Code-style consistency improvement:

Apply clang-format-all.sh using the _clang-format file through all the cpp/.h files.
make sure not to apply it to certain serialization structures, since some parser expects the * as part of the name, instead of type.
This commit contains no other changes aside from adding and applying clang-format-all.sh
This commit is contained in:
erwincoumans
2018-09-23 14:17:31 -07:00
parent b73b05e9fb
commit ab8f16961e
1773 changed files with 1081087 additions and 474249 deletions

View File

@@ -13,13 +13,11 @@ subject to the following restrictions:
3. This notice may not be removed or altered from any source distribution.
*/
#include "btBulletDynamicsCommon.h"
#include "LinearMath/btIDebugDraw.h"
#include "MotorDemo.h"
#include "LinearMath/btAlignedObjectArray.h"
class btBroadphaseInterface;
class btCollisionShape;
@@ -34,85 +32,80 @@ class btDefaultCollisionConfiguration;
class MotorDemo : public CommonRigidBodyBase
{
float m_Time;
float m_fCyclePeriod; // in milliseconds
float m_fCyclePeriod; // in milliseconds
float m_fMuscleStrength;
btAlignedObjectArray<class TestRig*> m_rigs;
public:
MotorDemo(struct GUIHelperInterface* helper)
:CommonRigidBodyBase(helper)
: CommonRigidBodyBase(helper)
{
}
void initPhysics();
void exitPhysics();
virtual ~MotorDemo()
{
}
void spawnTestRig(const btVector3& startOffset, bool bFixed);
// virtual void keyboardCallback(unsigned char key, int x, int y);
// virtual void keyboardCallback(unsigned char key, int x, int y);
void setMotorTargets(btScalar deltaTime);
void resetCamera()
{
float dist = 11;
float pitch = -35;
float yaw = 52;
float targetPos[3]={0,0.46,0};
m_guiHelper->resetCamera(dist,yaw,pitch,targetPos[0],targetPos[1],targetPos[2]);
float targetPos[3] = {0, 0.46, 0};
m_guiHelper->resetCamera(dist, yaw, pitch, targetPos[0], targetPos[1], targetPos[2]);
}
};
#ifndef M_PI
#define M_PI 3.14159265358979323846
#define M_PI 3.14159265358979323846
#endif
#ifndef M_PI_2
#define M_PI_2 1.57079632679489661923
#define M_PI_2 1.57079632679489661923
#endif
#ifndef M_PI_4
#define M_PI_4 0.785398163397448309616
#define M_PI_4 0.785398163397448309616
#endif
#ifndef M_PI_8
#define M_PI_8 0.5 * M_PI_4
#define M_PI_8 0.5 * M_PI_4
#endif
// /LOCAL FUNCTIONS
#define NUM_LEGS 6
#define BODYPART_COUNT 2 * NUM_LEGS + 1
#define JOINT_COUNT BODYPART_COUNT - 1
class TestRig
{
btDynamicsWorld* m_ownerWorld;
btCollisionShape* m_shapes[BODYPART_COUNT];
btRigidBody* m_bodies[BODYPART_COUNT];
btTypedConstraint* m_joints[JOINT_COUNT];
btDynamicsWorld* m_ownerWorld;
btCollisionShape* m_shapes[BODYPART_COUNT];
btRigidBody* m_bodies[BODYPART_COUNT];
btTypedConstraint* m_joints[JOINT_COUNT];
btRigidBody* localCreateRigidBody (btScalar mass, const btTransform& startTransform, btCollisionShape* shape)
btRigidBody* localCreateRigidBody(btScalar mass, const btTransform& startTransform, btCollisionShape* shape)
{
bool isDynamic = (mass != 0.f);
btVector3 localInertia(0,0,0);
btVector3 localInertia(0, 0, 0);
if (isDynamic)
shape->calculateLocalInertia(mass,localInertia);
shape->calculateLocalInertia(mass, localInertia);
btDefaultMotionState* myMotionState = new btDefaultMotionState(startTransform);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,shape,localInertia);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass, myMotionState, shape, localInertia);
btRigidBody* body = new btRigidBody(rbInfo);
m_ownerWorld->addRigidBody(body);
@@ -120,33 +113,33 @@ class TestRig
return body;
}
public:
TestRig (btDynamicsWorld* ownerWorld, const btVector3& positionOffset, bool bFixed)
: m_ownerWorld (ownerWorld)
TestRig(btDynamicsWorld* ownerWorld, const btVector3& positionOffset, bool bFixed)
: m_ownerWorld(ownerWorld)
{
btVector3 vUp(0, 1, 0);
//
// Setup geometry
//
float fBodySize = 0.25f;
float fBodySize = 0.25f;
float fLegLength = 0.45f;
float fForeLegLength = 0.75f;
m_shapes[0] = new btCapsuleShape(btScalar(fBodySize), btScalar(0.10));
int i;
for ( i=0; i<NUM_LEGS; i++)
for (i = 0; i < NUM_LEGS; i++)
{
m_shapes[1 + 2*i] = new btCapsuleShape(btScalar(0.10), btScalar(fLegLength));
m_shapes[2 + 2*i] = new btCapsuleShape(btScalar(0.08), btScalar(fForeLegLength));
m_shapes[1 + 2 * i] = new btCapsuleShape(btScalar(0.10), btScalar(fLegLength));
m_shapes[2 + 2 * i] = new btCapsuleShape(btScalar(0.08), btScalar(fForeLegLength));
}
//
// Setup rigid bodies
//
float fHeight = 0.5;
btTransform offset; offset.setIdentity();
offset.setOrigin(positionOffset);
btTransform offset;
offset.setIdentity();
offset.setOrigin(positionOffset);
// root
btVector3 vRoot = btVector3(btScalar(0.), btScalar(fHeight), btScalar(0.));
@@ -155,32 +148,33 @@ public:
transform.setOrigin(vRoot);
if (bFixed)
{
m_bodies[0] = localCreateRigidBody(btScalar(0.), offset*transform, m_shapes[0]);
} else
m_bodies[0] = localCreateRigidBody(btScalar(0.), offset * transform, m_shapes[0]);
}
else
{
m_bodies[0] = localCreateRigidBody(btScalar(1.), offset*transform, m_shapes[0]);
m_bodies[0] = localCreateRigidBody(btScalar(1.), offset * transform, m_shapes[0]);
}
// legs
for ( i=0; i<NUM_LEGS; i++)
for (i = 0; i < NUM_LEGS; i++)
{
float fAngle = 2 * M_PI * i / NUM_LEGS;
float fSin = sin(fAngle);
float fCos = cos(fAngle);
transform.setIdentity();
btVector3 vBoneOrigin = btVector3(btScalar(fCos*(fBodySize+0.5*fLegLength)), btScalar(fHeight), btScalar(fSin*(fBodySize+0.5*fLegLength)));
btVector3 vBoneOrigin = btVector3(btScalar(fCos * (fBodySize + 0.5 * fLegLength)), btScalar(fHeight), btScalar(fSin * (fBodySize + 0.5 * fLegLength)));
transform.setOrigin(vBoneOrigin);
// thigh
btVector3 vToBone = (vBoneOrigin - vRoot).normalize();
btVector3 vAxis = vToBone.cross(vUp);
btVector3 vAxis = vToBone.cross(vUp);
transform.setRotation(btQuaternion(vAxis, M_PI_2));
m_bodies[1+2*i] = localCreateRigidBody(btScalar(1.), offset*transform, m_shapes[1+2*i]);
m_bodies[1 + 2 * i] = localCreateRigidBody(btScalar(1.), offset * transform, m_shapes[1 + 2 * i]);
// shin
transform.setIdentity();
transform.setOrigin(btVector3(btScalar(fCos*(fBodySize+fLegLength)), btScalar(fHeight-0.5*fForeLegLength), btScalar(fSin*(fBodySize+fLegLength))));
m_bodies[2+2*i] = localCreateRigidBody(btScalar(1.), offset*transform, m_shapes[2+2*i]);
transform.setOrigin(btVector3(btScalar(fCos * (fBodySize + fLegLength)), btScalar(fHeight - 0.5 * fForeLegLength), btScalar(fSin * (fBodySize + fLegLength))));
m_bodies[2 + 2 * i] = localCreateRigidBody(btScalar(1.), offset * transform, m_shapes[2 + 2 * i]);
}
// Setup some damping on the m_bodies
@@ -192,7 +186,6 @@ public:
m_bodies[i]->setSleepingThresholds(0.5f, 0.5f);
}
//
// Setup the constraints
//
@@ -201,74 +194,76 @@ public:
btTransform localA, localB, localC;
for ( i=0; i<NUM_LEGS; i++)
for (i = 0; i < NUM_LEGS; i++)
{
float fAngle = 2 * M_PI * i / NUM_LEGS;
float fSin = sin(fAngle);
float fCos = cos(fAngle);
// hip joints
localA.setIdentity(); localB.setIdentity();
localA.getBasis().setEulerZYX(0,-fAngle,0); localA.setOrigin(btVector3(btScalar(fCos*fBodySize), btScalar(0.), btScalar(fSin*fBodySize)));
localB = m_bodies[1+2*i]->getWorldTransform().inverse() * m_bodies[0]->getWorldTransform() * localA;
hingeC = new btHingeConstraint(*m_bodies[0], *m_bodies[1+2*i], localA, localB);
localA.setIdentity();
localB.setIdentity();
localA.getBasis().setEulerZYX(0, -fAngle, 0);
localA.setOrigin(btVector3(btScalar(fCos * fBodySize), btScalar(0.), btScalar(fSin * fBodySize)));
localB = m_bodies[1 + 2 * i]->getWorldTransform().inverse() * m_bodies[0]->getWorldTransform() * localA;
hingeC = new btHingeConstraint(*m_bodies[0], *m_bodies[1 + 2 * i], localA, localB);
hingeC->setLimit(btScalar(-0.75 * M_PI_4), btScalar(M_PI_8));
//hingeC->setLimit(btScalar(-0.1), btScalar(0.1));
m_joints[2*i] = hingeC;
m_ownerWorld->addConstraint(m_joints[2*i], true);
m_joints[2 * i] = hingeC;
m_ownerWorld->addConstraint(m_joints[2 * i], true);
// knee joints
localA.setIdentity(); localB.setIdentity(); localC.setIdentity();
localA.getBasis().setEulerZYX(0,-fAngle,0); localA.setOrigin(btVector3(btScalar(fCos*(fBodySize+fLegLength)), btScalar(0.), btScalar(fSin*(fBodySize+fLegLength))));
localB = m_bodies[1+2*i]->getWorldTransform().inverse() * m_bodies[0]->getWorldTransform() * localA;
localC = m_bodies[2+2*i]->getWorldTransform().inverse() * m_bodies[0]->getWorldTransform() * localA;
hingeC = new btHingeConstraint(*m_bodies[1+2*i], *m_bodies[2+2*i], localB, localC);
localA.setIdentity();
localB.setIdentity();
localC.setIdentity();
localA.getBasis().setEulerZYX(0, -fAngle, 0);
localA.setOrigin(btVector3(btScalar(fCos * (fBodySize + fLegLength)), btScalar(0.), btScalar(fSin * (fBodySize + fLegLength))));
localB = m_bodies[1 + 2 * i]->getWorldTransform().inverse() * m_bodies[0]->getWorldTransform() * localA;
localC = m_bodies[2 + 2 * i]->getWorldTransform().inverse() * m_bodies[0]->getWorldTransform() * localA;
hingeC = new btHingeConstraint(*m_bodies[1 + 2 * i], *m_bodies[2 + 2 * i], localB, localC);
//hingeC->setLimit(btScalar(-0.01), btScalar(0.01));
hingeC->setLimit(btScalar(-M_PI_8), btScalar(0.2));
m_joints[1+2*i] = hingeC;
m_ownerWorld->addConstraint(m_joints[1+2*i], true);
m_joints[1 + 2 * i] = hingeC;
m_ownerWorld->addConstraint(m_joints[1 + 2 * i], true);
}
}
virtual ~TestRig ()
virtual ~TestRig()
{
int i;
// Remove all constraints
for ( i = 0; i < JOINT_COUNT; ++i)
for (i = 0; i < JOINT_COUNT; ++i)
{
m_ownerWorld->removeConstraint(m_joints[i]);
delete m_joints[i]; m_joints[i] = 0;
delete m_joints[i];
m_joints[i] = 0;
}
// Remove all bodies and shapes
for ( i = 0; i < BODYPART_COUNT; ++i)
for (i = 0; i < BODYPART_COUNT; ++i)
{
m_ownerWorld->removeRigidBody(m_bodies[i]);
delete m_bodies[i]->getMotionState();
delete m_bodies[i]; m_bodies[i] = 0;
delete m_shapes[i]; m_shapes[i] = 0;
delete m_bodies[i];
m_bodies[i] = 0;
delete m_shapes[i];
m_shapes[i] = 0;
}
}
btTypedConstraint** GetJoints() {return &m_joints[0];}
btTypedConstraint** GetJoints() { return &m_joints[0]; }
};
void motorPreTickCallback (btDynamicsWorld *world, btScalar timeStep)
void motorPreTickCallback(btDynamicsWorld* world, btScalar timeStep)
{
MotorDemo* motorDemo = (MotorDemo*)world->getWorldUserInfo();
motorDemo->setMotorTargets(timeStep);
}
void MotorDemo::initPhysics()
{
m_guiHelper->setUpAxis(1);
@@ -276,70 +271,62 @@ void MotorDemo::initPhysics()
// Setup the basic world
m_Time = 0;
m_fCyclePeriod = 2000.f; // in milliseconds
m_fCyclePeriod = 2000.f; // in milliseconds
// m_fMuscleStrength = 0.05f;
// m_fMuscleStrength = 0.05f;
// new SIMD solver for joints clips accumulated impulse, so the new limits for the motor
// should be (numberOfsolverIterations * oldLimits)
// currently solver uses 10 iterations, so:
m_fMuscleStrength = 0.5f;
m_collisionConfiguration = new btDefaultCollisionConfiguration();
m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
btVector3 worldAabbMin(-10000,-10000,-10000);
btVector3 worldAabbMax(10000,10000,10000);
m_broadphase = new btAxisSweep3 (worldAabbMin, worldAabbMax);
btVector3 worldAabbMin(-10000, -10000, -10000);
btVector3 worldAabbMax(10000, 10000, 10000);
m_broadphase = new btAxisSweep3(worldAabbMin, worldAabbMax);
m_solver = new btSequentialImpulseConstraintSolver;
m_dynamicsWorld = new btDiscreteDynamicsWorld(m_dispatcher,m_broadphase,m_solver,m_collisionConfiguration);
m_dynamicsWorld = new btDiscreteDynamicsWorld(m_dispatcher, m_broadphase, m_solver, m_collisionConfiguration);
m_dynamicsWorld->setInternalTickCallback(motorPreTickCallback,this,true);
m_dynamicsWorld->setInternalTickCallback(motorPreTickCallback, this, true);
m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
// Setup a big ground box
{
btCollisionShape* groundShape = new btBoxShape(btVector3(btScalar(200.),btScalar(10.),btScalar(200.)));
btCollisionShape* groundShape = new btBoxShape(btVector3(btScalar(200.), btScalar(10.), btScalar(200.)));
m_collisionShapes.push_back(groundShape);
btTransform groundTransform;
groundTransform.setIdentity();
groundTransform.setOrigin(btVector3(0,-10,0));
createRigidBody(btScalar(0.),groundTransform,groundShape);
groundTransform.setOrigin(btVector3(0, -10, 0));
createRigidBody(btScalar(0.), groundTransform, groundShape);
}
// Spawn one ragdoll
btVector3 startOffset(1,0.5,0);
btVector3 startOffset(1, 0.5, 0);
spawnTestRig(startOffset, false);
startOffset.setValue(-2,0.5,0);
startOffset.setValue(-2, 0.5, 0);
spawnTestRig(startOffset, true);
m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld);
}
void MotorDemo::spawnTestRig(const btVector3& startOffset, bool bFixed)
{
TestRig* rig = new TestRig(m_dynamicsWorld, startOffset, bFixed);
m_rigs.push_back(rig);
}
void PreStep()
void PreStep()
{
}
void MotorDemo::setMotorTargets(btScalar deltaTime)
{
float ms = deltaTime*1000000.;
float minFPS = 1000000.f/60.f;
float ms = deltaTime * 1000000.;
float minFPS = 1000000.f / 60.f;
if (ms > minFPS)
ms = minFPS;
@@ -347,24 +334,22 @@ void MotorDemo::setMotorTargets(btScalar deltaTime)
//
// set per-frame sinusoidal position targets using angular motor (hacky?)
//
for (int r=0; r<m_rigs.size(); r++)
//
for (int r = 0; r < m_rigs.size(); r++)
{
for (int i=0; i<2*NUM_LEGS; i++)
for (int i = 0; i < 2 * NUM_LEGS; i++)
{
btHingeConstraint* hingeC = static_cast<btHingeConstraint*>(m_rigs[r]->GetJoints()[i]);
btScalar fCurAngle = hingeC->getHingeAngle();
btScalar fCurAngle = hingeC->getHingeAngle();
btScalar fTargetPercent = (int(m_Time / 1000) % int(m_fCyclePeriod)) / m_fCyclePeriod;
btScalar fTargetAngle = 0.5 * (1 + sin(2 * M_PI * fTargetPercent));
btScalar fTargetAngle = 0.5 * (1 + sin(2 * M_PI * fTargetPercent));
btScalar fTargetLimitAngle = hingeC->getLowerLimit() + fTargetAngle * (hingeC->getUpperLimit() - hingeC->getLowerLimit());
btScalar fAngleError = fTargetLimitAngle - fCurAngle;
btScalar fDesiredAngularVel = 1000000.f * fAngleError/ms;
btScalar fAngleError = fTargetLimitAngle - fCurAngle;
btScalar fDesiredAngularVel = 1000000.f * fAngleError / ms;
hingeC->enableAngularMotor(true, fDesiredAngularVel, m_fMuscleStrength);
}
}
}
#if 0
@@ -392,14 +377,11 @@ void MotorDemo::keyboardCallback(unsigned char key, int x, int y)
}
#endif
void MotorDemo::exitPhysics()
{
int i;
for (i=0;i<m_rigs.size();i++)
for (i = 0; i < m_rigs.size(); i++)
{
TestRig* rig = m_rigs[i];
delete rig;
@@ -408,8 +390,8 @@ void MotorDemo::exitPhysics()
//cleanup in the reverse order of creation/initialization
//remove the rigidbodies from the dynamics world and delete them
for (i=m_dynamicsWorld->getNumCollisionObjects()-1; i>=0 ;i--)
for (i = m_dynamicsWorld->getNumCollisionObjects() - 1; i >= 0; i--)
{
btCollisionObject* obj = m_dynamicsWorld->getCollisionObjectArray()[i];
btRigidBody* body = btRigidBody::upcast(obj);
@@ -417,12 +399,12 @@ void MotorDemo::exitPhysics()
{
delete body->getMotionState();
}
m_dynamicsWorld->removeCollisionObject( obj );
m_dynamicsWorld->removeCollisionObject(obj);
delete obj;
}
//delete collision shapes
for (int j=0;j<m_collisionShapes.size();j++)
for (int j = 0; j < m_collisionShapes.size(); j++)
{
btCollisionShape* shape = m_collisionShapes[j];
delete shape;
@@ -440,11 +422,10 @@ void MotorDemo::exitPhysics()
//delete dispatcher
delete m_dispatcher;
delete m_collisionConfiguration;
delete m_collisionConfiguration;
}
class CommonExampleInterface* MotorControlCreateFunc(struct CommonExampleOptions& options)
class CommonExampleInterface* MotorControlCreateFunc(struct CommonExampleOptions& options)
{
return new MotorDemo(options.m_guiHelper);
}

View File

@@ -13,11 +13,9 @@ subject to the following restrictions:
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef MOTORDEMO_H
#define MOTORDEMO_H
class CommonExampleInterface* MotorControlCreateFunc(struct CommonExampleOptions& options);
class CommonExampleInterface* MotorControlCreateFunc(struct CommonExampleOptions& options);
#endif