Code-style consistency improvement:

Apply clang-format-all.sh using the _clang-format file through all the cpp/.h files.
make sure not to apply it to certain serialization structures, since some parser expects the * as part of the name, instead of type.
This commit contains no other changes aside from adding and applying clang-format-all.sh
This commit is contained in:
erwincoumans
2018-09-23 14:17:31 -07:00
parent b73b05e9fb
commit ab8f16961e
1773 changed files with 1081087 additions and 474249 deletions

View File

@@ -3,7 +3,7 @@
#include "BulletDynamics/Featherstone/btMultiBodyLinkCollider.h"
#include "BulletDynamics/Featherstone/btMultiBodyJointFeedback.h"
#include "../CommonInterfaces/CommonMultiBodyBase.h"
#include "../Utils/b3ResourcePath.h"
#include "../CommonInterfaces/CommonParameterInterface.h"
@@ -14,413 +14,379 @@ static btScalar maxForce = 100;
struct InvertedPendulumPDControl : public CommonMultiBodyBase
{
btMultiBody* m_multiBody;
btMultiBody* m_multiBody;
btAlignedObjectArray<btMultiBodyJointFeedback*> m_jointFeedbacks;
bool m_once;
bool m_once;
int m_frameCount;
public:
InvertedPendulumPDControl(struct GUIHelperInterface* helper);
virtual ~InvertedPendulumPDControl();
InvertedPendulumPDControl(struct GUIHelperInterface* helper);
virtual ~InvertedPendulumPDControl();
virtual void initPhysics();
virtual void initPhysics();
virtual void stepSimulation(float deltaTime);
virtual void stepSimulation(float deltaTime);
virtual void resetCamera()
{
float dist = 5;
float pitch = -21;
float yaw = 270;
float targetPos[3]={-1.34,1.4,3.44};
m_guiHelper->resetCamera(dist,yaw,pitch,targetPos[0],targetPos[1],targetPos[2]);
float targetPos[3] = {-1.34, 1.4, 3.44};
m_guiHelper->resetCamera(dist, yaw, pitch, targetPos[0], targetPos[1], targetPos[2]);
}
};
InvertedPendulumPDControl::InvertedPendulumPDControl(struct GUIHelperInterface* helper)
:CommonMultiBodyBase(helper),
m_once(true),
m_frameCount(0)
: CommonMultiBodyBase(helper),
m_once(true),
m_frameCount(0)
{
}
InvertedPendulumPDControl::~InvertedPendulumPDControl()
{
}
///this is a temporary global, until we determine if we need the option or not
extern bool gJointFeedbackInWorldSpace;
extern bool gJointFeedbackInWorldSpace;
extern bool gJointFeedbackInJointFrame;
btMultiBody* createInvertedPendulumMultiBody(btMultiBodyDynamicsWorld* world, GUIHelperInterface* guiHelper, const btTransform& baseWorldTrans, bool fixedBase)
{
btVector4 colors[4] =
{
btVector4(1,0,0,1),
btVector4(0,1,0,1),
btVector4(0,1,1,1),
btVector4(1,1,0,1),
};
int curColor = 0;
{
btVector4(1, 0, 0, 1),
btVector4(0, 1, 0, 1),
btVector4(0, 1, 1, 1),
btVector4(1, 1, 0, 1),
};
int curColor = 0;
bool damping = false;
bool gyro = false;
int numLinks = 2;
bool spherical = false; //set it ot false -to use 1DoF hinges instead of 3DoF sphericals
bool canSleep = false;
bool selfCollide = false;
btVector3 linkHalfExtents(0.05, 0.37, 0.1);
btVector3 baseHalfExtents(0.04, 0.35, 0.08);
bool damping = false;
bool gyro = false;
int numLinks = 2;
bool spherical = false; //set it ot false -to use 1DoF hinges instead of 3DoF sphericals
bool canSleep = false;
bool selfCollide = false;
btVector3 linkHalfExtents(0.05, 0.37, 0.1);
btVector3 baseHalfExtents(0.04, 0.35, 0.08);
//mbC->forceMultiDof(); //if !spherical, you can comment this line to check the 1DoF algorithm
//init the base
btVector3 baseInertiaDiag(0.f, 0.f, 0.f);
float baseMass = fixedBase ? 0.f : 10.f;
//mbC->forceMultiDof(); //if !spherical, you can comment this line to check the 1DoF algorithm
//init the base
btVector3 baseInertiaDiag(0.f, 0.f, 0.f);
float baseMass = fixedBase ? 0.f : 10.f;
if(baseMass)
{
//btCollisionShape *shape = new btSphereShape(baseHalfExtents[0]);// btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2]));
btCollisionShape *shape = new btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2]));
shape->calculateLocalInertia(baseMass, baseInertiaDiag);
delete shape;
}
if (baseMass)
{
//btCollisionShape *shape = new btSphereShape(baseHalfExtents[0]);// btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2]));
btCollisionShape* shape = new btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2]));
shape->calculateLocalInertia(baseMass, baseInertiaDiag);
delete shape;
}
btMultiBody* pMultiBody = new btMultiBody(numLinks, 0, baseInertiaDiag, fixedBase, canSleep);
btMultiBody *pMultiBody = new btMultiBody(numLinks, 0, baseInertiaDiag, fixedBase, canSleep);
pMultiBody->setBaseWorldTransform(baseWorldTrans);
btVector3 vel(0, 0, 0);
// pMultiBody->setBaseVel(vel);
btVector3 vel(0, 0, 0);
// pMultiBody->setBaseVel(vel);
//init the links
btVector3 hingeJointAxis(1, 0, 0);
//y-axis assumed up
btVector3 parentComToCurrentCom(0, -linkHalfExtents[1] * 2.f, 0); //par body's COM to cur body's COM offset
btVector3 currentPivotToCurrentCom(0, -linkHalfExtents[1], 0); //cur body's COM to cur body's PIV offset
btVector3 parentComToCurrentPivot = parentComToCurrentCom - currentPivotToCurrentCom; //par body's COM to cur body's PIV offset
//init the links
btVector3 hingeJointAxis(1, 0, 0);
//////
btScalar q0 = 1.f * SIMD_PI/ 180.f;
btQuaternion quat0(btVector3(1, 0, 0).normalized(), q0);
quat0.normalize();
/////
//y-axis assumed up
btVector3 parentComToCurrentCom(0, -linkHalfExtents[1] * 2.f, 0); //par body's COM to cur body's COM offset
btVector3 currentPivotToCurrentCom(0, -linkHalfExtents[1], 0); //cur body's COM to cur body's PIV offset
btVector3 parentComToCurrentPivot = parentComToCurrentCom - currentPivotToCurrentCom; //par body's COM to cur body's PIV offset
for(int i = 0; i < numLinks; ++i)
{
//////
btScalar q0 = 1.f * SIMD_PI / 180.f;
btQuaternion quat0(btVector3(1, 0, 0).normalized(), q0);
quat0.normalize();
/////
for (int i = 0; i < numLinks; ++i)
{
float linkMass = 1.f;
//if (i==3 || i==2)
// linkMass= 1000;
btVector3 linkInertiaDiag(0.f, 0.f, 0.f);
btCollisionShape* shape = 0;
if (i==0)
if (i == 0)
{
shape = new btBoxShape(btVector3(linkHalfExtents[0], linkHalfExtents[1], linkHalfExtents[2]));//
} else
shape = new btBoxShape(btVector3(linkHalfExtents[0], linkHalfExtents[1], linkHalfExtents[2])); //
}
else
{
shape = new btSphereShape(radius);
}
shape->calculateLocalInertia(linkMass, linkInertiaDiag);
delete shape;
if(!spherical)
if (!spherical)
{
//pMultiBody->setupRevolute(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), hingeJointAxis, parentComToCurrentPivot, currentPivotToCurrentCom, false);
if (i==0)
{
pMultiBody->setupRevolute(i, linkMass, linkInertiaDiag, i - 1,
btQuaternion(0.f, 0.f, 0.f, 1.f),
hingeJointAxis,
parentComToCurrentPivot,
currentPivotToCurrentCom, false);
} else
{
btVector3 parentComToCurrentCom(0, -radius * 2.f, 0); //par body's COM to cur body's COM offset
btVector3 currentPivotToCurrentCom(0, -radius, 0); //cur body's COM to cur body's PIV offset
btVector3 parentComToCurrentPivot = parentComToCurrentCom - currentPivotToCurrentCom; //par body's COM to cur body's PIV offset
//pMultiBody->setupRevolute(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), hingeJointAxis, parentComToCurrentPivot, currentPivotToCurrentCom, false);
pMultiBody->setupFixed(i, linkMass, linkInertiaDiag, i - 1,
btQuaternion(0.f, 0.f, 0.f, 1.f),
parentComToCurrentPivot,
currentPivotToCurrentCom);
if (i == 0)
{
pMultiBody->setupRevolute(i, linkMass, linkInertiaDiag, i - 1,
btQuaternion(0.f, 0.f, 0.f, 1.f),
hingeJointAxis,
parentComToCurrentPivot,
currentPivotToCurrentCom, false);
}
else
{
btVector3 parentComToCurrentCom(0, -radius * 2.f, 0); //par body's COM to cur body's COM offset
btVector3 currentPivotToCurrentCom(0, -radius, 0); //cur body's COM to cur body's PIV offset
btVector3 parentComToCurrentPivot = parentComToCurrentCom - currentPivotToCurrentCom; //par body's COM to cur body's PIV offset
pMultiBody->setupFixed(i, linkMass, linkInertiaDiag, i - 1,
btQuaternion(0.f, 0.f, 0.f, 1.f),
parentComToCurrentPivot,
currentPivotToCurrentCom);
}
//pMultiBody->setupFixed(i,linkMass,linkInertiaDiag,i-1,btQuaternion(0,0,0,1),parentComToCurrentPivot,currentPivotToCurrentCom,false);
}
else
else
{
//pMultiBody->setupPlanar(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f)/*quat0*/, btVector3(1, 0, 0), parentComToCurrentPivot*2, false);
pMultiBody->setupSpherical(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), parentComToCurrentPivot, currentPivotToCurrentCom, false);
//pMultiBody->setupPlanar(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f)/*quat0*/, btVector3(1, 0, 0), parentComToCurrentPivot*2, false);
pMultiBody->setupSpherical(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), parentComToCurrentPivot, currentPivotToCurrentCom, false);
}
}
}
pMultiBody->finalizeMultiDof();
pMultiBody->finalizeMultiDof();
///
world->addMultiBody(pMultiBody);
btMultiBody* mbC = pMultiBody;
mbC->setCanSleep(canSleep);
mbC->setHasSelfCollision(selfCollide);
mbC->setUseGyroTerm(gyro);
//
if (!damping)
{
mbC->setLinearDamping(0.f);
mbC->setAngularDamping(0.f);
}
else
{
mbC->setLinearDamping(0.1f);
mbC->setAngularDamping(0.9f);
}
//
///
world->addMultiBody(pMultiBody);
btMultiBody* mbC = pMultiBody;
mbC->setCanSleep(canSleep);
mbC->setHasSelfCollision(selfCollide);
mbC->setUseGyroTerm(gyro);
//
if(!damping)
{
mbC->setLinearDamping(0.f);
mbC->setAngularDamping(0.f);
}else
{ mbC->setLinearDamping(0.1f);
mbC->setAngularDamping(0.9f);
}
//
//////////////////////////////////////////////
if(numLinks > 0)
{
btScalar q0 = 180.f * SIMD_PI/ 180.f;
if(!spherical)
//////////////////////////////////////////////
if (numLinks > 0)
{
btScalar q0 = 180.f * SIMD_PI / 180.f;
if (!spherical)
{
mbC->setJointPosMultiDof(0, &q0);
}
else
{
btQuaternion quat0(btVector3(1, 1, 0).normalized(), q0);
quat0.normalize();
mbC->setJointPosMultiDof(0, quat0);
}
}
///
else
{
btQuaternion quat0(btVector3(1, 1, 0).normalized(), q0);
quat0.normalize();
mbC->setJointPosMultiDof(0, quat0);
}
}
///
btAlignedObjectArray<btQuaternion> world_to_local;
world_to_local.resize(pMultiBody->getNumLinks() + 1);
btAlignedObjectArray<btQuaternion> world_to_local;
world_to_local.resize(pMultiBody->getNumLinks() + 1);
btAlignedObjectArray<btVector3> local_origin;
local_origin.resize(pMultiBody->getNumLinks() + 1);
world_to_local[0] = pMultiBody->getWorldToBaseRot();
local_origin[0] = pMultiBody->getBasePos();
// double friction = 1;
{
btAlignedObjectArray<btVector3> local_origin;
local_origin.resize(pMultiBody->getNumLinks() + 1);
world_to_local[0] = pMultiBody->getWorldToBaseRot();
local_origin[0] = pMultiBody->getBasePos();
// double friction = 1;
{
// float pos[4]={local_origin[0].x(),local_origin[0].y(),local_origin[0].z(),1};
// float quat[4]={-world_to_local[0].x(),-world_to_local[0].y(),-world_to_local[0].z(),world_to_local[0].w()};
// float pos[4]={local_origin[0].x(),local_origin[0].y(),local_origin[0].z(),1};
// float quat[4]={-world_to_local[0].x(),-world_to_local[0].y(),-world_to_local[0].z(),world_to_local[0].w()};
if (1)
{
btCollisionShape* shape = new btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2])); //new btSphereShape(baseHalfExtents[0]);
guiHelper->createCollisionShapeGraphicsObject(shape);
btMultiBodyLinkCollider* col = new btMultiBodyLinkCollider(pMultiBody, -1);
col->setCollisionShape(shape);
if (1)
{
btCollisionShape* shape = new btBoxShape(btVector3(baseHalfExtents[0],baseHalfExtents[1],baseHalfExtents[2]));//new btSphereShape(baseHalfExtents[0]);
guiHelper->createCollisionShapeGraphicsObject(shape);
btMultiBodyLinkCollider* col= new btMultiBodyLinkCollider(pMultiBody, -1);
col->setCollisionShape(shape);
btTransform tr;
tr.setIdentity();
//if we don't set the initial pose of the btCollisionObject, the simulator will do this
btTransform tr;
tr.setIdentity();
//if we don't set the initial pose of the btCollisionObject, the simulator will do this
//when syncing the btMultiBody link transforms to the btMultiBodyLinkCollider
tr.setOrigin(local_origin[0]);
btQuaternion orn(btVector3(0,0,1),0.25*3.1415926538);
tr.setRotation(orn);
col->setWorldTransform(tr);
tr.setOrigin(local_origin[0]);
btQuaternion orn(btVector3(0, 0, 1), 0.25 * 3.1415926538);
tr.setRotation(orn);
col->setWorldTransform(tr);
bool isDynamic = (baseMass > 0 && !fixedBase);
int collisionFilterGroup = isDynamic? int(btBroadphaseProxy::DefaultFilter) : int(btBroadphaseProxy::StaticFilter);
int collisionFilterMask = isDynamic? int(btBroadphaseProxy::AllFilter) : int(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter);
int collisionFilterGroup = isDynamic ? int(btBroadphaseProxy::DefaultFilter) : int(btBroadphaseProxy::StaticFilter);
int collisionFilterMask = isDynamic ? int(btBroadphaseProxy::AllFilter) : int(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter);
world->addCollisionObject(col, collisionFilterGroup, collisionFilterMask); //, 2,1+2);
world->addCollisionObject(col,collisionFilterGroup,collisionFilterMask);//, 2,1+2);
btVector4 color(0.0, 0.0, 0.5, 1);
guiHelper->createCollisionObjectGraphicsObject(col, color);
btVector4 color(0.0,0.0,0.5,1);
guiHelper->createCollisionObjectGraphicsObject(col,color);
// col->setFriction(friction);
pMultiBody->setBaseCollider(col);
}
}
// col->setFriction(friction);
pMultiBody->setBaseCollider(col);
for (int i = 0; i < pMultiBody->getNumLinks(); ++i)
{
const int parent = pMultiBody->getParent(i);
world_to_local[i + 1] = pMultiBody->getParentToLocalRot(i) * world_to_local[parent + 1];
local_origin[i + 1] = local_origin[parent + 1] + (quatRotate(world_to_local[i + 1].inverse(), pMultiBody->getRVector(i)));
}
}
}
for (int i = 0; i < pMultiBody->getNumLinks(); ++i)
{
btVector3 posr = local_origin[i + 1];
// float pos[4]={posr.x(),posr.y(),posr.z(),1};
const btScalar quat[4] = {-world_to_local[i + 1].x(), -world_to_local[i + 1].y(), -world_to_local[i + 1].z(), world_to_local[i + 1].w()};
btCollisionShape* shape = 0;
for (int i=0; i < pMultiBody->getNumLinks(); ++i)
{
const int parent = pMultiBody->getParent(i);
world_to_local[i+1] = pMultiBody->getParentToLocalRot(i) * world_to_local[parent+1];
local_origin[i+1] = local_origin[parent+1] + (quatRotate(world_to_local[i+1].inverse() , pMultiBody->getRVector(i)));
}
for (int i=0; i < pMultiBody->getNumLinks(); ++i)
{
btVector3 posr = local_origin[i+1];
// float pos[4]={posr.x(),posr.y(),posr.z(),1};
const btScalar quat[4]={-world_to_local[i+1].x(),-world_to_local[i+1].y(),-world_to_local[i+1].z(),world_to_local[i+1].w()};
btCollisionShape* shape =0;
if (i==0)
if (i == 0)
{
shape = new btBoxShape(btVector3(linkHalfExtents[0],linkHalfExtents[1],linkHalfExtents[2]));//btSphereShape(linkHalfExtents[0]);
} else
shape = new btBoxShape(btVector3(linkHalfExtents[0], linkHalfExtents[1], linkHalfExtents[2])); //btSphereShape(linkHalfExtents[0]);
}
else
{
shape = new btSphereShape(radius);
}
guiHelper->createCollisionShapeGraphicsObject(shape);
btMultiBodyLinkCollider* col = new btMultiBodyLinkCollider(pMultiBody, i);
guiHelper->createCollisionShapeGraphicsObject(shape);
btMultiBodyLinkCollider* col = new btMultiBodyLinkCollider(pMultiBody, i);
col->setCollisionShape(shape);
btTransform tr;
tr.setIdentity();
tr.setOrigin(posr);
tr.setRotation(btQuaternion(quat[0],quat[1],quat[2],quat[3]));
col->setWorldTransform(tr);
// col->setFriction(friction);
bool isDynamic = 1;//(linkMass > 0);
int collisionFilterGroup = isDynamic? int(btBroadphaseProxy::DefaultFilter) : int(btBroadphaseProxy::StaticFilter);
int collisionFilterMask = isDynamic? int(btBroadphaseProxy::AllFilter) : int(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter);
col->setCollisionShape(shape);
btTransform tr;
tr.setIdentity();
tr.setOrigin(posr);
tr.setRotation(btQuaternion(quat[0], quat[1], quat[2], quat[3]));
col->setWorldTransform(tr);
// col->setFriction(friction);
bool isDynamic = 1; //(linkMass > 0);
int collisionFilterGroup = isDynamic ? int(btBroadphaseProxy::DefaultFilter) : int(btBroadphaseProxy::StaticFilter);
int collisionFilterMask = isDynamic ? int(btBroadphaseProxy::AllFilter) : int(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter);
//if (i==0||i>numLinks-2)
{
world->addCollisionObject(col,collisionFilterGroup,collisionFilterMask);//,2,1+2);
btVector4 color = colors[curColor];
curColor++;
curColor&=3;
guiHelper->createCollisionObjectGraphicsObject(col,color);
world->addCollisionObject(col, collisionFilterGroup, collisionFilterMask); //,2,1+2);
btVector4 color = colors[curColor];
curColor++;
curColor &= 3;
guiHelper->createCollisionObjectGraphicsObject(col, color);
pMultiBody->getLink(i).m_collider=col;
pMultiBody->getLink(i).m_collider = col;
}
}
}
return pMultiBody;
}
void InvertedPendulumPDControl::initPhysics()
{
{
SliderParams slider("Kp",&kp);
slider.m_minVal=-200;
slider.m_maxVal=200;
SliderParams slider("Kp", &kp);
slider.m_minVal = -200;
slider.m_maxVal = 200;
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(slider);
}
}
{
SliderParams slider("Kd",&kd);
slider.m_minVal=-50;
slider.m_maxVal=50;
SliderParams slider("Kd", &kd);
slider.m_minVal = -50;
slider.m_maxVal = 50;
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(slider);
}
}
{
SliderParams slider("max force",&maxForce);
slider.m_minVal=0;
slider.m_maxVal=100;
SliderParams slider("max force", &maxForce);
slider.m_minVal = 0;
slider.m_maxVal = 100;
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(slider);
}
}
int upAxis = 1;
int upAxis = 1;
gJointFeedbackInWorldSpace = true;
gJointFeedbackInJointFrame = true;
m_guiHelper->setUpAxis(upAxis);
this->createEmptyDynamicsWorld();
m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
m_dynamicsWorld->getDebugDrawer()->setDebugMode(
//btIDebugDraw::DBG_DrawConstraints
+btIDebugDraw::DBG_DrawWireframe
+btIDebugDraw::DBG_DrawContactPoints
+btIDebugDraw::DBG_DrawAabb
);//+btIDebugDraw::DBG_DrawConstraintLimits);
m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
m_dynamicsWorld->getDebugDrawer()->setDebugMode(
//btIDebugDraw::DBG_DrawConstraints
+btIDebugDraw::DBG_DrawWireframe + btIDebugDraw::DBG_DrawContactPoints + btIDebugDraw::DBG_DrawAabb); //+btIDebugDraw::DBG_DrawConstraintLimits);
m_dynamicsWorld->setGravity(btVector3(0,-10,0));
m_dynamicsWorld->setGravity(btVector3(0, -10, 0));
btTransform baseWorldTrans;
baseWorldTrans.setIdentity();
baseWorldTrans.setOrigin(btVector3(1,2,3));
baseWorldTrans.setOrigin(btVector3(1, 2, 3));
m_multiBody = createInvertedPendulumMultiBody(m_dynamicsWorld, m_guiHelper, baseWorldTrans, true);
//for (int i=pMultiBody->getNumLinks()-1;i>=0;i--)//
for (int i=0;i<m_multiBody->getNumLinks();i++)
for (int i = 0; i < m_multiBody->getNumLinks(); i++)
{
btMultiBodyJointFeedback* fb = new btMultiBodyJointFeedback();
m_multiBody->getLink(i).m_jointFeedback = fb;
m_jointFeedbacks.push_back(fb);
//break;
}
}
char fileName[1024];
static btAlignedObjectArray<btScalar> qDesiredArray;
void InvertedPendulumPDControl::stepSimulation(float deltaTime)
{
static btScalar offset = -0.1*SIMD_PI;
static btScalar offset = -0.1 * SIMD_PI;
m_frameCount++;
if ((m_frameCount&0xff)==0 )
if ((m_frameCount & 0xff) == 0)
{
offset = -offset;
}
btScalar target= SIMD_PI+offset;
btScalar target = SIMD_PI + offset;
qDesiredArray.resize(0);
qDesiredArray.resize(m_multiBody->getNumLinks(),target);
qDesiredArray.resize(m_multiBody->getNumLinks(), target);
for (int joint = 0; joint<m_multiBody->getNumLinks();joint++)
for (int joint = 0; joint < m_multiBody->getNumLinks(); joint++)
{
int dof1 = 0;
btScalar qActual = m_multiBody->getJointPosMultiDof(joint)[dof1];
btScalar qdActual = m_multiBody->getJointVelMultiDof(joint)[dof1];
btScalar positionError = (qDesiredArray[joint]-qActual);
btScalar positionError = (qDesiredArray[joint] - qActual);
double desiredVelocity = 0;
btScalar velocityError = (desiredVelocity-qdActual);
btScalar force = kp * positionError + kd*velocityError;
btClamp(force,-maxForce,maxForce);
btScalar velocityError = (desiredVelocity - qdActual);
btScalar force = kp * positionError + kd * velocityError;
btClamp(force, -maxForce, maxForce);
m_multiBody->addJointTorque(joint, force);
}
if (m_frameCount==100)
if (m_frameCount == 100)
{
const char* gPngFileName = "pendulum";
if (gPngFileName)
{
{
//printf("gPngFileName=%s\n",gPngFileName);
//printf("gPngFileName=%s\n",gPngFileName);
sprintf(fileName,"%s%d.png",gPngFileName,m_frameCount);
b3Printf("Made screenshot %s",fileName);
sprintf(fileName, "%s%d.png", gPngFileName, m_frameCount);
b3Printf("Made screenshot %s", fileName);
this->m_guiHelper->getAppInterface()->dumpNextFrameToPng(fileName);
}
}
}
m_dynamicsWorld->stepSimulation(1./60.,0);//240,0);
m_dynamicsWorld->stepSimulation(1. / 60., 0); //240,0);
static int count = 0;
if ((count& 0x0f)==0)
if ((count & 0x0f) == 0)
{
#if 0
for (int i=0;i<m_jointFeedbacks.size();i++)
@@ -443,23 +409,18 @@ void InvertedPendulumPDControl::stepSimulation(float deltaTime)
}
count++;
/*
b3Printf("base angvel = %f,%f,%f",m_multiBody->getBaseOmega()[0],
m_multiBody->getBaseOmega()[1],
m_multiBody->getBaseOmega()[2]
);
*/
// btScalar jointVel =m_multiBody->getJointVel(0);
// b3Printf("child angvel = %f",jointVel);
// btScalar jointVel =m_multiBody->getJointVel(0);
// b3Printf("child angvel = %f",jointVel);
}
class CommonExampleInterface* InvertedPendulumPDControlCreateFunc(struct CommonExampleOptions& options)
class CommonExampleInterface* InvertedPendulumPDControlCreateFunc(struct CommonExampleOptions& options)
{
return new InvertedPendulumPDControl(options.m_guiHelper);
}

View File

@@ -1,7 +1,6 @@
#ifndef INVERTED_PENDULUM_PD_CONTROL_H
#define INVERTED_PENDULUM_PD_CONTROL_H
class CommonExampleInterface* InvertedPendulumPDControlCreateFunc(struct CommonExampleOptions& options);
#endif //INVERTED_PENDULUM_PD_CONTROL_H
class CommonExampleInterface* InvertedPendulumPDControlCreateFunc(struct CommonExampleOptions& options);
#endif //INVERTED_PENDULUM_PD_CONTROL_H

View File

@@ -3,429 +3,403 @@
#include "BulletDynamics/Featherstone/btMultiBodyLinkCollider.h"
#include "BulletDynamics/Featherstone/btMultiBodyJointFeedback.h"
#include "BulletDynamics/Featherstone/btMultiBodyJointMotor.h"
#include "../CommonInterfaces/CommonMultiBodyBase.h"
static btScalar radius(0.2);
struct MultiBodyConstraintFeedbackSetup : public CommonMultiBodyBase
{
btMultiBody* m_multiBody;
btMultiBody* m_multiBody;
btAlignedObjectArray<btMultiBodyJointFeedback*> m_jointFeedbacks;
btMultiBodyJointMotor* m_motor;
bool m_once;
bool m_once;
public:
MultiBodyConstraintFeedbackSetup(struct GUIHelperInterface* helper);
virtual ~MultiBodyConstraintFeedbackSetup();
MultiBodyConstraintFeedbackSetup(struct GUIHelperInterface* helper);
virtual ~MultiBodyConstraintFeedbackSetup();
virtual void initPhysics();
virtual void initPhysics();
virtual void stepSimulation(float deltaTime);
virtual void stepSimulation(float deltaTime);
virtual void resetCamera()
{
float dist = 5;
float pitch = -21;
float yaw = 270;
float targetPos[3]={-1.34,3.4,-0.44};
m_guiHelper->resetCamera(dist,yaw,pitch,targetPos[0],targetPos[1],targetPos[2]);
float targetPos[3] = {-1.34, 3.4, -0.44};
m_guiHelper->resetCamera(dist, yaw, pitch, targetPos[0], targetPos[1], targetPos[2]);
}
};
MultiBodyConstraintFeedbackSetup::MultiBodyConstraintFeedbackSetup(struct GUIHelperInterface* helper)
:CommonMultiBodyBase(helper),
m_motor(0),
m_once(true)
: CommonMultiBodyBase(helper),
m_motor(0),
m_once(true)
{
}
MultiBodyConstraintFeedbackSetup::~MultiBodyConstraintFeedbackSetup()
{
}
///this is a temporary global, until we determine if we need the option or not
extern bool gJointFeedbackInWorldSpace;
extern bool gJointFeedbackInWorldSpace;
extern bool gJointFeedbackInJointFrame;
void MultiBodyConstraintFeedbackSetup::initPhysics()
{
int upAxis = 2;
int upAxis = 2;
gJointFeedbackInWorldSpace = true;
gJointFeedbackInJointFrame = true;
m_guiHelper->setUpAxis(upAxis);
btVector4 colors[4] =
{
btVector4(1,0,0,1),
btVector4(0,1,0,1),
btVector4(0,1,1,1),
btVector4(1,1,0,1),
};
int curColor = 0;
btVector4 colors[4] =
{
btVector4(1, 0, 0, 1),
btVector4(0, 1, 0, 1),
btVector4(0, 1, 1, 1),
btVector4(1, 1, 0, 1),
};
int curColor = 0;
this->createEmptyDynamicsWorld();
m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
m_dynamicsWorld->getDebugDrawer()->setDebugMode(
//btIDebugDraw::DBG_DrawConstraints
+btIDebugDraw::DBG_DrawWireframe
+btIDebugDraw::DBG_DrawContactPoints
+btIDebugDraw::DBG_DrawAabb
);//+btIDebugDraw::DBG_DrawConstraintLimits);
m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
m_dynamicsWorld->getDebugDrawer()->setDebugMode(
//btIDebugDraw::DBG_DrawConstraints
+btIDebugDraw::DBG_DrawWireframe + btIDebugDraw::DBG_DrawContactPoints + btIDebugDraw::DBG_DrawAabb); //+btIDebugDraw::DBG_DrawConstraintLimits);
//create a static ground object
if (1)
{
btVector3 groundHalfExtents(10, 10, 0.2);
btBoxShape* box = new btBoxShape(groundHalfExtents);
box->initializePolyhedralFeatures();
//create a static ground object
if (1)
{
btVector3 groundHalfExtents(10,10,0.2);
btBoxShape* box = new btBoxShape(groundHalfExtents);
box->initializePolyhedralFeatures();
m_guiHelper->createCollisionShapeGraphicsObject(box);
btTransform start;
start.setIdentity();
btVector3 groundOrigin(-0.4f, 3.f, 0.f);
//btVector3 basePosition = btVector3(-0.4f, 3.f, 0.f);
groundOrigin[upAxis] -= .5;
groundOrigin[2] -= 0.6;
start.setOrigin(groundOrigin);
btQuaternion groundOrn(btVector3(0, 1, 0), 0.25 * SIMD_PI);
m_guiHelper->createCollisionShapeGraphicsObject(box);
btTransform start; start.setIdentity();
btVector3 groundOrigin(-0.4f, 3.f, 0.f);
//btVector3 basePosition = btVector3(-0.4f, 3.f, 0.f);
groundOrigin[upAxis] -=.5;
groundOrigin[2]-=0.6;
start.setOrigin(groundOrigin);
btQuaternion groundOrn(btVector3(0,1,0),0.25*SIMD_PI);
// start.setRotation(groundOrn);
btRigidBody* body = createRigidBody(0,start,box);
body->setFriction(0);
btVector4 color = colors[curColor];
curColor++;
curColor&=3;
m_guiHelper->createRigidBodyGraphicsObject(body,color);
}
btRigidBody* body = createRigidBody(0, start, box);
body->setFriction(0);
btVector4 color = colors[curColor];
curColor++;
curColor &= 3;
m_guiHelper->createRigidBodyGraphicsObject(body, color);
}
{
bool floating = false;
bool damping = false;
bool gyro = false;
int numLinks = 2;
bool spherical = false; //set it ot false -to use 1DoF hinges instead of 3DoF sphericals
bool canSleep = false;
bool selfCollide = false;
btVector3 linkHalfExtents(0.05, 0.5, 0.1);
btVector3 baseHalfExtents(0.05, 0.5, 0.1);
{
bool floating = false;
bool damping = false;
bool gyro = false;
int numLinks = 2;
bool spherical = false; //set it ot false -to use 1DoF hinges instead of 3DoF sphericals
bool canSleep = false;
bool selfCollide = false;
btVector3 linkHalfExtents(0.05, 0.5, 0.1);
btVector3 baseHalfExtents(0.05, 0.5, 0.1);
btVector3 basePosition = btVector3(-0.4f, 3.f, 0.f);
//mbC->forceMultiDof(); //if !spherical, you can comment this line to check the 1DoF algorithm
//init the base
btVector3 baseInertiaDiag(0.f, 0.f, 0.f);
float baseMass = 0.01f;
btVector3 basePosition = btVector3(-0.4f, 3.f, 0.f);
//mbC->forceMultiDof(); //if !spherical, you can comment this line to check the 1DoF algorithm
//init the base
btVector3 baseInertiaDiag(0.f, 0.f, 0.f);
float baseMass = 0.01f;
if(baseMass)
{
//btCollisionShape *shape = new btSphereShape(baseHalfExtents[0]);// btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2]));
btCollisionShape *shape = new btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2]));
shape->calculateLocalInertia(baseMass, baseInertiaDiag);
delete shape;
}
if (baseMass)
{
//btCollisionShape *shape = new btSphereShape(baseHalfExtents[0]);// btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2]));
btCollisionShape* shape = new btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2]));
shape->calculateLocalInertia(baseMass, baseInertiaDiag);
delete shape;
}
btMultiBody *pMultiBody = new btMultiBody(numLinks, baseMass, baseInertiaDiag, !floating, canSleep);
m_multiBody = pMultiBody;
btQuaternion baseOriQuat(0.f, 0.f, 0.f, 1.f);
// baseOriQuat.setEulerZYX(-.25*SIMD_PI,0,-1.75*SIMD_PI);
pMultiBody->setBasePos(basePosition);
pMultiBody->setWorldToBaseRot(baseOriQuat);
btVector3 vel(0, 0, 0);
// pMultiBody->setBaseVel(vel);
btMultiBody* pMultiBody = new btMultiBody(numLinks, baseMass, baseInertiaDiag, !floating, canSleep);
//init the links
btVector3 hingeJointAxis(1, 0, 0);
//y-axis assumed up
btVector3 parentComToCurrentCom(0, -linkHalfExtents[1] * 2.f, 0); //par body's COM to cur body's COM offset
btVector3 currentPivotToCurrentCom(0, -linkHalfExtents[1], 0); //cur body's COM to cur body's PIV offset
btVector3 parentComToCurrentPivot = parentComToCurrentCom - currentPivotToCurrentCom; //par body's COM to cur body's PIV offset
m_multiBody = pMultiBody;
btQuaternion baseOriQuat(0.f, 0.f, 0.f, 1.f);
// baseOriQuat.setEulerZYX(-.25*SIMD_PI,0,-1.75*SIMD_PI);
pMultiBody->setBasePos(basePosition);
pMultiBody->setWorldToBaseRot(baseOriQuat);
btVector3 vel(0, 0, 0);
// pMultiBody->setBaseVel(vel);
//////
btScalar q0 = 0.f * SIMD_PI/ 180.f;
btQuaternion quat0(btVector3(0, 1, 0).normalized(), q0);
quat0.normalize();
/////
//init the links
btVector3 hingeJointAxis(1, 0, 0);
for(int i = 0; i < numLinks; ++i)
{
float linkMass = i==0? 0.0001 : 1.f;
//y-axis assumed up
btVector3 parentComToCurrentCom(0, -linkHalfExtents[1] * 2.f, 0); //par body's COM to cur body's COM offset
btVector3 currentPivotToCurrentCom(0, -linkHalfExtents[1], 0); //cur body's COM to cur body's PIV offset
btVector3 parentComToCurrentPivot = parentComToCurrentCom - currentPivotToCurrentCom; //par body's COM to cur body's PIV offset
//////
btScalar q0 = 0.f * SIMD_PI / 180.f;
btQuaternion quat0(btVector3(0, 1, 0).normalized(), q0);
quat0.normalize();
/////
for (int i = 0; i < numLinks; ++i)
{
float linkMass = i == 0 ? 0.0001 : 1.f;
//if (i==3 || i==2)
// linkMass= 1000;
btVector3 linkInertiaDiag(0.f, 0.f, 0.f);
btCollisionShape* shape = 0;
if (i==0)
if (i == 0)
{
shape = new btBoxShape(btVector3(linkHalfExtents[0], linkHalfExtents[1], linkHalfExtents[2]));//
} else
shape = new btBoxShape(btVector3(linkHalfExtents[0], linkHalfExtents[1], linkHalfExtents[2])); //
}
else
{
shape = new btSphereShape(radius);
}
shape->calculateLocalInertia(linkMass, linkInertiaDiag);
delete shape;
if(!spherical)
if (!spherical)
{
//pMultiBody->setupRevolute(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), hingeJointAxis, parentComToCurrentPivot, currentPivotToCurrentCom, false);
if (i==0)
//pMultiBody->setupRevolute(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), hingeJointAxis, parentComToCurrentPivot, currentPivotToCurrentCom, false);
if (i == 0)
{
pMultiBody->setupRevolute(i, linkMass, linkInertiaDiag, i - 1,
btQuaternion(0.f, 0.f, 0.f, 1.f),
hingeJointAxis,
parentComToCurrentPivot,
currentPivotToCurrentCom, false);
} else
pMultiBody->setupRevolute(i, linkMass, linkInertiaDiag, i - 1,
btQuaternion(0.f, 0.f, 0.f, 1.f),
hingeJointAxis,
parentComToCurrentPivot,
currentPivotToCurrentCom, false);
}
else
{
btVector3 parentComToCurrentCom(0, -linkHalfExtents[1], 0); //par body's COM to cur body's COM offset
btVector3 currentPivotToCurrentCom(0, 0, 0); //cur body's COM to cur body's PIV offset
btVector3 parentComToCurrentCom(0, -linkHalfExtents[1], 0); //par body's COM to cur body's COM offset
btVector3 currentPivotToCurrentCom(0, 0, 0); //cur body's COM to cur body's PIV offset
//btVector3 parentComToCurrentPivot = parentComToCurrentCom - currentPivotToCurrentCom; //par body's COM to cur body's PIV offset
pMultiBody->setupFixed(i, linkMass, linkInertiaDiag, i - 1,
btQuaternion(0.f, 0.f, 0.f, 1.f),
parentComToCurrentPivot,
currentPivotToCurrentCom);
pMultiBody->setupFixed(i, linkMass, linkInertiaDiag, i - 1,
btQuaternion(0.f, 0.f, 0.f, 1.f),
parentComToCurrentPivot,
currentPivotToCurrentCom);
}
//pMultiBody->setupFixed(i,linkMass,linkInertiaDiag,i-1,btQuaternion(0,0,0,1),parentComToCurrentPivot,currentPivotToCurrentCom,false);
}
else
{
//pMultiBody->setupPlanar(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f)/*quat0*/, btVector3(1, 0, 0), parentComToCurrentPivot*2, false);
pMultiBody->setupSpherical(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), parentComToCurrentPivot, currentPivotToCurrentCom, false);
}
}
pMultiBody->finalizeMultiDof();
//pMultiBody->setupFixed(i,linkMass,linkInertiaDiag,i-1,btQuaternion(0,0,0,1),parentComToCurrentPivot,currentPivotToCurrentCom,false);
}
else
{
//pMultiBody->setupPlanar(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f)/*quat0*/, btVector3(1, 0, 0), parentComToCurrentPivot*2, false);
pMultiBody->setupSpherical(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), parentComToCurrentPivot, currentPivotToCurrentCom, false);
}
}
pMultiBody->finalizeMultiDof();
//for (int i=pMultiBody->getNumLinks()-1;i>=0;i--)//
for (int i=0;i<pMultiBody->getNumLinks();i++)
for (int i = 0; i < pMultiBody->getNumLinks(); i++)
{
btMultiBodyJointFeedback* fb = new btMultiBodyJointFeedback();
pMultiBody->getLink(i).m_jointFeedback = fb;
m_jointFeedbacks.push_back(fb);
//break;
}
btMultiBodyDynamicsWorld* world = m_dynamicsWorld;
btMultiBodyDynamicsWorld* world = m_dynamicsWorld;
///
world->addMultiBody(pMultiBody);
btMultiBody* mbC = pMultiBody;
mbC->setCanSleep(canSleep);
mbC->setHasSelfCollision(selfCollide);
mbC->setUseGyroTerm(gyro);
//
if(!damping)
{
mbC->setLinearDamping(0.f);
mbC->setAngularDamping(0.f);
}else
{ mbC->setLinearDamping(0.1f);
mbC->setAngularDamping(0.9f);
}
//
m_dynamicsWorld->setGravity(btVector3(0,0,-10));
///
world->addMultiBody(pMultiBody);
btMultiBody* mbC = pMultiBody;
mbC->setCanSleep(canSleep);
mbC->setHasSelfCollision(selfCollide);
mbC->setUseGyroTerm(gyro);
//
if (!damping)
{
mbC->setLinearDamping(0.f);
mbC->setAngularDamping(0.f);
}
else
{
mbC->setLinearDamping(0.1f);
mbC->setAngularDamping(0.9f);
}
//
m_dynamicsWorld->setGravity(btVector3(0, 0, -10));
//////////////////////////////////////////////
if(0)//numLinks > 0)
{
btScalar q0 = 45.f * SIMD_PI/ 180.f;
if(!spherical)
//////////////////////////////////////////////
if (0) //numLinks > 0)
{
btScalar q0 = 45.f * SIMD_PI / 180.f;
if (!spherical)
{
mbC->setJointPosMultiDof(0, &q0);
mbC->setJointPosMultiDof(0, &q0);
}
else
{
btQuaternion quat0(btVector3(1, 1, 0).normalized(), q0);
quat0.normalize();
mbC->setJointPosMultiDof(0, quat0);
}
}
///
else
{
btQuaternion quat0(btVector3(1, 1, 0).normalized(), q0);
quat0.normalize();
mbC->setJointPosMultiDof(0, quat0);
}
}
///
btAlignedObjectArray<btQuaternion> world_to_local;
world_to_local.resize(pMultiBody->getNumLinks() + 1);
btAlignedObjectArray<btQuaternion> world_to_local;
world_to_local.resize(pMultiBody->getNumLinks() + 1);
btAlignedObjectArray<btVector3> local_origin;
local_origin.resize(pMultiBody->getNumLinks() + 1);
world_to_local[0] = pMultiBody->getWorldToBaseRot();
local_origin[0] = pMultiBody->getBasePos();
// double friction = 1;
{
btAlignedObjectArray<btVector3> local_origin;
local_origin.resize(pMultiBody->getNumLinks() + 1);
world_to_local[0] = pMultiBody->getWorldToBaseRot();
local_origin[0] = pMultiBody->getBasePos();
// double friction = 1;
{
// float pos[4]={local_origin[0].x(),local_origin[0].y(),local_origin[0].z(),1};
// float quat[4]={-world_to_local[0].x(),-world_to_local[0].y(),-world_to_local[0].z(),world_to_local[0].w()};
// float pos[4]={local_origin[0].x(),local_origin[0].y(),local_origin[0].z(),1};
// float quat[4]={-world_to_local[0].x(),-world_to_local[0].y(),-world_to_local[0].z(),world_to_local[0].w()};
if (1)
{
btCollisionShape* shape = new btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2])); //new btSphereShape(baseHalfExtents[0]);
m_guiHelper->createCollisionShapeGraphicsObject(shape);
btMultiBodyLinkCollider* col = new btMultiBodyLinkCollider(pMultiBody, -1);
col->setCollisionShape(shape);
if (1)
{
btCollisionShape* shape = new btBoxShape(btVector3(baseHalfExtents[0],baseHalfExtents[1],baseHalfExtents[2]));//new btSphereShape(baseHalfExtents[0]);
m_guiHelper->createCollisionShapeGraphicsObject(shape);
btMultiBodyLinkCollider* col= new btMultiBodyLinkCollider(pMultiBody, -1);
col->setCollisionShape(shape);
btTransform tr;
tr.setIdentity();
//if we don't set the initial pose of the btCollisionObject, the simulator will do this
btTransform tr;
tr.setIdentity();
//if we don't set the initial pose of the btCollisionObject, the simulator will do this
//when syncing the btMultiBody link transforms to the btMultiBodyLinkCollider
tr.setOrigin(local_origin[0]);
btQuaternion orn(btVector3(0,0,1),0.25*3.1415926538);
tr.setRotation(orn);
col->setWorldTransform(tr);
tr.setOrigin(local_origin[0]);
btQuaternion orn(btVector3(0, 0, 1), 0.25 * 3.1415926538);
tr.setRotation(orn);
col->setWorldTransform(tr);
bool isDynamic = (baseMass > 0 && floating);
int collisionFilterGroup = isDynamic? int(btBroadphaseProxy::DefaultFilter) : int(btBroadphaseProxy::StaticFilter);
int collisionFilterMask = isDynamic? int(btBroadphaseProxy::AllFilter) : int(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter);
int collisionFilterGroup = isDynamic ? int(btBroadphaseProxy::DefaultFilter) : int(btBroadphaseProxy::StaticFilter);
int collisionFilterMask = isDynamic ? int(btBroadphaseProxy::AllFilter) : int(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter);
world->addCollisionObject(col, collisionFilterGroup, collisionFilterMask); //, 2,1+2);
world->addCollisionObject(col,collisionFilterGroup,collisionFilterMask);//, 2,1+2);
btVector3 color(0.0, 0.0, 0.5);
m_guiHelper->createCollisionObjectGraphicsObject(col, color);
btVector3 color(0.0,0.0,0.5);
m_guiHelper->createCollisionObjectGraphicsObject(col,color);
// col->setFriction(friction);
pMultiBody->setBaseCollider(col);
}
}
// col->setFriction(friction);
pMultiBody->setBaseCollider(col);
for (int i = 0; i < pMultiBody->getNumLinks(); ++i)
{
const int parent = pMultiBody->getParent(i);
world_to_local[i + 1] = pMultiBody->getParentToLocalRot(i) * world_to_local[parent + 1];
local_origin[i + 1] = local_origin[parent + 1] + (quatRotate(world_to_local[i + 1].inverse(), pMultiBody->getRVector(i)));
}
}
}
for (int i = 0; i < pMultiBody->getNumLinks(); ++i)
{
btVector3 posr = local_origin[i + 1];
// float pos[4]={posr.x(),posr.y(),posr.z(),1};
const btScalar quat[4] = {-world_to_local[i + 1].x(), -world_to_local[i + 1].y(), -world_to_local[i + 1].z(), world_to_local[i + 1].w()};
btCollisionShape* shape = 0;
for (int i=0; i < pMultiBody->getNumLinks(); ++i)
{
const int parent = pMultiBody->getParent(i);
world_to_local[i+1] = pMultiBody->getParentToLocalRot(i) * world_to_local[parent+1];
local_origin[i+1] = local_origin[parent+1] + (quatRotate(world_to_local[i+1].inverse() , pMultiBody->getRVector(i)));
}
for (int i=0; i < pMultiBody->getNumLinks(); ++i)
{
btVector3 posr = local_origin[i+1];
// float pos[4]={posr.x(),posr.y(),posr.z(),1};
const btScalar quat[4]={-world_to_local[i+1].x(),-world_to_local[i+1].y(),-world_to_local[i+1].z(),world_to_local[i+1].w()};
btCollisionShape* shape =0;
if (i==0)
if (i == 0)
{
shape = new btBoxShape(btVector3(linkHalfExtents[0],linkHalfExtents[1],linkHalfExtents[2]));//btSphereShape(linkHalfExtents[0]);
} else
shape = new btBoxShape(btVector3(linkHalfExtents[0], linkHalfExtents[1], linkHalfExtents[2])); //btSphereShape(linkHalfExtents[0]);
}
else
{
shape = new btSphereShape(radius);
}
m_guiHelper->createCollisionShapeGraphicsObject(shape);
btMultiBodyLinkCollider* col = new btMultiBodyLinkCollider(pMultiBody, i);
m_guiHelper->createCollisionShapeGraphicsObject(shape);
btMultiBodyLinkCollider* col = new btMultiBodyLinkCollider(pMultiBody, i);
col->setCollisionShape(shape);
btTransform tr;
tr.setIdentity();
tr.setOrigin(posr);
tr.setRotation(btQuaternion(quat[0],quat[1],quat[2],quat[3]));
col->setWorldTransform(tr);
// col->setFriction(friction);
bool isDynamic = 1;//(linkMass > 0);
int collisionFilterGroup = isDynamic? int(btBroadphaseProxy::DefaultFilter) : int(btBroadphaseProxy::StaticFilter);
int collisionFilterMask = isDynamic? int(btBroadphaseProxy::AllFilter) : int(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter);
col->setCollisionShape(shape);
btTransform tr;
tr.setIdentity();
tr.setOrigin(posr);
tr.setRotation(btQuaternion(quat[0], quat[1], quat[2], quat[3]));
col->setWorldTransform(tr);
// col->setFriction(friction);
bool isDynamic = 1; //(linkMass > 0);
int collisionFilterGroup = isDynamic ? int(btBroadphaseProxy::DefaultFilter) : int(btBroadphaseProxy::StaticFilter);
int collisionFilterMask = isDynamic ? int(btBroadphaseProxy::AllFilter) : int(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter);
//if (i==0||i>numLinks-2)
{
world->addCollisionObject(col,collisionFilterGroup,collisionFilterMask);//,2,1+2);
btVector4 color = colors[curColor];
curColor++;
curColor&=3;
m_guiHelper->createCollisionObjectGraphicsObject(col,color);
world->addCollisionObject(col, collisionFilterGroup, collisionFilterMask); //,2,1+2);
btVector4 color = colors[curColor];
curColor++;
curColor &= 3;
m_guiHelper->createCollisionObjectGraphicsObject(col, color);
pMultiBody->getLink(i).m_collider=col;
pMultiBody->getLink(i).m_collider = col;
}
}
int link=0;
int targetVelocity=0.f;
btScalar maxForce = 100000;
m_motor = new btMultiBodyJointMotor(pMultiBody,link,targetVelocity,maxForce);
m_dynamicsWorld->addMultiBodyConstraint(m_motor);
}
}
int link = 0;
int targetVelocity = 0.f;
btScalar maxForce = 100000;
m_motor = new btMultiBodyJointMotor(pMultiBody, link, targetVelocity, maxForce);
m_dynamicsWorld->addMultiBodyConstraint(m_motor);
}
}
void MultiBodyConstraintFeedbackSetup::stepSimulation(float deltaTime)
{
//m_multiBody->addLinkForce(0,btVector3(100,100,100));
if (0)//m_once)
{
m_once=false;
m_multiBody->addJointTorque(0, 10.0);
btScalar torque = m_multiBody->getJointTorque(0);
b3Printf("t = %f,%f,%f\n",torque,torque,torque);//[0],torque[1],torque[2]);
}
btScalar timeStep = 1./240.f;
m_dynamicsWorld->stepSimulation(timeStep,0);
if (0) //m_once)
{
m_once = false;
m_multiBody->addJointTorque(0, 10.0);
btScalar torque = m_multiBody->getJointTorque(0);
b3Printf("t = %f,%f,%f\n", torque, torque, torque); //[0],torque[1],torque[2]);
}
btScalar timeStep = 1. / 240.f;
m_dynamicsWorld->stepSimulation(timeStep, 0);
static int count = 0;
if ((count& 0x0f)==0)
if ((count & 0x0f) == 0)
{
if (m_motor)
{
float force = m_motor->getAppliedImpulse(0)/timeStep;
b3Printf("motor applied force = %f\n", force);
}
if (m_motor)
{
float force = m_motor->getAppliedImpulse(0) / timeStep;
b3Printf("motor applied force = %f\n", force);
}
for (int i=0;i<m_jointFeedbacks.size();i++)
{
for (int i = 0; i < m_jointFeedbacks.size(); i++)
{
b3Printf("F_reaction[%i] linear:%f,%f,%f, angular:%f,%f,%f",
i,
m_jointFeedbacks[i]->m_reactionForces.m_topVec[0],
m_jointFeedbacks[i]->m_reactionForces.m_topVec[1],
m_jointFeedbacks[i]->m_reactionForces.m_topVec[2],
i,
m_jointFeedbacks[i]->m_reactionForces.m_topVec[0],
m_jointFeedbacks[i]->m_reactionForces.m_topVec[1],
m_jointFeedbacks[i]->m_reactionForces.m_topVec[2],
m_jointFeedbacks[i]->m_reactionForces.m_bottomVec[0],
m_jointFeedbacks[i]->m_reactionForces.m_bottomVec[1],
m_jointFeedbacks[i]->m_reactionForces.m_bottomVec[2]
m_jointFeedbacks[i]->m_reactionForces.m_bottomVec[0],
m_jointFeedbacks[i]->m_reactionForces.m_bottomVec[1],
m_jointFeedbacks[i]->m_reactionForces.m_bottomVec[2]
);
}
);
}
}
count++;
/*
b3Printf("base angvel = %f,%f,%f",m_multiBody->getBaseOmega()[0],
m_multiBody->getBaseOmega()[1],
m_multiBody->getBaseOmega()[2]
);
*/
// btScalar jointVel =m_multiBody->getJointVel(0);
// b3Printf("child angvel = %f",jointVel);
// btScalar jointVel =m_multiBody->getJointVel(0);
// b3Printf("child angvel = %f",jointVel);
}
class CommonExampleInterface* MultiBodyConstraintFeedbackCreateFunc(struct CommonExampleOptions& options)
class CommonExampleInterface* MultiBodyConstraintFeedbackCreateFunc(struct CommonExampleOptions& options)
{
return new MultiBodyConstraintFeedbackSetup(options.m_guiHelper);
}

View File

@@ -1,7 +1,6 @@
#ifndef MULTIBODY_CONSTRAINT_FEEDBACK_H
#define MULTIBODY_CONSTRAINT_FEEDBACK_H
class CommonExampleInterface* MultiBodyConstraintFeedbackCreateFunc(struct CommonExampleOptions& options);
#endif //MULTIBODY_CONSTRAINT_FEEDBACK_H
class CommonExampleInterface* MultiBodyConstraintFeedbackCreateFunc(struct CommonExampleOptions& options);
#endif //MULTIBODY_CONSTRAINT_FEEDBACK_H

View File

@@ -3,7 +3,7 @@
#include "BulletDynamics/Featherstone/btMultiBodyLinkCollider.h"
#include "BulletDynamics/Featherstone/btMultiBodyJointFeedback.h"
#include "../CommonInterfaces/CommonMultiBodyBase.h"
#include "../Utils/b3ResourcePath.h"
@@ -11,101 +11,84 @@
struct MultiBodySoftContact : public CommonMultiBodyBase
{
btMultiBody* m_multiBody;
btMultiBody* m_multiBody;
btAlignedObjectArray<btMultiBodyJointFeedback*> m_jointFeedbacks;
bool m_once;
bool m_once;
public:
MultiBodySoftContact(struct GUIHelperInterface* helper);
virtual ~MultiBodySoftContact();
MultiBodySoftContact(struct GUIHelperInterface* helper);
virtual ~MultiBodySoftContact();
virtual void initPhysics();
virtual void initPhysics();
virtual void stepSimulation(float deltaTime);
virtual void stepSimulation(float deltaTime);
virtual void resetCamera()
{
float dist = 5;
float pitch = -21;
float yaw = 270;
float targetPos[3]={0,0,0};
m_guiHelper->resetCamera(dist,yaw,pitch,targetPos[0],targetPos[1],targetPos[2]);
float targetPos[3] = {0, 0, 0};
m_guiHelper->resetCamera(dist, yaw, pitch, targetPos[0], targetPos[1], targetPos[2]);
}
};
MultiBodySoftContact::MultiBodySoftContact(struct GUIHelperInterface* helper)
:CommonMultiBodyBase(helper),
m_once(true)
: CommonMultiBodyBase(helper),
m_once(true)
{
}
MultiBodySoftContact::~MultiBodySoftContact()
{
}
void MultiBodySoftContact::initPhysics()
{
int upAxis = 2;
int upAxis = 2;
m_guiHelper->setUpAxis(upAxis);
btVector4 colors[4] =
{
btVector4(1,0,0,1),
btVector4(0,1,0,1),
btVector4(0,1,1,1),
btVector4(1,1,0,1),
};
int curColor = 0;
btVector4 colors[4] =
{
btVector4(1, 0, 0, 1),
btVector4(0, 1, 0, 1),
btVector4(0, 1, 1, 1),
btVector4(1, 1, 0, 1),
};
int curColor = 0;
this->createEmptyDynamicsWorld();
m_dynamicsWorld->setGravity(btVector3(0,0,-10));
m_dynamicsWorld->setGravity(btVector3(0, 0, -10));
m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
m_dynamicsWorld->getDebugDrawer()->setDebugMode(
//btIDebugDraw::DBG_DrawConstraints
+btIDebugDraw::DBG_DrawWireframe
+btIDebugDraw::DBG_DrawContactPoints
+btIDebugDraw::DBG_DrawAabb
);//+btIDebugDraw::DBG_DrawConstraintLimits);
m_dynamicsWorld->getDebugDrawer()->setDebugMode(
//btIDebugDraw::DBG_DrawConstraints
+btIDebugDraw::DBG_DrawWireframe + btIDebugDraw::DBG_DrawContactPoints + btIDebugDraw::DBG_DrawAabb); //+btIDebugDraw::DBG_DrawConstraintLimits);
//create a static ground object
if (1)
{
btVector3 groundHalfExtents(50, 50, 50);
btBoxShape* box = new btBoxShape(groundHalfExtents);
box->initializePolyhedralFeatures();
//create a static ground object
if (1)
{
btVector3 groundHalfExtents(50,50,50);
btBoxShape* box = new btBoxShape(groundHalfExtents);
box->initializePolyhedralFeatures();
m_guiHelper->createCollisionShapeGraphicsObject(box);
btTransform start; start.setIdentity();
btVector3 groundOrigin(0,0,-50.5);
start.setOrigin(groundOrigin);
m_guiHelper->createCollisionShapeGraphicsObject(box);
btTransform start;
start.setIdentity();
btVector3 groundOrigin(0, 0, -50.5);
start.setOrigin(groundOrigin);
// start.setRotation(groundOrn);
btRigidBody* body = createRigidBody(0,start,box);
//setContactStiffnessAndDamping will enable compliant rigid body contact
body->setContactStiffnessAndDamping(300,10);
btVector4 color = colors[curColor];
curColor++;
curColor&=3;
m_guiHelper->createRigidBodyGraphicsObject(body,color);
btRigidBody* body = createRigidBody(0, start, box);
}
//setContactStiffnessAndDamping will enable compliant rigid body contact
body->setContactStiffnessAndDamping(300, 10);
btVector4 color = colors[curColor];
curColor++;
curColor &= 3;
m_guiHelper->createRigidBodyGraphicsObject(body, color);
}
{
btCollisionShape* childShape = new btSphereShape(btScalar(0.5));
@@ -114,60 +97,52 @@ void MultiBodySoftContact::initPhysics()
btScalar mass = 1;
btVector3 baseInertiaDiag;
bool isFixed = (mass == 0);
childShape->calculateLocalInertia(mass,baseInertiaDiag);
btMultiBody *pMultiBody = new btMultiBody(0, 1, baseInertiaDiag, false, false);
btTransform startTrans;
startTrans.setIdentity();
startTrans.setOrigin(btVector3(0,0,3));
childShape->calculateLocalInertia(mass, baseInertiaDiag);
btMultiBody* pMultiBody = new btMultiBody(0, 1, baseInertiaDiag, false, false);
btTransform startTrans;
startTrans.setIdentity();
startTrans.setOrigin(btVector3(0, 0, 3));
pMultiBody->setBaseWorldTransform(startTrans);
pMultiBody->setBaseWorldTransform(startTrans);
btMultiBodyLinkCollider* col= new btMultiBodyLinkCollider(pMultiBody, -1);
btMultiBodyLinkCollider* col = new btMultiBodyLinkCollider(pMultiBody, -1);
col->setCollisionShape(childShape);
pMultiBody->setBaseCollider(col);
bool isDynamic = (mass > 0 && !isFixed);
int collisionFilterGroup = isDynamic? int(btBroadphaseProxy::DefaultFilter) : int(btBroadphaseProxy::StaticFilter);
int collisionFilterMask = isDynamic? int(btBroadphaseProxy::AllFilter) : int(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter);
m_dynamicsWorld->addCollisionObject(col,collisionFilterGroup,collisionFilterMask);//, 2,1+2);
bool isDynamic = (mass > 0 && !isFixed);
int collisionFilterGroup = isDynamic ? int(btBroadphaseProxy::DefaultFilter) : int(btBroadphaseProxy::StaticFilter);
int collisionFilterMask = isDynamic ? int(btBroadphaseProxy::AllFilter) : int(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter);
m_dynamicsWorld->addCollisionObject(col, collisionFilterGroup, collisionFilterMask); //, 2,1+2);
pMultiBody->finalizeMultiDof();
m_dynamicsWorld->addMultiBody(pMultiBody);
btAlignedObjectArray<btQuaternion> scratch_q;
btAlignedObjectArray<btVector3> scratch_m;
pMultiBody->forwardKinematics(scratch_q,scratch_m);
pMultiBody->forwardKinematics(scratch_q, scratch_m);
btAlignedObjectArray<btQuaternion> world_to_local;
btAlignedObjectArray<btVector3> local_origin;
pMultiBody->updateCollisionObjectWorldTransforms(world_to_local,local_origin);
pMultiBody->updateCollisionObjectWorldTransforms(world_to_local, local_origin);
}
m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld);
}
void MultiBodySoftContact::stepSimulation(float deltaTime)
{
if (0)//m_once)
{
m_once=false;
m_multiBody->addJointTorque(0, 10.0);
btScalar torque = m_multiBody->getJointTorque(0);
b3Printf("t = %f,%f,%f\n",torque,torque,torque);//[0],torque[1],torque[2]);
}
m_dynamicsWorld->stepSimulation(deltaTime);
if (0) //m_once)
{
m_once = false;
m_multiBody->addJointTorque(0, 10.0);
btScalar torque = m_multiBody->getJointTorque(0);
b3Printf("t = %f,%f,%f\n", torque, torque, torque); //[0],torque[1],torque[2]);
}
m_dynamicsWorld->stepSimulation(deltaTime);
}
class CommonExampleInterface* MultiBodySoftContactCreateFunc(struct CommonExampleOptions& options)
class CommonExampleInterface* MultiBodySoftContactCreateFunc(struct CommonExampleOptions& options)
{
return new MultiBodySoftContact(options.m_guiHelper);
}

View File

@@ -1,7 +1,6 @@
#ifndef MULTI_BODY_SOFT_CONTACT_H
#define MULTI_BODY_SOFT_CONTACT_H
class CommonExampleInterface* MultiBodySoftContactCreateFunc(struct CommonExampleOptions& options);
#endif //MULTI_BODY_SOFT_CONTACT_H
class CommonExampleInterface* MultiBodySoftContactCreateFunc(struct CommonExampleOptions& options);
#endif //MULTI_BODY_SOFT_CONTACT_H

View File

@@ -23,33 +23,28 @@
#include "../CommonInterfaces/CommonMultiBodyBase.h"
class MultiDofDemo : public CommonMultiBodyBase
{
public:
MultiDofDemo(GUIHelperInterface* helper);
virtual ~MultiDofDemo();
virtual void initPhysics();
virtual void initPhysics();
virtual void stepSimulation(float deltaTime);
virtual void stepSimulation(float deltaTime);
virtual void resetCamera()
{
float dist = 1;
float pitch = -35;
float yaw = 50;
float targetPos[3]={-3,2.8,-2.5};
m_guiHelper->resetCamera(dist,yaw,pitch,targetPos[0],targetPos[1],targetPos[2]);
float targetPos[3] = {-3, 2.8, -2.5};
m_guiHelper->resetCamera(dist, yaw, pitch, targetPos[0], targetPos[1], targetPos[2]);
}
btMultiBody* createFeatherstoneMultiBody_testMultiDof(class btMultiBodyDynamicsWorld* world, int numLinks, const btVector3& basePosition, const btVector3 &baseHalfExtents, const btVector3 &linkHalfExtents, bool spherical = false, bool floating = false);
void addColliders_testMultiDof(btMultiBody *pMultiBody, btMultiBodyDynamicsWorld *pWorld, const btVector3 &baseHalfExtents, const btVector3 &linkHalfExtents);
btMultiBody* createFeatherstoneMultiBody_testMultiDof(class btMultiBodyDynamicsWorld* world, int numLinks, const btVector3& basePosition, const btVector3& baseHalfExtents, const btVector3& linkHalfExtents, bool spherical = false, bool floating = false);
void addColliders_testMultiDof(btMultiBody* pMultiBody, btMultiBodyDynamicsWorld* pWorld, const btVector3& baseHalfExtents, const btVector3& linkHalfExtents);
void addBoxes_testMultiDof();
};
static bool g_floatingBase = false;
@@ -62,18 +57,15 @@ static int g_constraintSolverType = 0;
#define ARRAY_SIZE_Z 5
//maximum number of objects (and allow user to shoot additional boxes)
#define MAX_PROXIES (ARRAY_SIZE_X*ARRAY_SIZE_Y*ARRAY_SIZE_Z + 1024)
#define MAX_PROXIES (ARRAY_SIZE_X * ARRAY_SIZE_Y * ARRAY_SIZE_Z + 1024)
#define START_POS_X -5
//#define START_POS_Y 12
#define START_POS_Y 2
#define START_POS_Z -3
MultiDofDemo::MultiDofDemo(GUIHelperInterface* helper)
:CommonMultiBodyBase(helper)
: CommonMultiBodyBase(helper)
{
m_guiHelper->setUpAxis(1);
}
@@ -81,31 +73,28 @@ MultiDofDemo::~MultiDofDemo()
{
}
void MultiDofDemo::stepSimulation(float deltaTime)
void MultiDofDemo::stepSimulation(float deltaTime)
{
//use a smaller internal timestep, there are stability issues
float internalTimeStep = 1./240.f;
m_dynamicsWorld->stepSimulation(deltaTime,10,internalTimeStep);
float internalTimeStep = 1. / 240.f;
m_dynamicsWorld->stepSimulation(deltaTime, 10, internalTimeStep);
}
void MultiDofDemo::initPhysics()
{
void MultiDofDemo::initPhysics()
{
m_guiHelper->setUpAxis(1);
if(g_firstInit)
if (g_firstInit)
{
m_guiHelper->getRenderInterface()->getActiveCamera()->setCameraDistance(btScalar(10.*scaling));
m_guiHelper->getRenderInterface()->getActiveCamera()->setCameraDistance(btScalar(10. * scaling));
m_guiHelper->getRenderInterface()->getActiveCamera()->setCameraPitch(50);
g_firstInit = false;
}
}
///collision configuration contains default setup for memory, collision setup
m_collisionConfiguration = new btDefaultCollisionConfiguration();
///use the default collision dispatcher. For parallel processing you can use a diffent dispatcher (see Extras/BulletMultiThreaded)
m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
m_broadphase = new btDbvtBroadphase();
@@ -143,62 +132,64 @@ void MultiDofDemo::initPhysics()
m_solver = sol;
//use btMultiBodyDynamicsWorld for Featherstone btMultiBody support
btMultiBodyDynamicsWorld* world = new btMultiBodyDynamicsWorld(m_dispatcher,m_broadphase,sol,m_collisionConfiguration);
btMultiBodyDynamicsWorld* world = new btMultiBodyDynamicsWorld(m_dispatcher, m_broadphase, sol, m_collisionConfiguration);
m_dynamicsWorld = world;
// m_dynamicsWorld->setDebugDrawer(&gDebugDraw);
// m_dynamicsWorld->setDebugDrawer(&gDebugDraw);
m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
m_dynamicsWorld->setGravity(btVector3(0,-10,0));
m_dynamicsWorld->setGravity(btVector3(0, -10, 0));
m_dynamicsWorld->getSolverInfo().m_globalCfm = 1e-3;
///create a few basic rigid bodies
btVector3 groundHalfExtents(50,50,50);
btVector3 groundHalfExtents(50, 50, 50);
btCollisionShape* groundShape = new btBoxShape(groundHalfExtents);
//groundShape->initializePolyhedralFeatures();
// btCollisionShape* groundShape = new btStaticPlaneShape(btVector3(0,1,0),50);
// btCollisionShape* groundShape = new btStaticPlaneShape(btVector3(0,1,0),50);
m_collisionShapes.push_back(groundShape);
btTransform groundTransform;
groundTransform.setIdentity();
groundTransform.setOrigin(btVector3(0,-50,00));
groundTransform.setOrigin(btVector3(0, -50, 00));
/////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////
bool damping = true;
bool gyro = true;
int numLinks = 5;
bool spherical = true; //set it ot false -to use 1DoF hinges instead of 3DoF sphericals
bool spherical = true; //set it ot false -to use 1DoF hinges instead of 3DoF sphericals
bool multibodyOnly = false;
bool canSleep = false;
bool selfCollide = true;
bool multibodyConstraint = false;
bool multibodyConstraint = false;
btVector3 linkHalfExtents(0.05, 0.37, 0.1);
btVector3 baseHalfExtents(0.05, 0.37, 0.1);
btMultiBody* mbC = createFeatherstoneMultiBody_testMultiDof(world, numLinks, btVector3(-0.4f, 3.f, 0.f), linkHalfExtents, baseHalfExtents, spherical, g_floatingBase);
//mbC->forceMultiDof(); //if !spherical, you can comment this line to check the 1DoF algorithm
btMultiBody* mbC = createFeatherstoneMultiBody_testMultiDof(world, numLinks, btVector3(-0.4f, 3.f, 0.f), linkHalfExtents, baseHalfExtents, spherical, g_floatingBase);
//mbC->forceMultiDof(); //if !spherical, you can comment this line to check the 1DoF algorithm
mbC->setCanSleep(canSleep);
mbC->setCanSleep(canSleep);
mbC->setHasSelfCollision(selfCollide);
mbC->setUseGyroTerm(gyro);
//
if(!damping)
if (!damping)
{
mbC->setLinearDamping(0.f);
mbC->setAngularDamping(0.f);
}else
{ mbC->setLinearDamping(0.1f);
}
else
{
mbC->setLinearDamping(0.1f);
mbC->setAngularDamping(0.9f);
}
//
m_dynamicsWorld->setGravity(btVector3(0, -9.81 ,0));
m_dynamicsWorld->setGravity(btVector3(0, -9.81, 0));
//m_dynamicsWorld->getSolverInfo().m_numIterations = 100;
//////////////////////////////////////////////
if(numLinks > 0)
{
btScalar q0 = 45.f * SIMD_PI/ 180.f;
if(!spherical)
if (numLinks > 0)
{
btScalar q0 = 45.f * SIMD_PI / 180.f;
if (!spherical)
{
mbC->setJointPosMultiDof(0, &q0);
}
@@ -206,14 +197,13 @@ void MultiDofDemo::initPhysics()
{
btQuaternion quat0(btVector3(1, 1, 0).normalized(), q0);
quat0.normalize();
mbC->setJointPosMultiDof(0, quat0);
}
}
mbC->setJointPosMultiDof(0, quat0);
}
}
///
addColliders_testMultiDof(mbC, world, baseHalfExtents, linkHalfExtents);
addColliders_testMultiDof(mbC, world, baseHalfExtents, linkHalfExtents);
/////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////
btScalar groundHeight = -51.55;
if (!multibodyOnly)
{
@@ -222,28 +212,24 @@ void MultiDofDemo::initPhysics()
//rigidbody is dynamic if and only if mass is non zero, otherwise static
bool isDynamic = (mass != 0.f);
btVector3 localInertia(0,0,0);
btVector3 localInertia(0, 0, 0);
if (isDynamic)
groundShape->calculateLocalInertia(mass,localInertia);
groundShape->calculateLocalInertia(mass, localInertia);
//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
groundTransform.setIdentity();
groundTransform.setOrigin(btVector3(0,groundHeight,0));
groundTransform.setOrigin(btVector3(0, groundHeight, 0));
btDefaultMotionState* myMotionState = new btDefaultMotionState(groundTransform);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,groundShape,localInertia);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass, myMotionState, groundShape, localInertia);
btRigidBody* body = new btRigidBody(rbInfo);
//add the body to the dynamics world
m_dynamicsWorld->addRigidBody(body,1,1+2);//,1,1+2);
m_dynamicsWorld->addRigidBody(body, 1, 1 + 2); //,1,1+2);
}
/////////////////////////////////////////////////////////////////
if(!multibodyOnly)
if (!multibodyOnly)
{
btVector3 halfExtents(.5,.5,.5);
btVector3 halfExtents(.5, .5, .5);
btBoxShape* colShape = new btBoxShape(halfExtents);
//btCollisionShape* colShape = new btSphereShape(btScalar(1.));
m_collisionShapes.push_back(colShape);
@@ -252,41 +238,41 @@ void MultiDofDemo::initPhysics()
btTransform startTransform;
startTransform.setIdentity();
btScalar mass(1.f);
btScalar mass(1.f);
//rigidbody is dynamic if and only if mass is non zero, otherwise static
bool isDynamic = (mass != 0.f);
btVector3 localInertia(0,0,0);
btVector3 localInertia(0, 0, 0);
if (isDynamic)
colShape->calculateLocalInertia(mass,localInertia);
colShape->calculateLocalInertia(mass, localInertia);
startTransform.setOrigin(btVector3(
btScalar(0.0),
0.0,
btScalar(0.0)));
btScalar(0.0),
0.0,
btScalar(0.0)));
//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
btDefaultMotionState* myMotionState = new btDefaultMotionState(startTransform);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,colShape,localInertia);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass, myMotionState, colShape, localInertia);
btRigidBody* body = new btRigidBody(rbInfo);
m_dynamicsWorld->addRigidBody(body);//,1,1+2);
if (multibodyConstraint) {
btVector3 pointInA = -linkHalfExtents;
// btVector3 pointInB = halfExtents;
btMatrix3x3 frameInA;
btMatrix3x3 frameInB;
frameInA.setIdentity();
frameInB.setIdentity();
btVector3 jointAxis(1.0,0.0,0.0);
//btMultiBodySliderConstraint* p2p = new btMultiBodySliderConstraint(mbC,numLinks-1,body,pointInA,pointInB,frameInA,frameInB,jointAxis);
btMultiBodyFixedConstraint* p2p = new btMultiBodyFixedConstraint(mbC,numLinks-1,mbC,numLinks-4,pointInA,pointInA,frameInA,frameInB);
p2p->setMaxAppliedImpulse(2.0);
m_dynamicsWorld->addMultiBodyConstraint(p2p);
}
m_dynamicsWorld->addRigidBody(body); //,1,1+2);
if (multibodyConstraint)
{
btVector3 pointInA = -linkHalfExtents;
// btVector3 pointInB = halfExtents;
btMatrix3x3 frameInA;
btMatrix3x3 frameInB;
frameInA.setIdentity();
frameInB.setIdentity();
btVector3 jointAxis(1.0, 0.0, 0.0);
//btMultiBodySliderConstraint* p2p = new btMultiBodySliderConstraint(mbC,numLinks-1,body,pointInA,pointInB,frameInA,frameInB,jointAxis);
btMultiBodyFixedConstraint* p2p = new btMultiBodyFixedConstraint(mbC, numLinks - 1, mbC, numLinks - 4, pointInA, pointInA, frameInA, frameInB);
p2p->setMaxAppliedImpulse(2.0);
m_dynamicsWorld->addMultiBodyConstraint(p2p);
}
}
m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld);
@@ -294,53 +280,52 @@ void MultiDofDemo::initPhysics()
/////////////////////////////////////////////////////////////////
}
btMultiBody* MultiDofDemo::createFeatherstoneMultiBody_testMultiDof(btMultiBodyDynamicsWorld *pWorld, int numLinks, const btVector3 &basePosition, const btVector3 &baseHalfExtents, const btVector3 &linkHalfExtents, bool spherical, bool floating)
btMultiBody* MultiDofDemo::createFeatherstoneMultiBody_testMultiDof(btMultiBodyDynamicsWorld* pWorld, int numLinks, const btVector3& basePosition, const btVector3& baseHalfExtents, const btVector3& linkHalfExtents, bool spherical, bool floating)
{
//init the base
//init the base
btVector3 baseInertiaDiag(0.f, 0.f, 0.f);
float baseMass = 1.f;
if(baseMass)
if (baseMass)
{
btCollisionShape *pTempBox = new btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2]));
btCollisionShape* pTempBox = new btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2]));
pTempBox->calculateLocalInertia(baseMass, baseInertiaDiag);
delete pTempBox;
}
bool canSleep = false;
btMultiBody *pMultiBody = new btMultiBody(numLinks, baseMass, baseInertiaDiag, !floating, canSleep);
btMultiBody* pMultiBody = new btMultiBody(numLinks, baseMass, baseInertiaDiag, !floating, canSleep);
btQuaternion baseOriQuat(0.f, 0.f, 0.f, 1.f);
pMultiBody->setBasePos(basePosition);
pMultiBody->setWorldToBaseRot(baseOriQuat);
btVector3 vel(0, 0, 0);
// pMultiBody->setBaseVel(vel);
// pMultiBody->setBaseVel(vel);
//init the links
//init the links
btVector3 hingeJointAxis(1, 0, 0);
float linkMass = 1.f;
btVector3 linkInertiaDiag(0.f, 0.f, 0.f);
btCollisionShape *pTempBox = new btBoxShape(btVector3(linkHalfExtents[0], linkHalfExtents[1], linkHalfExtents[2]));
btCollisionShape* pTempBox = new btBoxShape(btVector3(linkHalfExtents[0], linkHalfExtents[1], linkHalfExtents[2]));
pTempBox->calculateLocalInertia(linkMass, linkInertiaDiag);
delete pTempBox;
//y-axis assumed up
btVector3 parentComToCurrentCom(0, -linkHalfExtents[1] * 2.f, 0); //par body's COM to cur body's COM offset
btVector3 currentPivotToCurrentCom(0, -linkHalfExtents[1], 0); //cur body's COM to cur body's PIV offset
btVector3 parentComToCurrentPivot = parentComToCurrentCom - currentPivotToCurrentCom; //par body's COM to cur body's PIV offset
btVector3 parentComToCurrentCom(0, -linkHalfExtents[1] * 2.f, 0); //par body's COM to cur body's COM offset
btVector3 currentPivotToCurrentCom(0, -linkHalfExtents[1], 0); //cur body's COM to cur body's PIV offset
btVector3 parentComToCurrentPivot = parentComToCurrentCom - currentPivotToCurrentCom; //par body's COM to cur body's PIV offset
//////
btScalar q0 = 0.f * SIMD_PI/ 180.f;
btScalar q0 = 0.f * SIMD_PI / 180.f;
btQuaternion quat0(btVector3(0, 1, 0).normalized(), q0);
quat0.normalize();
quat0.normalize();
/////
for(int i = 0; i < numLinks; ++i)
for (int i = 0; i < numLinks; ++i)
{
if(!spherical)
if (!spherical)
pMultiBody->setupRevolute(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), hingeJointAxis, parentComToCurrentPivot, currentPivotToCurrentCom, true);
else
//pMultiBody->setupPlanar(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f)/*quat0*/, btVector3(1, 0, 0), parentComToCurrentPivot*2, false);
@@ -355,9 +340,8 @@ btMultiBody* MultiDofDemo::createFeatherstoneMultiBody_testMultiDof(btMultiBodyD
return pMultiBody;
}
void MultiDofDemo::addColliders_testMultiDof(btMultiBody *pMultiBody, btMultiBodyDynamicsWorld *pWorld, const btVector3 &baseHalfExtents, const btVector3 &linkHalfExtents)
{
void MultiDofDemo::addColliders_testMultiDof(btMultiBody* pMultiBody, btMultiBodyDynamicsWorld* pWorld, const btVector3& baseHalfExtents, const btVector3& linkHalfExtents)
{
btAlignedObjectArray<btQuaternion> world_to_local;
world_to_local.resize(pMultiBody->getNumLinks() + 1);
@@ -365,51 +349,43 @@ void MultiDofDemo::addColliders_testMultiDof(btMultiBody *pMultiBody, btMultiBod
local_origin.resize(pMultiBody->getNumLinks() + 1);
world_to_local[0] = pMultiBody->getWorldToBaseRot();
local_origin[0] = pMultiBody->getBasePos();
{
// float pos[4]={local_origin[0].x(),local_origin[0].y(),local_origin[0].z(),1};
btScalar quat[4]={-world_to_local[0].x(),-world_to_local[0].y(),-world_to_local[0].z(),world_to_local[0].w()};
{
// float pos[4]={local_origin[0].x(),local_origin[0].y(),local_origin[0].z(),1};
btScalar quat[4] = {-world_to_local[0].x(), -world_to_local[0].y(), -world_to_local[0].z(), world_to_local[0].w()};
if (1)
{
btCollisionShape* box = new btBoxShape(baseHalfExtents);
btMultiBodyLinkCollider* col= new btMultiBodyLinkCollider(pMultiBody, -1);
btCollisionShape* box = new btBoxShape(baseHalfExtents);
btMultiBodyLinkCollider* col = new btMultiBodyLinkCollider(pMultiBody, -1);
col->setCollisionShape(box);
btTransform tr;
tr.setIdentity();
tr.setOrigin(local_origin[0]);
tr.setRotation(btQuaternion(quat[0],quat[1],quat[2],quat[3]));
tr.setRotation(btQuaternion(quat[0], quat[1], quat[2], quat[3]));
col->setWorldTransform(tr);
pWorld->addCollisionObject(col, 2,1+2);
pWorld->addCollisionObject(col, 2, 1 + 2);
col->setFriction(friction);
pMultiBody->setBaseCollider(col);
}
}
for (int i=0; i < pMultiBody->getNumLinks(); ++i)
for (int i = 0; i < pMultiBody->getNumLinks(); ++i)
{
const int parent = pMultiBody->getParent(i);
world_to_local[i+1] = pMultiBody->getParentToLocalRot(i) * world_to_local[parent+1];
local_origin[i+1] = local_origin[parent+1] + (quatRotate(world_to_local[i+1].inverse() , pMultiBody->getRVector(i)));
world_to_local[i + 1] = pMultiBody->getParentToLocalRot(i) * world_to_local[parent + 1];
local_origin[i + 1] = local_origin[parent + 1] + (quatRotate(world_to_local[i + 1].inverse(), pMultiBody->getRVector(i)));
}
for (int i=0; i < pMultiBody->getNumLinks(); ++i)
for (int i = 0; i < pMultiBody->getNumLinks(); ++i)
{
btVector3 posr = local_origin[i+1];
// float pos[4]={posr.x(),posr.y(),posr.z(),1};
btScalar quat[4]={-world_to_local[i+1].x(),-world_to_local[i+1].y(),-world_to_local[i+1].z(),world_to_local[i+1].w()};
btVector3 posr = local_origin[i + 1];
// float pos[4]={posr.x(),posr.y(),posr.z(),1};
btScalar quat[4] = {-world_to_local[i + 1].x(), -world_to_local[i + 1].y(), -world_to_local[i + 1].z(), world_to_local[i + 1].w()};
btCollisionShape* box = new btBoxShape(linkHalfExtents);
btMultiBodyLinkCollider* col = new btMultiBodyLinkCollider(pMultiBody, i);
@@ -418,13 +394,12 @@ void MultiDofDemo::addColliders_testMultiDof(btMultiBody *pMultiBody, btMultiBod
btTransform tr;
tr.setIdentity();
tr.setOrigin(posr);
tr.setRotation(btQuaternion(quat[0],quat[1],quat[2],quat[3]));
tr.setRotation(btQuaternion(quat[0], quat[1], quat[2], quat[3]));
col->setWorldTransform(tr);
col->setFriction(friction);
pWorld->addCollisionObject(col,2,1+2);
pMultiBody->getLink(i).m_collider=col;
pWorld->addCollisionObject(col, 2, 1 + 2);
pMultiBody->getLink(i).m_collider = col;
}
}
@@ -433,7 +408,7 @@ void MultiDofDemo::addBoxes_testMultiDof()
//create a few dynamic rigidbodies
// Re-using the same collision is better for memory usage and performance
btBoxShape* colShape = new btBoxShape(btVector3(1,1,1));
btBoxShape* colShape = new btBoxShape(btVector3(1, 1, 1));
//btCollisionShape* colShape = new btSphereShape(btScalar(1.));
m_collisionShapes.push_back(colShape);
@@ -441,43 +416,42 @@ void MultiDofDemo::addBoxes_testMultiDof()
btTransform startTransform;
startTransform.setIdentity();
btScalar mass(1.f);
btScalar mass(1.f);
//rigidbody is dynamic if and only if mass is non zero, otherwise static
bool isDynamic = (mass != 0.f);
btVector3 localInertia(0,0,0);
btVector3 localInertia(0, 0, 0);
if (isDynamic)
colShape->calculateLocalInertia(mass,localInertia);
colShape->calculateLocalInertia(mass, localInertia);
float start_x = START_POS_X - ARRAY_SIZE_X/2;
float start_x = START_POS_X - ARRAY_SIZE_X / 2;
float start_y = START_POS_Y;
float start_z = START_POS_Z - ARRAY_SIZE_Z/2;
float start_z = START_POS_Z - ARRAY_SIZE_Z / 2;
for (int k=0;k<ARRAY_SIZE_Y;k++)
for (int k = 0; k < ARRAY_SIZE_Y; k++)
{
for (int i=0;i<ARRAY_SIZE_X;i++)
for (int i = 0; i < ARRAY_SIZE_X; i++)
{
for(int j = 0;j<ARRAY_SIZE_Z;j++)
for (int j = 0; j < ARRAY_SIZE_Z; j++)
{
startTransform.setOrigin(btVector3(
btScalar(3.0*i + start_x),
btScalar(3.0*k + start_y),
btScalar(3.0*j + start_z)));
btScalar(3.0 * i + start_x),
btScalar(3.0 * k + start_y),
btScalar(3.0 * j + start_z)));
//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
btDefaultMotionState* myMotionState = new btDefaultMotionState(startTransform);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,colShape,localInertia);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass, myMotionState, colShape, localInertia);
btRigidBody* body = new btRigidBody(rbInfo);
m_dynamicsWorld->addRigidBody(body);//,1,1+2);
m_dynamicsWorld->addRigidBody(body); //,1,1+2);
}
}
}
}
class CommonExampleInterface* MultiDofCreateFunc(struct CommonExampleOptions& options)
class CommonExampleInterface* MultiDofCreateFunc(struct CommonExampleOptions& options)
{
return new MultiDofDemo(options.m_guiHelper);
}

View File

@@ -2,7 +2,6 @@
#ifndef MULTI_DOF_DEMO_H
#define MULTI_DOF_DEMO_H
class CommonExampleInterface* MultiDofCreateFunc(struct CommonExampleOptions& options);
#endif //MULTI_DOF_DEMO_H
class CommonExampleInterface* MultiDofCreateFunc(struct CommonExampleOptions& options);
#endif //MULTI_DOF_DEMO_H

View File

@@ -14,7 +14,7 @@ subject to the following restrictions:
*/
///Original author: Erwin Coumans, January 2016
///Compare the simulation of a pendulum with
///Compare the simulation of a pendulum with
#ifdef USE_GTEST
#include <gtest/gtest.h>
@@ -30,9 +30,8 @@ struct Pendulum : public CommonMultiBodyBase
{
btMultiBody* m_multiBody;
btAlignedObjectArray<btMultiBodyJointFeedback*> m_jointFeedbacks;
public:
Pendulum(struct GUIHelperInterface* helper);
virtual ~Pendulum();
virtual void initPhysics();
@@ -42,15 +41,13 @@ public:
float dist = 5;
float pitch = -21;
float yaw = 270;
float targetPos[3]={0,0,0};
m_guiHelper->resetCamera(dist,yaw,pitch,targetPos[0],targetPos[1],targetPos[2]);
float targetPos[3] = {0, 0, 0};
m_guiHelper->resetCamera(dist, yaw, pitch, targetPos[0], targetPos[1], targetPos[2]);
}
};
Pendulum::Pendulum(struct GUIHelperInterface* helper)
:CommonMultiBodyBase(helper)
: CommonMultiBodyBase(helper)
{
}
@@ -58,24 +55,19 @@ Pendulum::~Pendulum()
{
}
void Pendulum::initPhysics()
{
int upAxis = 1;
m_guiHelper->setUpAxis(upAxis);
this->createEmptyDynamicsWorld();
m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
if (m_dynamicsWorld->getDebugDrawer())
{
m_dynamicsWorld->getDebugDrawer()->setDebugMode(
//btIDebugDraw::DBG_DrawConstraints
+btIDebugDraw::DBG_DrawWireframe
+btIDebugDraw::DBG_DrawContactPoints
+btIDebugDraw::DBG_DrawAabb
);//+btIDebugDraw::DBG_DrawConstraintLimits);
m_dynamicsWorld->getDebugDrawer()->setDebugMode(
//btIDebugDraw::DBG_DrawConstraints
+btIDebugDraw::DBG_DrawWireframe + btIDebugDraw::DBG_DrawContactPoints + btIDebugDraw::DBG_DrawAabb); //+btIDebugDraw::DBG_DrawConstraintLimits);
}
{
bool floating = false;
@@ -86,24 +78,24 @@ void Pendulum::initPhysics()
bool selfCollide = false;
btVector3 linkHalfExtents(0.05, 0.5, 0.1);
btVector3 baseHalfExtents(0.05, 0.5, 0.1);
btVector3 baseInertiaDiag(0.f, 0.f, 0.f);
float baseMass = 0.f;
btMultiBody *pMultiBody = new btMultiBody(numLinks, baseMass, baseInertiaDiag, !floating, canSleep);
btMultiBody* pMultiBody = new btMultiBody(numLinks, baseMass, baseInertiaDiag, !floating, canSleep);
//pMultiBody->useRK4Integration(true);
m_multiBody = pMultiBody;
pMultiBody->setBaseWorldTransform(btTransform::getIdentity());
//init the links
btVector3 hingeJointAxis(1, 0, 0);
//y-axis assumed up
btVector3 parentComToCurrentCom(0, -linkHalfExtents[1] , 0);
btVector3 currentPivotToCurrentCom(0, -linkHalfExtents[1], 0);
btVector3 parentComToCurrentCom(0, -linkHalfExtents[1], 0);
btVector3 currentPivotToCurrentCom(0, -linkHalfExtents[1], 0);
btVector3 parentComToCurrentPivot = parentComToCurrentCom - currentPivotToCurrentCom;
for(int i = 0; i < numLinks; ++i)
for (int i = 0; i < numLinks; ++i)
{
float linkMass = 10.f;
btVector3 linkInertiaDiag(0.f, 0.f, 0.f);
@@ -113,114 +105,109 @@ void Pendulum::initPhysics()
}
shape->calculateLocalInertia(linkMass, linkInertiaDiag);
delete shape;
pMultiBody->setupRevolute(i, linkMass, linkInertiaDiag, i - 1,
btQuaternion(0.f, 0.f, 0.f, 1.f),
hingeJointAxis,
parentComToCurrentPivot,
pMultiBody->setupRevolute(i, linkMass, linkInertiaDiag, i - 1,
btQuaternion(0.f, 0.f, 0.f, 1.f),
hingeJointAxis,
parentComToCurrentPivot,
currentPivotToCurrentCom, false);
}
pMultiBody->finalizeMultiDof();
btMultiBodyDynamicsWorld* world = m_dynamicsWorld;
world->addMultiBody(pMultiBody);
pMultiBody->setCanSleep(canSleep);
pMultiBody->setHasSelfCollision(selfCollide);
pMultiBody->setUseGyroTerm(gyro);
//
if(!damping)
if (!damping)
{
pMultiBody->setLinearDamping(0.f);
pMultiBody->setAngularDamping(0.f);
}else
{ pMultiBody->setLinearDamping(0.1f);
}
else
{
pMultiBody->setLinearDamping(0.1f);
pMultiBody->setAngularDamping(0.9f);
}
m_dynamicsWorld->setGravity(btVector3(0,-9.81,0));
for (int i=0; i < pMultiBody->getNumLinks(); ++i)
m_dynamicsWorld->setGravity(btVector3(0, -9.81, 0));
for (int i = 0; i < pMultiBody->getNumLinks(); ++i)
{
btCollisionShape* shape =new btSphereShape(radius);
btCollisionShape* shape = new btSphereShape(radius);
m_guiHelper->createCollisionShapeGraphicsObject(shape);
btMultiBodyLinkCollider* col = new btMultiBodyLinkCollider(pMultiBody, i);
col->setCollisionShape(shape);
bool isDynamic = 1;
int collisionFilterGroup = isDynamic? int(btBroadphaseProxy::DefaultFilter) : int(btBroadphaseProxy::StaticFilter);
int collisionFilterMask = isDynamic? int(btBroadphaseProxy::AllFilter) : int(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter);
world->addCollisionObject(col,collisionFilterGroup,collisionFilterMask);//,2,1+2);
btVector4 color(1,0,0,1);
m_guiHelper->createCollisionObjectGraphicsObject(col,color);
pMultiBody->getLink(i).m_collider=col;
int collisionFilterGroup = isDynamic ? int(btBroadphaseProxy::DefaultFilter) : int(btBroadphaseProxy::StaticFilter);
int collisionFilterMask = isDynamic ? int(btBroadphaseProxy::AllFilter) : int(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter);
world->addCollisionObject(col, collisionFilterGroup, collisionFilterMask); //,2,1+2);
btVector4 color(1, 0, 0, 1);
m_guiHelper->createCollisionObjectGraphicsObject(col, color);
pMultiBody->getLink(i).m_collider = col;
}
btAlignedObjectArray<btQuaternion> scratch_q;
btAlignedObjectArray<btVector3> scratch_m;
pMultiBody->forwardKinematics(scratch_q,scratch_m);
pMultiBody->forwardKinematics(scratch_q, scratch_m);
btAlignedObjectArray<btQuaternion> world_to_local;
btAlignedObjectArray<btVector3> local_origin;
pMultiBody->updateCollisionObjectWorldTransforms(world_to_local,local_origin);
pMultiBody->updateCollisionObjectWorldTransforms(world_to_local, local_origin);
}
}
void Pendulum::stepSimulation(float deltaTime)
{
m_multiBody->addJointTorque(0, 20.0);
#ifdef USE_GTEST
m_dynamicsWorld->stepSimulation(1./1000.0,0);
#ifdef USE_GTEST
m_dynamicsWorld->stepSimulation(1. / 1000.0, 0);
#else
m_dynamicsWorld->stepSimulation(deltaTime);
m_dynamicsWorld->stepSimulation(deltaTime);
#endif
btVector3 from = m_multiBody->getBaseWorldTransform().getOrigin();
btVector3 to = m_multiBody->getLink(0).m_collider->getWorldTransform().getOrigin();
btVector4 color(1,0,0,1);
btVector4 color(1, 0, 0, 1);
if (m_guiHelper->getRenderInterface())
{
m_guiHelper->getRenderInterface()->drawLine(from,to,color,btScalar(1));
m_guiHelper->getRenderInterface()->drawLine(from, to, color, btScalar(1));
}
}
#ifdef USE_GTEST
TEST(BulletDynamicsTest, pendulum)
TEST(BulletDynamicsTest, pendulum)
{
DummyGUIHelper noGfx;
Pendulum* setup = new Pendulum(&noGfx);
setup->initPhysics();
int numGoldValues = sizeof(sPendulumGold)/sizeof(float);
for (int i=0;i<2000;i++)
int numGoldValues = sizeof(sPendulumGold) / sizeof(float);
for (int i = 0; i < 2000; i++)
{
setup->stepSimulation(0.001);
int index = i*2+1;
ASSERT_LE(index,numGoldValues);
ASSERT_NEAR(setup->m_multiBody->getJointPos(0),sPendulumGold[index],0.005);
int index = i * 2 + 1;
ASSERT_LE(index, numGoldValues);
ASSERT_NEAR(setup->m_multiBody->getJointPos(0), sPendulumGold[index], 0.005);
}
setup->exitPhysics();
delete setup;
}
int main(int argc, char **argv) {
int main(int argc, char** argv)
{
#if _MSC_VER
_CrtSetDbgFlag ( _CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF );
//void *testWhetherMemoryLeakDetectionWorks = malloc(1);
_CrtSetDbgFlag(_CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF);
//void *testWhetherMemoryLeakDetectionWorks = malloc(1);
#endif
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}
#endif //USE_GTEST
#endif //USE_GTEST
class CommonExampleInterface* TestPendulumCreateFunc(struct CommonExampleOptions& options)
class CommonExampleInterface* TestPendulumCreateFunc(struct CommonExampleOptions& options)
{
return new Pendulum(options.m_guiHelper);
}

View File

@@ -1,7 +1,6 @@
#ifndef TEST_PENDULUM_H
#define TEST_PENDULUM_H
class CommonExampleInterface* TestPendulumCreateFunc(struct CommonExampleOptions& options);
#endif //TEST_PENDULUM_H
class CommonExampleInterface* TestPendulumCreateFunc(struct CommonExampleOptions& options);
#endif //TEST_PENDULUM_H

View File

@@ -117,7 +117,7 @@ void SerialChains::initPhysics()
m_dynamicsWorld = world;
m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
m_dynamicsWorld->setGravity(btVector3(0, -10, 0));
m_dynamicsWorld->getSolverInfo().m_globalCfm = btScalar(1e-4); //todo: what value is good?
m_dynamicsWorld->getSolverInfo().m_globalCfm = btScalar(1e-4); //todo: what value is good?
///create a few basic rigid bodies
btVector3 groundHalfExtents(50, 50, 50);

View File

@@ -3,7 +3,7 @@
#include "BulletDynamics/Featherstone/btMultiBodyLinkCollider.h"
#include "BulletDynamics/Featherstone/btMultiBodyJointFeedback.h"
#include "../CommonInterfaces/CommonMultiBodyBase.h"
#include "../Utils/b3ResourcePath.h"
@@ -11,367 +11,345 @@ static btScalar radius(0.2);
struct TestJointTorqueSetup : public CommonMultiBodyBase
{
btMultiBody* m_multiBody;
btMultiBody* m_multiBody;
btAlignedObjectArray<btMultiBodyJointFeedback*> m_jointFeedbacks;
bool m_once;
bool m_once;
public:
TestJointTorqueSetup(struct GUIHelperInterface* helper);
virtual ~TestJointTorqueSetup();
TestJointTorqueSetup(struct GUIHelperInterface* helper);
virtual ~TestJointTorqueSetup();
virtual void initPhysics();
virtual void initPhysics();
virtual void stepSimulation(float deltaTime);
virtual void stepSimulation(float deltaTime);
virtual void resetCamera()
{
float dist = 5;
float pitch = -21;
float yaw = 270;
float targetPos[3]={-1.34,3.4,-0.44};
m_guiHelper->resetCamera(dist,yaw,pitch,targetPos[0],targetPos[1],targetPos[2]);
float targetPos[3] = {-1.34, 3.4, -0.44};
m_guiHelper->resetCamera(dist, yaw, pitch, targetPos[0], targetPos[1], targetPos[2]);
}
};
TestJointTorqueSetup::TestJointTorqueSetup(struct GUIHelperInterface* helper)
:CommonMultiBodyBase(helper),
m_once(true)
: CommonMultiBodyBase(helper),
m_once(true)
{
}
TestJointTorqueSetup::~TestJointTorqueSetup()
{
}
///this is a temporary global, until we determine if we need the option or not
extern bool gJointFeedbackInWorldSpace;
extern bool gJointFeedbackInWorldSpace;
extern bool gJointFeedbackInJointFrame;
void TestJointTorqueSetup::initPhysics()
{
int upAxis = 1;
int upAxis = 1;
gJointFeedbackInWorldSpace = true;
gJointFeedbackInJointFrame = true;
m_guiHelper->setUpAxis(upAxis);
btVector4 colors[4] =
{
btVector4(1,0,0,1),
btVector4(0,1,0,1),
btVector4(0,1,1,1),
btVector4(1,1,0,1),
};
int curColor = 0;
btVector4 colors[4] =
{
btVector4(1, 0, 0, 1),
btVector4(0, 1, 0, 1),
btVector4(0, 1, 1, 1),
btVector4(1, 1, 0, 1),
};
int curColor = 0;
this->createEmptyDynamicsWorld();
m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
m_dynamicsWorld->getDebugDrawer()->setDebugMode(
//btIDebugDraw::DBG_DrawConstraints
+btIDebugDraw::DBG_DrawWireframe
+btIDebugDraw::DBG_DrawContactPoints
+btIDebugDraw::DBG_DrawAabb
);//+btIDebugDraw::DBG_DrawConstraintLimits);
m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
m_dynamicsWorld->getDebugDrawer()->setDebugMode(
//btIDebugDraw::DBG_DrawConstraints
+btIDebugDraw::DBG_DrawWireframe + btIDebugDraw::DBG_DrawContactPoints + btIDebugDraw::DBG_DrawAabb); //+btIDebugDraw::DBG_DrawConstraintLimits);
//create a static ground object
if (1)
{
btVector3 groundHalfExtents(1, 1, 0.2);
groundHalfExtents[upAxis] = 1.f;
btBoxShape* box = new btBoxShape(groundHalfExtents);
box->initializePolyhedralFeatures();
//create a static ground object
if (1)
{
btVector3 groundHalfExtents(1,1,0.2);
groundHalfExtents[upAxis]=1.f;
btBoxShape* box = new btBoxShape(groundHalfExtents);
box->initializePolyhedralFeatures();
m_guiHelper->createCollisionShapeGraphicsObject(box);
btTransform start;
start.setIdentity();
btVector3 groundOrigin(-0.4f, 3.f, 0.f);
groundOrigin[upAxis] -= .5;
groundOrigin[2] -= 0.6;
start.setOrigin(groundOrigin);
btQuaternion groundOrn(btVector3(0, 1, 0), 0.25 * SIMD_PI);
m_guiHelper->createCollisionShapeGraphicsObject(box);
btTransform start; start.setIdentity();
btVector3 groundOrigin(-0.4f, 3.f, 0.f);
groundOrigin[upAxis] -=.5;
groundOrigin[2]-=0.6;
start.setOrigin(groundOrigin);
btQuaternion groundOrn(btVector3(0,1,0),0.25*SIMD_PI);
// start.setRotation(groundOrn);
btRigidBody* body = createRigidBody(0,start,box);
body->setFriction(0);
btVector4 color = colors[curColor];
curColor++;
curColor&=3;
m_guiHelper->createRigidBodyGraphicsObject(body,color);
}
btRigidBody* body = createRigidBody(0, start, box);
body->setFriction(0);
btVector4 color = colors[curColor];
curColor++;
curColor &= 3;
m_guiHelper->createRigidBodyGraphicsObject(body, color);
}
{
bool floating = false;
bool damping = false;
bool gyro = false;
int numLinks = 2;
bool spherical = false; //set it ot false -to use 1DoF hinges instead of 3DoF sphericals
bool canSleep = false;
bool selfCollide = false;
btVector3 linkHalfExtents(0.05, 0.37, 0.1);
btVector3 baseHalfExtents(0.05, 0.37, 0.1);
{
bool floating = false;
bool damping = false;
bool gyro = false;
int numLinks = 2;
bool spherical = false; //set it ot false -to use 1DoF hinges instead of 3DoF sphericals
bool canSleep = false;
bool selfCollide = false;
btVector3 linkHalfExtents(0.05, 0.37, 0.1);
btVector3 baseHalfExtents(0.05, 0.37, 0.1);
btVector3 basePosition = btVector3(-0.4f, 3.f, 0.f);
//mbC->forceMultiDof(); //if !spherical, you can comment this line to check the 1DoF algorithm
//init the base
btVector3 baseInertiaDiag(0.f, 0.f, 0.f);
float baseMass = 1.f;
btVector3 basePosition = btVector3(-0.4f, 3.f, 0.f);
//mbC->forceMultiDof(); //if !spherical, you can comment this line to check the 1DoF algorithm
//init the base
btVector3 baseInertiaDiag(0.f, 0.f, 0.f);
float baseMass = 1.f;
if(baseMass)
{
//btCollisionShape *shape = new btSphereShape(baseHalfExtents[0]);// btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2]));
btCollisionShape *shape = new btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2]));
shape->calculateLocalInertia(baseMass, baseInertiaDiag);
delete shape;
}
if (baseMass)
{
//btCollisionShape *shape = new btSphereShape(baseHalfExtents[0]);// btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2]));
btCollisionShape* shape = new btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2]));
shape->calculateLocalInertia(baseMass, baseInertiaDiag);
delete shape;
}
btMultiBody* pMultiBody = new btMultiBody(numLinks, baseMass, baseInertiaDiag, !floating, canSleep);
btMultiBody *pMultiBody = new btMultiBody(numLinks, baseMass, baseInertiaDiag, !floating, canSleep);
m_multiBody = pMultiBody;
btQuaternion baseOriQuat(0.f, 0.f, 0.f, 1.f);
// baseOriQuat.setEulerZYX(-.25*SIMD_PI,0,-1.75*SIMD_PI);
pMultiBody->setBasePos(basePosition);
pMultiBody->setWorldToBaseRot(baseOriQuat);
btVector3 vel(0, 0, 0);
// pMultiBody->setBaseVel(vel);
m_multiBody = pMultiBody;
btQuaternion baseOriQuat(0.f, 0.f, 0.f, 1.f);
// baseOriQuat.setEulerZYX(-.25*SIMD_PI,0,-1.75*SIMD_PI);
pMultiBody->setBasePos(basePosition);
pMultiBody->setWorldToBaseRot(baseOriQuat);
btVector3 vel(0, 0, 0);
// pMultiBody->setBaseVel(vel);
//init the links
btVector3 hingeJointAxis(1, 0, 0);
//y-axis assumed up
btVector3 parentComToCurrentCom(0, -linkHalfExtents[1] * 2.f, 0); //par body's COM to cur body's COM offset
btVector3 currentPivotToCurrentCom(0, -linkHalfExtents[1], 0); //cur body's COM to cur body's PIV offset
btVector3 parentComToCurrentPivot = parentComToCurrentCom - currentPivotToCurrentCom; //par body's COM to cur body's PIV offset
//init the links
btVector3 hingeJointAxis(1, 0, 0);
//////
btScalar q0 = 0.f * SIMD_PI/ 180.f;
btQuaternion quat0(btVector3(0, 1, 0).normalized(), q0);
quat0.normalize();
/////
//y-axis assumed up
btVector3 parentComToCurrentCom(0, -linkHalfExtents[1] * 2.f, 0); //par body's COM to cur body's COM offset
btVector3 currentPivotToCurrentCom(0, -linkHalfExtents[1], 0); //cur body's COM to cur body's PIV offset
btVector3 parentComToCurrentPivot = parentComToCurrentCom - currentPivotToCurrentCom; //par body's COM to cur body's PIV offset
for(int i = 0; i < numLinks; ++i)
{
//////
btScalar q0 = 0.f * SIMD_PI / 180.f;
btQuaternion quat0(btVector3(0, 1, 0).normalized(), q0);
quat0.normalize();
/////
for (int i = 0; i < numLinks; ++i)
{
float linkMass = 1.f;
//if (i==3 || i==2)
// linkMass= 1000;
btVector3 linkInertiaDiag(0.f, 0.f, 0.f);
btCollisionShape* shape = 0;
if (i==0)
if (i == 0)
{
shape = new btBoxShape(btVector3(linkHalfExtents[0], linkHalfExtents[1], linkHalfExtents[2]));//
} else
shape = new btBoxShape(btVector3(linkHalfExtents[0], linkHalfExtents[1], linkHalfExtents[2])); //
}
else
{
shape = new btSphereShape(radius);
}
shape->calculateLocalInertia(linkMass, linkInertiaDiag);
delete shape;
if(!spherical)
if (!spherical)
{
//pMultiBody->setupRevolute(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), hingeJointAxis, parentComToCurrentPivot, currentPivotToCurrentCom, false);
if (i==0)
{
pMultiBody->setupRevolute(i, linkMass, linkInertiaDiag, i - 1,
btQuaternion(0.f, 0.f, 0.f, 1.f),
hingeJointAxis,
parentComToCurrentPivot,
currentPivotToCurrentCom, false);
} else
{
btVector3 parentComToCurrentCom(0, -radius * 2.f, 0); //par body's COM to cur body's COM offset
btVector3 currentPivotToCurrentCom(0, -radius, 0); //cur body's COM to cur body's PIV offset
btVector3 parentComToCurrentPivot = parentComToCurrentCom - currentPivotToCurrentCom; //par body's COM to cur body's PIV offset
//pMultiBody->setupRevolute(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), hingeJointAxis, parentComToCurrentPivot, currentPivotToCurrentCom, false);
pMultiBody->setupFixed(i, linkMass, linkInertiaDiag, i - 1,
btQuaternion(0.f, 0.f, 0.f, 1.f),
parentComToCurrentPivot,
currentPivotToCurrentCom);
if (i == 0)
{
pMultiBody->setupRevolute(i, linkMass, linkInertiaDiag, i - 1,
btQuaternion(0.f, 0.f, 0.f, 1.f),
hingeJointAxis,
parentComToCurrentPivot,
currentPivotToCurrentCom, false);
}
//pMultiBody->setupFixed(i,linkMass,linkInertiaDiag,i-1,btQuaternion(0,0,0,1),parentComToCurrentPivot,currentPivotToCurrentCom,false);
}
else
{
//pMultiBody->setupPlanar(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f)/*quat0*/, btVector3(1, 0, 0), parentComToCurrentPivot*2, false);
pMultiBody->setupSpherical(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), parentComToCurrentPivot, currentPivotToCurrentCom, false);
}
}
else
{
btVector3 parentComToCurrentCom(0, -radius * 2.f, 0); //par body's COM to cur body's COM offset
btVector3 currentPivotToCurrentCom(0, -radius, 0); //cur body's COM to cur body's PIV offset
btVector3 parentComToCurrentPivot = parentComToCurrentCom - currentPivotToCurrentCom; //par body's COM to cur body's PIV offset
pMultiBody->finalizeMultiDof();
pMultiBody->setupFixed(i, linkMass, linkInertiaDiag, i - 1,
btQuaternion(0.f, 0.f, 0.f, 1.f),
parentComToCurrentPivot,
currentPivotToCurrentCom);
}
//pMultiBody->setupFixed(i,linkMass,linkInertiaDiag,i-1,btQuaternion(0,0,0,1),parentComToCurrentPivot,currentPivotToCurrentCom,false);
}
else
{
//pMultiBody->setupPlanar(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f)/*quat0*/, btVector3(1, 0, 0), parentComToCurrentPivot*2, false);
pMultiBody->setupSpherical(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), parentComToCurrentPivot, currentPivotToCurrentCom, false);
}
}
pMultiBody->finalizeMultiDof();
//for (int i=pMultiBody->getNumLinks()-1;i>=0;i--)//
for (int i=0;i<pMultiBody->getNumLinks();i++)
for (int i = 0; i < pMultiBody->getNumLinks(); i++)
{
btMultiBodyJointFeedback* fb = new btMultiBodyJointFeedback();
pMultiBody->getLink(i).m_jointFeedback = fb;
m_jointFeedbacks.push_back(fb);
//break;
}
btMultiBodyDynamicsWorld* world = m_dynamicsWorld;
btMultiBodyDynamicsWorld* world = m_dynamicsWorld;
///
world->addMultiBody(pMultiBody);
btMultiBody* mbC = pMultiBody;
mbC->setCanSleep(canSleep);
mbC->setHasSelfCollision(selfCollide);
mbC->setUseGyroTerm(gyro);
//
if(!damping)
{
mbC->setLinearDamping(0.f);
mbC->setAngularDamping(0.f);
}else
{ mbC->setLinearDamping(0.1f);
mbC->setAngularDamping(0.9f);
}
//
m_dynamicsWorld->setGravity(btVector3(0,0,-10));
///
world->addMultiBody(pMultiBody);
btMultiBody* mbC = pMultiBody;
mbC->setCanSleep(canSleep);
mbC->setHasSelfCollision(selfCollide);
mbC->setUseGyroTerm(gyro);
//
if (!damping)
{
mbC->setLinearDamping(0.f);
mbC->setAngularDamping(0.f);
}
else
{
mbC->setLinearDamping(0.1f);
mbC->setAngularDamping(0.9f);
}
//
m_dynamicsWorld->setGravity(btVector3(0, 0, -10));
//////////////////////////////////////////////
if(0)//numLinks > 0)
{
btScalar q0 = 45.f * SIMD_PI/ 180.f;
if(!spherical)
//////////////////////////////////////////////
if (0) //numLinks > 0)
{
btScalar q0 = 45.f * SIMD_PI / 180.f;
if (!spherical)
{
mbC->setJointPosMultiDof(0, &q0);
}
else
{
btQuaternion quat0(btVector3(1, 1, 0).normalized(), q0);
quat0.normalize();
mbC->setJointPosMultiDof(0, quat0);
}
}
///
else
{
btQuaternion quat0(btVector3(1, 1, 0).normalized(), q0);
quat0.normalize();
mbC->setJointPosMultiDof(0, quat0);
}
}
///
btAlignedObjectArray<btQuaternion> world_to_local;
world_to_local.resize(pMultiBody->getNumLinks() + 1);
btAlignedObjectArray<btQuaternion> world_to_local;
world_to_local.resize(pMultiBody->getNumLinks() + 1);
btAlignedObjectArray<btVector3> local_origin;
local_origin.resize(pMultiBody->getNumLinks() + 1);
world_to_local[0] = pMultiBody->getWorldToBaseRot();
local_origin[0] = pMultiBody->getBasePos();
// double friction = 1;
{
btAlignedObjectArray<btVector3> local_origin;
local_origin.resize(pMultiBody->getNumLinks() + 1);
world_to_local[0] = pMultiBody->getWorldToBaseRot();
local_origin[0] = pMultiBody->getBasePos();
// double friction = 1;
{
// float pos[4]={local_origin[0].x(),local_origin[0].y(),local_origin[0].z(),1};
// btScalar quat[4]={-world_to_local[0].x(),-world_to_local[0].y(),-world_to_local[0].z(),world_to_local[0].w()};
// float pos[4]={local_origin[0].x(),local_origin[0].y(),local_origin[0].z(),1};
// btScalar quat[4]={-world_to_local[0].x(),-world_to_local[0].y(),-world_to_local[0].z(),world_to_local[0].w()};
if (1)
{
btCollisionShape* shape = new btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2])); //new btSphereShape(baseHalfExtents[0]);
m_guiHelper->createCollisionShapeGraphicsObject(shape);
btMultiBodyLinkCollider* col = new btMultiBodyLinkCollider(pMultiBody, -1);
col->setCollisionShape(shape);
if (1)
{
btCollisionShape* shape = new btBoxShape(btVector3(baseHalfExtents[0],baseHalfExtents[1],baseHalfExtents[2]));//new btSphereShape(baseHalfExtents[0]);
m_guiHelper->createCollisionShapeGraphicsObject(shape);
btMultiBodyLinkCollider* col= new btMultiBodyLinkCollider(pMultiBody, -1);
col->setCollisionShape(shape);
btTransform tr;
tr.setIdentity();
//if we don't set the initial pose of the btCollisionObject, the simulator will do this
btTransform tr;
tr.setIdentity();
//if we don't set the initial pose of the btCollisionObject, the simulator will do this
//when syncing the btMultiBody link transforms to the btMultiBodyLinkCollider
tr.setOrigin(local_origin[0]);
btQuaternion orn(btVector3(0,0,1),0.25*3.1415926538);
tr.setRotation(orn);
col->setWorldTransform(tr);
tr.setOrigin(local_origin[0]);
btQuaternion orn(btVector3(0, 0, 1), 0.25 * 3.1415926538);
tr.setRotation(orn);
col->setWorldTransform(tr);
bool isDynamic = (baseMass > 0 && floating);
int collisionFilterGroup = isDynamic? int(btBroadphaseProxy::DefaultFilter) : int(btBroadphaseProxy::StaticFilter);
int collisionFilterMask = isDynamic? int(btBroadphaseProxy::AllFilter) : int(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter);
int collisionFilterGroup = isDynamic ? int(btBroadphaseProxy::DefaultFilter) : int(btBroadphaseProxy::StaticFilter);
int collisionFilterMask = isDynamic ? int(btBroadphaseProxy::AllFilter) : int(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter);
world->addCollisionObject(col, collisionFilterGroup, collisionFilterMask); //, 2,1+2);
world->addCollisionObject(col,collisionFilterGroup,collisionFilterMask);//, 2,1+2);
btVector3 color(0.0, 0.0, 0.5);
m_guiHelper->createCollisionObjectGraphicsObject(col, color);
btVector3 color(0.0,0.0,0.5);
m_guiHelper->createCollisionObjectGraphicsObject(col,color);
// col->setFriction(friction);
pMultiBody->setBaseCollider(col);
}
}
// col->setFriction(friction);
pMultiBody->setBaseCollider(col);
for (int i = 0; i < pMultiBody->getNumLinks(); ++i)
{
const int parent = pMultiBody->getParent(i);
world_to_local[i + 1] = pMultiBody->getParentToLocalRot(i) * world_to_local[parent + 1];
local_origin[i + 1] = local_origin[parent + 1] + (quatRotate(world_to_local[i + 1].inverse(), pMultiBody->getRVector(i)));
}
}
}
for (int i = 0; i < pMultiBody->getNumLinks(); ++i)
{
btVector3 posr = local_origin[i + 1];
// float pos[4]={posr.x(),posr.y(),posr.z(),1};
btScalar quat[4] = {-world_to_local[i + 1].x(), -world_to_local[i + 1].y(), -world_to_local[i + 1].z(), world_to_local[i + 1].w()};
btCollisionShape* shape = 0;
for (int i=0; i < pMultiBody->getNumLinks(); ++i)
{
const int parent = pMultiBody->getParent(i);
world_to_local[i+1] = pMultiBody->getParentToLocalRot(i) * world_to_local[parent+1];
local_origin[i+1] = local_origin[parent+1] + (quatRotate(world_to_local[i+1].inverse() , pMultiBody->getRVector(i)));
}
for (int i=0; i < pMultiBody->getNumLinks(); ++i)
{
btVector3 posr = local_origin[i+1];
// float pos[4]={posr.x(),posr.y(),posr.z(),1};
btScalar quat[4]={-world_to_local[i+1].x(),-world_to_local[i+1].y(),-world_to_local[i+1].z(),world_to_local[i+1].w()};
btCollisionShape* shape =0;
if (i==0)
if (i == 0)
{
shape = new btBoxShape(btVector3(linkHalfExtents[0],linkHalfExtents[1],linkHalfExtents[2]));//btSphereShape(linkHalfExtents[0]);
} else
shape = new btBoxShape(btVector3(linkHalfExtents[0], linkHalfExtents[1], linkHalfExtents[2])); //btSphereShape(linkHalfExtents[0]);
}
else
{
shape = new btSphereShape(radius);
}
m_guiHelper->createCollisionShapeGraphicsObject(shape);
btMultiBodyLinkCollider* col = new btMultiBodyLinkCollider(pMultiBody, i);
m_guiHelper->createCollisionShapeGraphicsObject(shape);
btMultiBodyLinkCollider* col = new btMultiBodyLinkCollider(pMultiBody, i);
col->setCollisionShape(shape);
btTransform tr;
tr.setIdentity();
tr.setOrigin(posr);
tr.setRotation(btQuaternion(quat[0],quat[1],quat[2],quat[3]));
col->setWorldTransform(tr);
// col->setFriction(friction);
bool isDynamic = 1;//(linkMass > 0);
int collisionFilterGroup = isDynamic? int(btBroadphaseProxy::DefaultFilter) : int(btBroadphaseProxy::StaticFilter);
int collisionFilterMask = isDynamic? int(btBroadphaseProxy::AllFilter) : int(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter);
col->setCollisionShape(shape);
btTransform tr;
tr.setIdentity();
tr.setOrigin(posr);
tr.setRotation(btQuaternion(quat[0], quat[1], quat[2], quat[3]));
col->setWorldTransform(tr);
// col->setFriction(friction);
bool isDynamic = 1; //(linkMass > 0);
int collisionFilterGroup = isDynamic ? int(btBroadphaseProxy::DefaultFilter) : int(btBroadphaseProxy::StaticFilter);
int collisionFilterMask = isDynamic ? int(btBroadphaseProxy::AllFilter) : int(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter);
//if (i==0||i>numLinks-2)
{
world->addCollisionObject(col,collisionFilterGroup,collisionFilterMask);//,2,1+2);
btVector4 color = colors[curColor];
curColor++;
curColor&=3;
m_guiHelper->createCollisionObjectGraphicsObject(col,color);
world->addCollisionObject(col, collisionFilterGroup, collisionFilterMask); //,2,1+2);
btVector4 color = colors[curColor];
curColor++;
curColor &= 3;
m_guiHelper->createCollisionObjectGraphicsObject(col, color);
pMultiBody->getLink(i).m_collider=col;
pMultiBody->getLink(i).m_collider = col;
}
}
}
}
}
btSerializer* s = new btDefaultSerializer;
m_dynamicsWorld->serialize(s);
char resourcePath[1024];
if (b3ResourcePath::findResourcePath("multibody.bullet",resourcePath,1024))
if (b3ResourcePath::findResourcePath("multibody.bullet", resourcePath, 1024))
{
FILE* f = fopen(resourcePath,"wb");
fwrite(s->getBufferPointer(),s->getCurrentBufferSize(),1,f);
FILE* f = fopen(resourcePath, "wb");
fwrite(s->getBufferPointer(), s->getCurrentBufferSize(), 1, f);
fclose(f);
}
}
@@ -379,56 +357,49 @@ void TestJointTorqueSetup::initPhysics()
void TestJointTorqueSetup::stepSimulation(float deltaTime)
{
//m_multiBody->addLinkForce(0,btVector3(100,100,100));
if (0)//m_once)
{
m_once=false;
m_multiBody->addJointTorque(0, 10.0);
btScalar torque = m_multiBody->getJointTorque(0);
b3Printf("t = %f,%f,%f\n",torque,torque,torque);//[0],torque[1],torque[2]);
}
m_dynamicsWorld->stepSimulation(1./240,0);
if (0) //m_once)
{
m_once = false;
m_multiBody->addJointTorque(0, 10.0);
btScalar torque = m_multiBody->getJointTorque(0);
b3Printf("t = %f,%f,%f\n", torque, torque, torque); //[0],torque[1],torque[2]);
}
m_dynamicsWorld->stepSimulation(1. / 240, 0);
static int count = 0;
if ((count& 0x0f)==0)
{
for (int i=0;i<m_jointFeedbacks.size();i++)
if ((count & 0x0f) == 0)
{
for (int i = 0; i < m_jointFeedbacks.size(); i++)
{
b3Printf("F_reaction[%i] linear:%f,%f,%f, angular:%f,%f,%f",
i,
m_jointFeedbacks[i]->m_reactionForces.m_topVec[0],
m_jointFeedbacks[i]->m_reactionForces.m_topVec[1],
m_jointFeedbacks[i]->m_reactionForces.m_topVec[2],
i,
m_jointFeedbacks[i]->m_reactionForces.m_topVec[0],
m_jointFeedbacks[i]->m_reactionForces.m_topVec[1],
m_jointFeedbacks[i]->m_reactionForces.m_topVec[2],
m_jointFeedbacks[i]->m_reactionForces.m_bottomVec[0],
m_jointFeedbacks[i]->m_reactionForces.m_bottomVec[1],
m_jointFeedbacks[i]->m_reactionForces.m_bottomVec[2]
m_jointFeedbacks[i]->m_reactionForces.m_bottomVec[0],
m_jointFeedbacks[i]->m_reactionForces.m_bottomVec[1],
m_jointFeedbacks[i]->m_reactionForces.m_bottomVec[2]
);
}
);
}
}
count++;
/*
b3Printf("base angvel = %f,%f,%f",m_multiBody->getBaseOmega()[0],
m_multiBody->getBaseOmega()[1],
m_multiBody->getBaseOmega()[2]
);
*/
// btScalar jointVel =m_multiBody->getJointVel(0);
// b3Printf("child angvel = %f",jointVel);
// btScalar jointVel =m_multiBody->getJointVel(0);
// b3Printf("child angvel = %f",jointVel);
}
class CommonExampleInterface* TestJointTorqueCreateFunc(struct CommonExampleOptions& options)
class CommonExampleInterface* TestJointTorqueCreateFunc(struct CommonExampleOptions& options)
{
return new TestJointTorqueSetup(options.m_guiHelper);
}

View File

@@ -1,7 +1,6 @@
#ifndef TEST_JOINT_TORQUE_SETUP_H
#define TEST_JOINT_TORQUE_SETUP_H
class CommonExampleInterface* TestJointTorqueCreateFunc(struct CommonExampleOptions& options);
#endif //TEST_JOINT_TORQUE_SETUP_H
class CommonExampleInterface* TestJointTorqueCreateFunc(struct CommonExampleOptions& options);
#endif //TEST_JOINT_TORQUE_SETUP_H

File diff suppressed because it is too large Load Diff