif //BT_USE_PLACEMENT_NEW
|
||||
}
|
||||
|
||||
template <typename L>
|
||||
void heapSort(const L& CompareFunc)
|
||||
{
|
||||
/* sort a[0..N-1], N.B. 0 to N-1 */
|
||||
int k;
|
||||
int n = m_size;
|
||||
for (k = n / 2; k > 0; k--) {
|
||||
downHeap(m_data, k, n, CompareFunc);
|
||||
}
|
||||
template <typename L>
|
||||
void heapSort(const L& CompareFunc)
|
||||
{
|
||||
/* sort a[0..N-1], N.B. 0 to N-1 */
|
||||
int k;
|
||||
int n = m_size;
|
||||
for (k = n / 2; k > 0; k--)
|
||||
{
|
||||
downHeap(m_data, k, n, CompareFunc);
|
||||
}
|
||||
|
||||
/* a[1..N] is now a heap */
|
||||
while (n >= 1) {
|
||||
swap(0, n - 1); /* largest of a[0..n-1] */
|
||||
/* a[1..N] is now a heap */
|
||||
while (n >= 1)
|
||||
{
|
||||
swap(0, n - 1); /* largest of a[0..n-1] */
|
||||
|
||||
n = n - 1;
|
||||
/* restore a[1..i-1] heap */
|
||||
downHeap(m_data, 1, n, CompareFunc);
|
||||
}
|
||||
}
|
||||
n = n - 1;
|
||||
/* restore a[1..i-1] heap */
|
||||
downHeap(m_data, 1, n, CompareFunc);
|
||||
}
|
||||
}
|
||||
|
||||
///non-recursive binary search, assumes sorted array
|
||||
int findBinarySearch(const T& key) const
|
||||
{
|
||||
int first = 0;
|
||||
int last = size() - 1;
|
||||
///non-recursive binary search, assumes sorted array
|
||||
int findBinarySearch(const T& key) const
|
||||
{
|
||||
int first = 0;
|
||||
int last = size() - 1;
|
||||
|
||||
//assume sorted array
|
||||
while (first <= last) {
|
||||
int mid = (first + last) / 2; // compute mid point.
|
||||
if (key > m_data[mid])
|
||||
first = mid + 1; // repeat search in top half.
|
||||
else if (key < m_data[mid])
|
||||
last = mid - 1; // repeat search in bottom half.
|
||||
else
|
||||
return mid; // found it. return position /////
|
||||
}
|
||||
return size(); // failed to find key
|
||||
}
|
||||
//assume sorted array
|
||||
while (first <= last)
|
||||
{
|
||||
int mid = (first + last) / 2; // compute mid point.
|
||||
if (key > m_data[mid])
|
||||
first = mid + 1; // repeat search in top half.
|
||||
else if (key < m_data[mid])
|
||||
last = mid - 1; // repeat search in bottom half.
|
||||
else
|
||||
return mid; // found it. return position /////
|
||||
}
|
||||
return size(); // failed to find key
|
||||
}
|
||||
|
||||
int findLinearSearch(const T& key) const
|
||||
{
|
||||
int index = size();
|
||||
int i;
|
||||
int findLinearSearch(const T& key) const
|
||||
{
|
||||
int index = size();
|
||||
int i;
|
||||
|
||||
for (i = 0; i < size(); i++) {
|
||||
if (m_data[i] == key) {
|
||||
index = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
return index;
|
||||
}
|
||||
for (i = 0; i < size(); i++)
|
||||
{
|
||||
if (m_data[i] == key)
|
||||
{
|
||||
index = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
return index;
|
||||
}
|
||||
|
||||
void remove(const T& key)
|
||||
{
|
||||
void remove(const T& key)
|
||||
{
|
||||
int findIndex = findLinearSearch(key);
|
||||
if (findIndex < size())
|
||||
{
|
||||
swap(findIndex, size() - 1);
|
||||
pop_back();
|
||||
}
|
||||
}
|
||||
|
||||
int findIndex = findLinearSearch(key);
|
||||
if (findIndex < size()) {
|
||||
swap(findIndex, size() - 1);
|
||||
pop_back();
|
||||
}
|
||||
}
|
||||
//PCK: whole function
|
||||
void initializeFromBuffer(void* buffer, int size, int capacity)
|
||||
{
|
||||
clear();
|
||||
m_ownsMemory = false;
|
||||
m_data = (T*)buffer;
|
||||
m_size = size;
|
||||
m_capacity = capacity;
|
||||
}
|
||||
|
||||
//PCK: whole function
|
||||
void initializeFromBuffer(void* buffer, int size, int capacity)
|
||||
{
|
||||
clear();
|
||||
m_ownsMemory = false;
|
||||
m_data = (T*)buffer;
|
||||
m_size = size;
|
||||
m_capacity = capacity;
|
||||
}
|
||||
|
||||
void copyFromArray(const btAlignedObjectArray& otherArray)
|
||||
{
|
||||
int otherSize = otherArray.size();
|
||||
resize(otherSize);
|
||||
otherArray.copy(0, otherSize, m_data);
|
||||
}
|
||||
void copyFromArray(const btAlignedObjectArray& otherArray)
|
||||
{
|
||||
int otherSize = otherArray.size();
|
||||
resize(otherSize);
|
||||
otherArray.copy(0, otherSize, m_data);
|
||||
}
|
||||
};
|
||||
|
||||
#endif //BT_OBJECT_ARRAY__
|
||||
#endif //BT_OBJECT_ARRAY__
|
||||
|
||||
Reference in New Issue
Block a user