Code-style consistency improvement:

Apply clang-format-all.sh using the _clang-format file through all the cpp/.h files.
make sure not to apply it to certain serialization structures, since some parser expects the * as part of the name, instead of type.
This commit contains no other changes aside from adding and applying clang-format-all.sh
This commit is contained in:
erwincoumans
2018-09-23 14:17:31 -07:00
parent b73b05e9fb
commit ab8f16961e
1773 changed files with 1081087 additions and 474249 deletions

View File

@@ -5,14 +5,13 @@
struct b3BvhInfo
{
b3Vector3 m_aabbMin;
b3Vector3 m_aabbMax;
b3Vector3 m_quantization;
int m_numNodes;
int m_numSubTrees;
int m_nodeOffset;
int m_subTreeOffset;
b3Vector3 m_aabbMin;
b3Vector3 m_aabbMax;
b3Vector3 m_quantization;
int m_numNodes;
int m_numSubTrees;
int m_nodeOffset;
int m_subTreeOffset;
};
#endif //B3_BVH_INFO_H
#endif //B3_BVH_INFO_H

View File

@@ -15,7 +15,6 @@ subject to the following restrictions:
3. This notice may not be removed or altered from any source distribution.
*/
#include "b3ContactCache.h"
#include "Bullet3Common/b3Transform.h"
@@ -69,7 +68,7 @@ int b3ContactCache::sortCachedPoints(const b3Vector3& pt)
maxPenetration = m_pointCache[i].getDistance();
}
}
#endif //KEEP_DEEPEST_POINT
#endif //KEEP_DEEPEST_POINT
b3Scalar res0(b3Scalar(0.)),res1(b3Scalar(0.)),res2(b3Scalar(0.)),res3(b3Scalar(0.));
@@ -251,8 +250,4 @@ void b3ContactCache::refreshContactPoints(const b3Transform& trA,const b3Transfo
}
#endif

View File

@@ -17,17 +17,13 @@ subject to the following restrictions:
#ifndef B3_CONTACT_CACHE_H
#define B3_CONTACT_CACHE_H
#include "Bullet3Common/b3Vector3.h"
#include "Bullet3Common/b3Transform.h"
#include "Bullet3Common/b3AlignedAllocator.h"
///maximum contact breaking and merging threshold
extern b3Scalar gContactBreakingThreshold;
#define MANIFOLD_CACHE_SIZE 4
///b3ContactCache is a contact point cache, it stays persistent as long as objects are overlapping in the broadphase.
@@ -37,24 +33,16 @@ extern b3Scalar gContactBreakingThreshold;
///reduces the cache to 4 points, when more then 4 points are added, using following rules:
///the contact point with deepest penetration is always kept, and it tries to maximuze the area covered by the points
///note that some pairs of objects might have more then one contact manifold.
B3_ATTRIBUTE_ALIGNED16( class) b3ContactCache
B3_ATTRIBUTE_ALIGNED16(class)
b3ContactCache
{
/// sort cached points so most isolated points come first
int sortCachedPoints(const b3Vector3& pt);
int sortCachedPoints(const b3Vector3& pt);
public:
B3_DECLARE_ALIGNED_ALLOCATOR();
int addManifoldPoint( const b3Vector3& newPoint);
int addManifoldPoint(const b3Vector3& newPoint);
/*void replaceContactPoint(const b3Vector3& newPoint,int insertIndex)
{
@@ -63,18 +51,12 @@ public:
}
*/
static bool validContactDistance(const b3Vector3& pt);
/// calculated new worldspace coordinates and depth, and reject points that exceed the collision margin
static void refreshContactPoints( const b3Transform& trA,const b3Transform& trB, struct b3Contact4Data& newContactCache);
static void removeContactPoint(struct b3Contact4Data& newContactCache,int i);
static void refreshContactPoints(const b3Transform& trA, const b3Transform& trB, struct b3Contact4Data& newContactCache);
static void removeContactPoint(struct b3Contact4Data & newContactCache, int i);
};
#endif //B3_CONTACT_CACHE_H
#endif //B3_CONTACT_CACHE_H

File diff suppressed because it is too large Load Diff

View File

@@ -17,102 +17,90 @@
//#include "../../dynamics/basic_demo/Stubs/ChNarrowPhase.h"
struct GpuSatCollision
{
cl_context m_context;
cl_device_id m_device;
cl_command_queue m_queue;
cl_kernel m_findSeparatingAxisKernel;
cl_kernel m_mprPenetrationKernel;
cl_kernel m_findSeparatingAxisUnitSphereKernel;
cl_context m_context;
cl_device_id m_device;
cl_command_queue m_queue;
cl_kernel m_findSeparatingAxisKernel;
cl_kernel m_mprPenetrationKernel;
cl_kernel m_findSeparatingAxisUnitSphereKernel;
cl_kernel m_findSeparatingAxisVertexFaceKernel;
cl_kernel m_findSeparatingAxisEdgeEdgeKernel;
cl_kernel m_findConcaveSeparatingAxisKernel;
cl_kernel m_findConcaveSeparatingAxisVertexFaceKernel;
cl_kernel m_findConcaveSeparatingAxisEdgeEdgeKernel;
cl_kernel m_findCompoundPairsKernel;
cl_kernel m_processCompoundPairsKernel;
cl_kernel m_clipHullHullKernel;
cl_kernel m_clipCompoundsHullHullKernel;
cl_kernel m_clipFacesAndFindContacts;
cl_kernel m_findClippingFacesKernel;
cl_kernel m_clipHullHullConcaveConvexKernel;
// cl_kernel m_extractManifoldAndAddContactKernel;
cl_kernel m_newContactReductionKernel;
cl_kernel m_findConcaveSeparatingAxisKernel;
cl_kernel m_findConcaveSeparatingAxisVertexFaceKernel;
cl_kernel m_findConcaveSeparatingAxisEdgeEdgeKernel;
cl_kernel m_bvhTraversalKernel;
cl_kernel m_primitiveContactsKernel;
cl_kernel m_findConcaveSphereContactsKernel;
cl_kernel m_findCompoundPairsKernel;
cl_kernel m_processCompoundPairsKernel;
cl_kernel m_clipHullHullKernel;
cl_kernel m_clipCompoundsHullHullKernel;
cl_kernel m_clipFacesAndFindContacts;
cl_kernel m_findClippingFacesKernel;
cl_kernel m_clipHullHullConcaveConvexKernel;
// cl_kernel m_extractManifoldAndAddContactKernel;
cl_kernel m_newContactReductionKernel;
cl_kernel m_bvhTraversalKernel;
cl_kernel m_primitiveContactsKernel;
cl_kernel m_findConcaveSphereContactsKernel;
cl_kernel m_processCompoundPairsPrimitivesKernel;
cl_kernel m_processCompoundPairsPrimitivesKernel;
b3OpenCLArray<b3Vector3> m_unitSphereDirections;
b3OpenCLArray<int> m_totalContactsOut;
b3OpenCLArray<int> m_totalContactsOut;
b3OpenCLArray<b3Vector3> m_sepNormals;
b3OpenCLArray<float> m_dmins;
b3OpenCLArray<int> m_hasSeparatingNormals;
b3OpenCLArray<int> m_hasSeparatingNormals;
b3OpenCLArray<b3Vector3> m_concaveSepNormals;
b3OpenCLArray<int> m_concaveHasSeparatingNormals;
b3OpenCLArray<int> m_numConcavePairsOut;
b3OpenCLArray<int> m_concaveHasSeparatingNormals;
b3OpenCLArray<int> m_numConcavePairsOut;
b3OpenCLArray<b3CompoundOverlappingPair> m_gpuCompoundPairs;
b3OpenCLArray<b3Vector3> m_gpuCompoundSepNormals;
b3OpenCLArray<int> m_gpuHasCompoundSepNormals;
b3OpenCLArray<int> m_numCompoundPairsOut;
b3OpenCLArray<int> m_gpuHasCompoundSepNormals;
b3OpenCLArray<int> m_numCompoundPairsOut;
GpuSatCollision(cl_context ctx,cl_device_id device, cl_command_queue q );
GpuSatCollision(cl_context ctx, cl_device_id device, cl_command_queue q);
virtual ~GpuSatCollision();
void computeConvexConvexContactsGPUSAT( b3OpenCLArray<b3Int4>* pairs, int nPairs,
const b3OpenCLArray<b3RigidBodyData>* bodyBuf,
b3OpenCLArray<b3Contact4>* contactOut, int& nContacts,
const b3OpenCLArray<b3Contact4>* oldContacts,
int maxContactCapacity,
int compoundPairCapacity,
const b3OpenCLArray<b3ConvexPolyhedronData>& hostConvexData,
const b3OpenCLArray<b3Vector3>& vertices,
const b3OpenCLArray<b3Vector3>& uniqueEdges,
const b3OpenCLArray<b3GpuFace>& faces,
const b3OpenCLArray<int>& indices,
const b3OpenCLArray<b3Collidable>& gpuCollidables,
const b3OpenCLArray<b3GpuChildShape>& gpuChildShapes,
const b3OpenCLArray<b3Aabb>& clAabbsWorldSpace,
const b3OpenCLArray<b3Aabb>& clAabbsLocalSpace,
b3OpenCLArray<b3Vector3>& worldVertsB1GPU,
b3OpenCLArray<b3Int4>& clippingFacesOutGPU,
b3OpenCLArray<b3Vector3>& worldNormalsAGPU,
b3OpenCLArray<b3Vector3>& worldVertsA1GPU,
b3OpenCLArray<b3Vector3>& worldVertsB2GPU,
b3AlignedObjectArray<class b3OptimizedBvh*>& bvhData,
b3OpenCLArray<b3QuantizedBvhNode>* treeNodesGPU,
b3OpenCLArray<b3BvhSubtreeInfo>* subTreesGPU,
b3OpenCLArray<b3BvhInfo>* bvhInfo,
int numObjects,
int maxTriConvexPairCapacity,
b3OpenCLArray<b3Int4>& triangleConvexPairs,
int& numTriConvexPairsOut
);
void computeConvexConvexContactsGPUSAT(b3OpenCLArray<b3Int4>* pairs, int nPairs,
const b3OpenCLArray<b3RigidBodyData>* bodyBuf,
b3OpenCLArray<b3Contact4>* contactOut, int& nContacts,
const b3OpenCLArray<b3Contact4>* oldContacts,
int maxContactCapacity,
int compoundPairCapacity,
const b3OpenCLArray<b3ConvexPolyhedronData>& hostConvexData,
const b3OpenCLArray<b3Vector3>& vertices,
const b3OpenCLArray<b3Vector3>& uniqueEdges,
const b3OpenCLArray<b3GpuFace>& faces,
const b3OpenCLArray<int>& indices,
const b3OpenCLArray<b3Collidable>& gpuCollidables,
const b3OpenCLArray<b3GpuChildShape>& gpuChildShapes,
const b3OpenCLArray<b3Aabb>& clAabbsWorldSpace,
const b3OpenCLArray<b3Aabb>& clAabbsLocalSpace,
b3OpenCLArray<b3Vector3>& worldVertsB1GPU,
b3OpenCLArray<b3Int4>& clippingFacesOutGPU,
b3OpenCLArray<b3Vector3>& worldNormalsAGPU,
b3OpenCLArray<b3Vector3>& worldVertsA1GPU,
b3OpenCLArray<b3Vector3>& worldVertsB2GPU,
b3AlignedObjectArray<class b3OptimizedBvh*>& bvhData,
b3OpenCLArray<b3QuantizedBvhNode>* treeNodesGPU,
b3OpenCLArray<b3BvhSubtreeInfo>* subTreesGPU,
b3OpenCLArray<b3BvhInfo>* bvhInfo,
int numObjects,
int maxTriConvexPairCapacity,
b3OpenCLArray<b3Int4>& triangleConvexPairs,
int& numTriConvexPairsOut);
};
#endif //_CONVEX_HULL_CONTACT_H
#endif //_CONVEX_HULL_CONTACT_H

View File

@@ -4,6 +4,4 @@
#include "Bullet3Common/b3Transform.h"
#include "Bullet3Collision/NarrowPhaseCollision/shared/b3ConvexPolyhedronData.h"
#endif //CONVEX_POLYHEDRON_CL
#endif //CONVEX_POLYHEDRON_CL

File diff suppressed because it is too large Load Diff

View File

@@ -29,40 +29,39 @@ GJK-EPA collision solver by Nathanael Presson, 2008
#include "Bullet3Common/b3Transform.h"
#include "Bullet3Collision/NarrowPhaseCollision/shared/b3ConvexPolyhedronData.h"
///btGjkEpaSolver contributed under zlib by Nathanael Presson
struct b3GjkEpaSolver2
struct b3GjkEpaSolver2
{
struct sResults
struct sResults
{
enum eStatus
enum eStatus
{
Separated, /* Shapes doesnt penetrate */
Penetrating, /* Shapes are penetrating */
GJK_Failed, /* GJK phase fail, no big issue, shapes are probably just 'touching' */
EPA_Failed /* EPA phase fail, bigger problem, need to save parameters, and debug */
} status;
b3Vector3 witnesses[2];
b3Vector3 normal;
b3Scalar distance;
Separated, /* Shapes doesnt penetrate */
Penetrating, /* Shapes are penetrating */
GJK_Failed, /* GJK phase fail, no big issue, shapes are probably just 'touching' */
EPA_Failed /* EPA phase fail, bigger problem, need to save parameters, and debug */
} status;
b3Vector3 witnesses[2];
b3Vector3 normal;
b3Scalar distance;
};
static int StackSizeRequirement();
static int StackSizeRequirement();
static bool Distance( const b3Transform& transA, const b3Transform& transB,
const b3ConvexPolyhedronData* hullA, const b3ConvexPolyhedronData* hullB,
const b3AlignedObjectArray<b3Vector3>& verticesA,
const b3AlignedObjectArray<b3Vector3>& verticesB,
const b3Vector3& guess,
sResults& results);
static bool Distance(const b3Transform& transA, const b3Transform& transB,
const b3ConvexPolyhedronData* hullA, const b3ConvexPolyhedronData* hullB,
const b3AlignedObjectArray<b3Vector3>& verticesA,
const b3AlignedObjectArray<b3Vector3>& verticesB,
const b3Vector3& guess,
sResults& results);
static bool Penetration( const b3Transform& transA, const b3Transform& transB,
const b3ConvexPolyhedronData* hullA, const b3ConvexPolyhedronData* hullB,
static bool Penetration(const b3Transform& transA, const b3Transform& transB,
const b3ConvexPolyhedronData* hullA, const b3ConvexPolyhedronData* hullB,
const b3AlignedObjectArray<b3Vector3>& verticesA,
const b3AlignedObjectArray<b3Vector3>& verticesB,
const b3Vector3& guess,
sResults& results,
bool usemargins=true);
bool usemargins = true);
#if 0
static b3Scalar SignedDistance( const b3Vector3& position,
b3Scalar margin,
@@ -74,9 +73,7 @@ static bool SignedDistance( const btConvexShape* shape0,const btTransform& wtrs
const btConvexShape* shape1,const btTransform& wtrs1,
const b3Vector3& guess,
sResults& results);
#endif
#endif
};
#endif //B3_GJK_EPA2_H
#endif //B3_GJK_EPA2_H

View File

@@ -13,50 +13,45 @@ subject to the following restrictions:
3. This notice may not be removed or altered from any source distribution.
*/
#include "b3OptimizedBvh.h"
#include "b3StridingMeshInterface.h"
#include "Bullet3Geometry/b3AabbUtil.h"
b3OptimizedBvh::b3OptimizedBvh()
{
{
}
b3OptimizedBvh::~b3OptimizedBvh()
{
}
void b3OptimizedBvh::build(b3StridingMeshInterface* triangles, bool useQuantizedAabbCompression, const b3Vector3& bvhAabbMin, const b3Vector3& bvhAabbMax)
{
m_useQuantization = useQuantizedAabbCompression;
// NodeArray triangleNodes;
struct NodeTriangleCallback : public b3InternalTriangleIndexCallback
struct NodeTriangleCallback : public b3InternalTriangleIndexCallback
{
NodeArray& m_triangleNodes;
NodeArray& m_triangleNodes;
NodeTriangleCallback& operator=(NodeTriangleCallback& other)
{
m_triangleNodes.copyFromArray(other.m_triangleNodes);
return *this;
}
NodeTriangleCallback(NodeArray& triangleNodes)
:m_triangleNodes(triangleNodes)
NodeTriangleCallback(NodeArray& triangleNodes)
: m_triangleNodes(triangleNodes)
{
}
virtual void internalProcessTriangleIndex(b3Vector3* triangle,int partId,int triangleIndex)
virtual void internalProcessTriangleIndex(b3Vector3* triangle, int partId, int triangleIndex)
{
b3OptimizedBvhNode node;
b3Vector3 aabbMin,aabbMax;
aabbMin.setValue(b3Scalar(B3_LARGE_FLOAT),b3Scalar(B3_LARGE_FLOAT),b3Scalar(B3_LARGE_FLOAT));
aabbMax.setValue(b3Scalar(-B3_LARGE_FLOAT),b3Scalar(-B3_LARGE_FLOAT),b3Scalar(-B3_LARGE_FLOAT));
b3Vector3 aabbMin, aabbMax;
aabbMin.setValue(b3Scalar(B3_LARGE_FLOAT), b3Scalar(B3_LARGE_FLOAT), b3Scalar(B3_LARGE_FLOAT));
aabbMax.setValue(b3Scalar(-B3_LARGE_FLOAT), b3Scalar(-B3_LARGE_FLOAT), b3Scalar(-B3_LARGE_FLOAT));
aabbMin.setMin(triangle[0]);
aabbMax.setMax(triangle[0]);
aabbMin.setMin(triangle[1]);
@@ -69,17 +64,17 @@ void b3OptimizedBvh::build(b3StridingMeshInterface* triangles, bool useQuantized
node.m_aabbMaxOrg = aabbMax;
node.m_escapeIndex = -1;
//for child nodes
node.m_subPart = partId;
node.m_triangleIndex = triangleIndex;
m_triangleNodes.push_back(node);
}
};
struct QuantizedNodeTriangleCallback : public b3InternalTriangleIndexCallback
struct QuantizedNodeTriangleCallback : public b3InternalTriangleIndexCallback
{
QuantizedNodeArray& m_triangleNodes;
const b3QuantizedBvh* m_optimizedTree; // for quantization
QuantizedNodeArray& m_triangleNodes;
const b3QuantizedBvh* m_optimizedTree; // for quantization
QuantizedNodeTriangleCallback& operator=(QuantizedNodeTriangleCallback& other)
{
@@ -88,23 +83,23 @@ void b3OptimizedBvh::build(b3StridingMeshInterface* triangles, bool useQuantized
return *this;
}
QuantizedNodeTriangleCallback(QuantizedNodeArray& triangleNodes,const b3QuantizedBvh* tree)
:m_triangleNodes(triangleNodes),m_optimizedTree(tree)
QuantizedNodeTriangleCallback(QuantizedNodeArray& triangleNodes, const b3QuantizedBvh* tree)
: m_triangleNodes(triangleNodes), m_optimizedTree(tree)
{
}
virtual void internalProcessTriangleIndex(b3Vector3* triangle,int partId,int triangleIndex)
virtual void internalProcessTriangleIndex(b3Vector3* triangle, int partId, int triangleIndex)
{
// The partId and triangle index must fit in the same (positive) integer
b3Assert(partId < (1<<MAX_NUM_PARTS_IN_BITS));
b3Assert(triangleIndex < (1<<(31-MAX_NUM_PARTS_IN_BITS)));
b3Assert(partId < (1 << MAX_NUM_PARTS_IN_BITS));
b3Assert(triangleIndex < (1 << (31 - MAX_NUM_PARTS_IN_BITS)));
//negative indices are reserved for escapeIndex
b3Assert(triangleIndex>=0);
b3Assert(triangleIndex >= 0);
b3QuantizedBvhNode node;
b3Vector3 aabbMin,aabbMax;
aabbMin.setValue(b3Scalar(B3_LARGE_FLOAT),b3Scalar(B3_LARGE_FLOAT),b3Scalar(B3_LARGE_FLOAT));
aabbMax.setValue(b3Scalar(-B3_LARGE_FLOAT),b3Scalar(-B3_LARGE_FLOAT),b3Scalar(-B3_LARGE_FLOAT));
b3Vector3 aabbMin, aabbMax;
aabbMin.setValue(b3Scalar(B3_LARGE_FLOAT), b3Scalar(B3_LARGE_FLOAT), b3Scalar(B3_LARGE_FLOAT));
aabbMax.setValue(b3Scalar(-B3_LARGE_FLOAT), b3Scalar(-B3_LARGE_FLOAT), b3Scalar(-B3_LARGE_FLOAT));
aabbMin.setMin(triangle[0]);
aabbMax.setMax(triangle[0]);
aabbMin.setMin(triangle[1]);
@@ -131,59 +126,52 @@ void b3OptimizedBvh::build(b3StridingMeshInterface* triangles, bool useQuantized
aabbMin.setZ(aabbMin.getZ() - MIN_AABB_HALF_DIMENSION);
}
m_optimizedTree->quantize(&node.m_quantizedAabbMin[0],aabbMin,0);
m_optimizedTree->quantize(&node.m_quantizedAabbMax[0],aabbMax,1);
m_optimizedTree->quantize(&node.m_quantizedAabbMin[0], aabbMin, 0);
m_optimizedTree->quantize(&node.m_quantizedAabbMax[0], aabbMax, 1);
node.m_escapeIndexOrTriangleIndex = (partId<<(31-MAX_NUM_PARTS_IN_BITS)) | triangleIndex;
node.m_escapeIndexOrTriangleIndex = (partId << (31 - MAX_NUM_PARTS_IN_BITS)) | triangleIndex;
m_triangleNodes.push_back(node);
}
};
int numLeafNodes = 0;
if (m_useQuantization)
{
//initialize quantization values
setQuantizationValues(bvhAabbMin,bvhAabbMax);
setQuantizationValues(bvhAabbMin, bvhAabbMax);
QuantizedNodeTriangleCallback callback(m_quantizedLeafNodes,this);
QuantizedNodeTriangleCallback callback(m_quantizedLeafNodes, this);
triangles->InternalProcessAllTriangles(&callback,m_bvhAabbMin,m_bvhAabbMax);
triangles->InternalProcessAllTriangles(&callback, m_bvhAabbMin, m_bvhAabbMax);
//now we have an array of leafnodes in m_leafNodes
numLeafNodes = m_quantizedLeafNodes.size();
m_quantizedContiguousNodes.resize(2*numLeafNodes);
} else
m_quantizedContiguousNodes.resize(2 * numLeafNodes);
}
else
{
NodeTriangleCallback callback(m_leafNodes);
NodeTriangleCallback callback(m_leafNodes);
b3Vector3 aabbMin=b3MakeVector3(b3Scalar(-B3_LARGE_FLOAT),b3Scalar(-B3_LARGE_FLOAT),b3Scalar(-B3_LARGE_FLOAT));
b3Vector3 aabbMax=b3MakeVector3(b3Scalar(B3_LARGE_FLOAT),b3Scalar(B3_LARGE_FLOAT),b3Scalar(B3_LARGE_FLOAT));
b3Vector3 aabbMin = b3MakeVector3(b3Scalar(-B3_LARGE_FLOAT), b3Scalar(-B3_LARGE_FLOAT), b3Scalar(-B3_LARGE_FLOAT));
b3Vector3 aabbMax = b3MakeVector3(b3Scalar(B3_LARGE_FLOAT), b3Scalar(B3_LARGE_FLOAT), b3Scalar(B3_LARGE_FLOAT));
triangles->InternalProcessAllTriangles(&callback,aabbMin,aabbMax);
triangles->InternalProcessAllTriangles(&callback, aabbMin, aabbMax);
//now we have an array of leafnodes in m_leafNodes
numLeafNodes = m_leafNodes.size();
m_contiguousNodes.resize(2*numLeafNodes);
m_contiguousNodes.resize(2 * numLeafNodes);
}
m_curNodeIndex = 0;
buildTree(0,numLeafNodes);
buildTree(0, numLeafNodes);
///if the entire tree is small then subtree size, we need to create a header info for the tree
if(m_useQuantization && !m_SubtreeHeaders.size())
if (m_useQuantization && !m_SubtreeHeaders.size())
{
b3BvhSubtreeInfo& subtree = m_SubtreeHeaders.expand();
subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[0]);
@@ -199,37 +187,29 @@ void b3OptimizedBvh::build(b3StridingMeshInterface* triangles, bool useQuantized
m_leafNodes.clear();
}
void b3OptimizedBvh::refit(b3StridingMeshInterface* meshInterface,const b3Vector3& aabbMin,const b3Vector3& aabbMax)
void b3OptimizedBvh::refit(b3StridingMeshInterface* meshInterface, const b3Vector3& aabbMin, const b3Vector3& aabbMax)
{
if (m_useQuantization)
{
setQuantizationValues(aabbMin, aabbMax);
setQuantizationValues(aabbMin,aabbMax);
updateBvhNodes(meshInterface,0,m_curNodeIndex,0);
updateBvhNodes(meshInterface, 0, m_curNodeIndex, 0);
///now update all subtree headers
int i;
for (i=0;i<m_SubtreeHeaders.size();i++)
for (i = 0; i < m_SubtreeHeaders.size(); i++)
{
b3BvhSubtreeInfo& subtree = m_SubtreeHeaders[i];
subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[subtree.m_rootNodeIndex]);
}
} else
}
else
{
}
}
void b3OptimizedBvh::refitPartial(b3StridingMeshInterface* meshInterface,const b3Vector3& aabbMin,const b3Vector3& aabbMax)
void b3OptimizedBvh::refitPartial(b3StridingMeshInterface* meshInterface, const b3Vector3& aabbMin, const b3Vector3& aabbMax)
{
//incrementally initialize quantization values
b3Assert(m_useQuantization);
@@ -244,147 +224,135 @@ void b3OptimizedBvh::refitPartial(b3StridingMeshInterface* meshInterface,const b
///we should update all quantization values, using updateBvhNodes(meshInterface);
///but we only update chunks that overlap the given aabb
unsigned short quantizedQueryAabbMin[3];
unsigned short quantizedQueryAabbMax[3];
quantize(&quantizedQueryAabbMin[0],aabbMin,0);
quantize(&quantizedQueryAabbMax[0],aabbMax,1);
unsigned short quantizedQueryAabbMin[3];
unsigned short quantizedQueryAabbMax[3];
quantize(&quantizedQueryAabbMin[0], aabbMin, 0);
quantize(&quantizedQueryAabbMax[0], aabbMax, 1);
int i;
for (i=0;i<this->m_SubtreeHeaders.size();i++)
for (i = 0; i < this->m_SubtreeHeaders.size(); i++)
{
b3BvhSubtreeInfo& subtree = m_SubtreeHeaders[i];
//PCK: unsigned instead of bool
unsigned overlap = b3TestQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,subtree.m_quantizedAabbMin,subtree.m_quantizedAabbMax);
unsigned overlap = b3TestQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin, quantizedQueryAabbMax, subtree.m_quantizedAabbMin, subtree.m_quantizedAabbMax);
if (overlap != 0)
{
updateBvhNodes(meshInterface,subtree.m_rootNodeIndex,subtree.m_rootNodeIndex+subtree.m_subtreeSize,i);
updateBvhNodes(meshInterface, subtree.m_rootNodeIndex, subtree.m_rootNodeIndex + subtree.m_subtreeSize, i);
subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[subtree.m_rootNodeIndex]);
}
}
}
void b3OptimizedBvh::updateBvhNodes(b3StridingMeshInterface* meshInterface,int firstNode,int endNode,int index)
void b3OptimizedBvh::updateBvhNodes(b3StridingMeshInterface* meshInterface, int firstNode, int endNode, int index)
{
(void)index;
b3Assert(m_useQuantization);
int curNodeSubPart=-1;
int curNodeSubPart = -1;
//get access info to trianglemesh data
const unsigned char *vertexbase = 0;
int numverts = 0;
PHY_ScalarType type = PHY_INTEGER;
int stride = 0;
const unsigned char *indexbase = 0;
int indexstride = 0;
int numfaces = 0;
PHY_ScalarType indicestype = PHY_INTEGER;
const unsigned char* vertexbase = 0;
int numverts = 0;
PHY_ScalarType type = PHY_INTEGER;
int stride = 0;
const unsigned char* indexbase = 0;
int indexstride = 0;
int numfaces = 0;
PHY_ScalarType indicestype = PHY_INTEGER;
b3Vector3 triangleVerts[3];
b3Vector3 aabbMin,aabbMax;
const b3Vector3& meshScaling = meshInterface->getScaling();
int i;
for (i=endNode-1;i>=firstNode;i--)
b3Vector3 triangleVerts[3];
b3Vector3 aabbMin, aabbMax;
const b3Vector3& meshScaling = meshInterface->getScaling();
int i;
for (i = endNode - 1; i >= firstNode; i--)
{
b3QuantizedBvhNode& curNode = m_quantizedContiguousNodes[i];
if (curNode.isLeafNode())
{
b3QuantizedBvhNode& curNode = m_quantizedContiguousNodes[i];
if (curNode.isLeafNode())
//recalc aabb from triangle data
int nodeSubPart = curNode.getPartId();
int nodeTriangleIndex = curNode.getTriangleIndex();
if (nodeSubPart != curNodeSubPart)
{
//recalc aabb from triangle data
int nodeSubPart = curNode.getPartId();
int nodeTriangleIndex = curNode.getTriangleIndex();
if (nodeSubPart != curNodeSubPart)
{
if (curNodeSubPart >= 0)
meshInterface->unLockReadOnlyVertexBase(curNodeSubPart);
meshInterface->getLockedReadOnlyVertexIndexBase(&vertexbase,numverts, type,stride,&indexbase,indexstride,numfaces,indicestype,nodeSubPart);
if (curNodeSubPart >= 0)
meshInterface->unLockReadOnlyVertexBase(curNodeSubPart);
meshInterface->getLockedReadOnlyVertexIndexBase(&vertexbase, numverts, type, stride, &indexbase, indexstride, numfaces, indicestype, nodeSubPart);
curNodeSubPart = nodeSubPart;
b3Assert(indicestype==PHY_INTEGER||indicestype==PHY_SHORT);
}
//triangles->getLockedReadOnlyVertexIndexBase(vertexBase,numVerts,
curNodeSubPart = nodeSubPart;
b3Assert(indicestype == PHY_INTEGER || indicestype == PHY_SHORT);
}
//triangles->getLockedReadOnlyVertexIndexBase(vertexBase,numVerts,
unsigned int* gfxbase = (unsigned int*)(indexbase+nodeTriangleIndex*indexstride);
for (int j=2;j>=0;j--)
{
int graphicsindex = indicestype==PHY_SHORT?((unsigned short*)gfxbase)[j]:gfxbase[j];
if (type == PHY_FLOAT)
{
float* graphicsbase = (float*)(vertexbase+graphicsindex*stride);
triangleVerts[j] = b3MakeVector3(
graphicsbase[0]*meshScaling.getX(),
graphicsbase[1]*meshScaling.getY(),
graphicsbase[2]*meshScaling.getZ());
}
else
{
double* graphicsbase = (double*)(vertexbase+graphicsindex*stride);
triangleVerts[j] = b3MakeVector3( b3Scalar(graphicsbase[0]*meshScaling.getX()), b3Scalar(graphicsbase[1]*meshScaling.getY()), b3Scalar(graphicsbase[2]*meshScaling.getZ()));
}
}
unsigned int* gfxbase = (unsigned int*)(indexbase + nodeTriangleIndex * indexstride);
aabbMin.setValue(b3Scalar(B3_LARGE_FLOAT),b3Scalar(B3_LARGE_FLOAT),b3Scalar(B3_LARGE_FLOAT));
aabbMax.setValue(b3Scalar(-B3_LARGE_FLOAT),b3Scalar(-B3_LARGE_FLOAT),b3Scalar(-B3_LARGE_FLOAT));
aabbMin.setMin(triangleVerts[0]);
aabbMax.setMax(triangleVerts[0]);
aabbMin.setMin(triangleVerts[1]);
aabbMax.setMax(triangleVerts[1]);
aabbMin.setMin(triangleVerts[2]);
aabbMax.setMax(triangleVerts[2]);
quantize(&curNode.m_quantizedAabbMin[0],aabbMin,0);
quantize(&curNode.m_quantizedAabbMax[0],aabbMax,1);
} else
for (int j = 2; j >= 0; j--)
{
//combine aabb from both children
b3QuantizedBvhNode* leftChildNode = &m_quantizedContiguousNodes[i+1];
b3QuantizedBvhNode* rightChildNode = leftChildNode->isLeafNode() ? &m_quantizedContiguousNodes[i+2] :
&m_quantizedContiguousNodes[i+1+leftChildNode->getEscapeIndex()];
int graphicsindex = indicestype == PHY_SHORT ? ((unsigned short*)gfxbase)[j] : gfxbase[j];
if (type == PHY_FLOAT)
{
for (int i=0;i<3;i++)
{
curNode.m_quantizedAabbMin[i] = leftChildNode->m_quantizedAabbMin[i];
if (curNode.m_quantizedAabbMin[i]>rightChildNode->m_quantizedAabbMin[i])
curNode.m_quantizedAabbMin[i]=rightChildNode->m_quantizedAabbMin[i];
curNode.m_quantizedAabbMax[i] = leftChildNode->m_quantizedAabbMax[i];
if (curNode.m_quantizedAabbMax[i] < rightChildNode->m_quantizedAabbMax[i])
curNode.m_quantizedAabbMax[i] = rightChildNode->m_quantizedAabbMax[i];
}
float* graphicsbase = (float*)(vertexbase + graphicsindex * stride);
triangleVerts[j] = b3MakeVector3(
graphicsbase[0] * meshScaling.getX(),
graphicsbase[1] * meshScaling.getY(),
graphicsbase[2] * meshScaling.getZ());
}
else
{
double* graphicsbase = (double*)(vertexbase + graphicsindex * stride);
triangleVerts[j] = b3MakeVector3(b3Scalar(graphicsbase[0] * meshScaling.getX()), b3Scalar(graphicsbase[1] * meshScaling.getY()), b3Scalar(graphicsbase[2] * meshScaling.getZ()));
}
}
aabbMin.setValue(b3Scalar(B3_LARGE_FLOAT), b3Scalar(B3_LARGE_FLOAT), b3Scalar(B3_LARGE_FLOAT));
aabbMax.setValue(b3Scalar(-B3_LARGE_FLOAT), b3Scalar(-B3_LARGE_FLOAT), b3Scalar(-B3_LARGE_FLOAT));
aabbMin.setMin(triangleVerts[0]);
aabbMax.setMax(triangleVerts[0]);
aabbMin.setMin(triangleVerts[1]);
aabbMax.setMax(triangleVerts[1]);
aabbMin.setMin(triangleVerts[2]);
aabbMax.setMax(triangleVerts[2]);
quantize(&curNode.m_quantizedAabbMin[0], aabbMin, 0);
quantize(&curNode.m_quantizedAabbMax[0], aabbMax, 1);
}
else
{
//combine aabb from both children
if (curNodeSubPart >= 0)
meshInterface->unLockReadOnlyVertexBase(curNodeSubPart);
b3QuantizedBvhNode* leftChildNode = &m_quantizedContiguousNodes[i + 1];
b3QuantizedBvhNode* rightChildNode = leftChildNode->isLeafNode() ? &m_quantizedContiguousNodes[i + 2] : &m_quantizedContiguousNodes[i + 1 + leftChildNode->getEscapeIndex()];
{
for (int i = 0; i < 3; i++)
{
curNode.m_quantizedAabbMin[i] = leftChildNode->m_quantizedAabbMin[i];
if (curNode.m_quantizedAabbMin[i] > rightChildNode->m_quantizedAabbMin[i])
curNode.m_quantizedAabbMin[i] = rightChildNode->m_quantizedAabbMin[i];
curNode.m_quantizedAabbMax[i] = leftChildNode->m_quantizedAabbMax[i];
if (curNode.m_quantizedAabbMax[i] < rightChildNode->m_quantizedAabbMax[i])
curNode.m_quantizedAabbMax[i] = rightChildNode->m_quantizedAabbMax[i];
}
}
}
}
if (curNodeSubPart >= 0)
meshInterface->unLockReadOnlyVertexBase(curNodeSubPart);
}
///deSerializeInPlace loads and initializes a BVH from a buffer in memory 'in place'
b3OptimizedBvh* b3OptimizedBvh::deSerializeInPlace(void *i_alignedDataBuffer, unsigned int i_dataBufferSize, bool i_swapEndian)
b3OptimizedBvh* b3OptimizedBvh::deSerializeInPlace(void* i_alignedDataBuffer, unsigned int i_dataBufferSize, bool i_swapEndian)
{
b3QuantizedBvh* bvh = b3QuantizedBvh::deSerializeInPlace(i_alignedDataBuffer,i_dataBufferSize,i_swapEndian);
b3QuantizedBvh* bvh = b3QuantizedBvh::deSerializeInPlace(i_alignedDataBuffer, i_dataBufferSize, i_swapEndian);
//we don't add additional data so just do a static upcast
return static_cast<b3OptimizedBvh*>(bvh);
}

View File

@@ -22,44 +22,35 @@ subject to the following restrictions:
class b3StridingMeshInterface;
///The b3OptimizedBvh extends the b3QuantizedBvh to create AABB tree for triangle meshes, through the b3StridingMeshInterface.
B3_ATTRIBUTE_ALIGNED16(class) b3OptimizedBvh : public b3QuantizedBvh
B3_ATTRIBUTE_ALIGNED16(class)
b3OptimizedBvh : public b3QuantizedBvh
{
public:
B3_DECLARE_ALIGNED_ALLOCATOR();
protected:
public:
b3OptimizedBvh();
virtual ~b3OptimizedBvh();
void build(b3StridingMeshInterface* triangles,bool useQuantizedAabbCompression, const b3Vector3& bvhAabbMin, const b3Vector3& bvhAabbMax);
void build(b3StridingMeshInterface * triangles, bool useQuantizedAabbCompression, const b3Vector3& bvhAabbMin, const b3Vector3& bvhAabbMax);
void refit(b3StridingMeshInterface* triangles,const b3Vector3& aabbMin,const b3Vector3& aabbMax);
void refit(b3StridingMeshInterface * triangles, const b3Vector3& aabbMin, const b3Vector3& aabbMax);
void refitPartial(b3StridingMeshInterface* triangles,const b3Vector3& aabbMin, const b3Vector3& aabbMax);
void refitPartial(b3StridingMeshInterface * triangles, const b3Vector3& aabbMin, const b3Vector3& aabbMax);
void updateBvhNodes(b3StridingMeshInterface* meshInterface,int firstNode,int endNode,int index);
void updateBvhNodes(b3StridingMeshInterface * meshInterface, int firstNode, int endNode, int index);
/// Data buffer MUST be 16 byte aligned
virtual bool serializeInPlace(void *o_alignedDataBuffer, unsigned i_dataBufferSize, bool i_swapEndian) const
virtual bool serializeInPlace(void* o_alignedDataBuffer, unsigned i_dataBufferSize, bool i_swapEndian) const
{
return b3QuantizedBvh::serialize(o_alignedDataBuffer,i_dataBufferSize,i_swapEndian);
return b3QuantizedBvh::serialize(o_alignedDataBuffer, i_dataBufferSize, i_swapEndian);
}
///deSerializeInPlace loads and initializes a BVH from a buffer in memory 'in place'
static b3OptimizedBvh *deSerializeInPlace(void *i_alignedDataBuffer, unsigned int i_dataBufferSize, bool i_swapEndian);
static b3OptimizedBvh* deSerializeInPlace(void* i_alignedDataBuffer, unsigned int i_dataBufferSize, bool i_swapEndian);
};
#endif //B3_OPTIMIZED_BVH_H
#endif //B3_OPTIMIZED_BVH_H

File diff suppressed because it is too large Load Diff

View File

@@ -22,11 +22,11 @@ class b3Serializer;
#ifdef DEBUG_CHECK_DEQUANTIZATION
#ifdef __SPU__
#define printf spu_printf
#endif //__SPU__
#endif //__SPU__
#include <stdio.h>
#include <stdlib.h>
#endif //DEBUG_CHECK_DEQUANTIZATION
#endif //DEBUG_CHECK_DEQUANTIZATION
#include "Bullet3Common/b3Vector3.h"
#include "Bullet3Common/b3AlignedAllocator.h"
@@ -44,13 +44,10 @@ class b3Serializer;
#include "Bullet3Collision/NarrowPhaseCollision/shared/b3QuantizedBvhNodeData.h"
#include "Bullet3Collision/NarrowPhaseCollision/shared/b3BvhSubtreeInfoData.h"
//http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclang/html/vclrf__m128.asp
//Note: currently we have 16 bytes per quantized node
#define MAX_SUBTREE_SIZE_IN_BYTES 2048
#define MAX_SUBTREE_SIZE_IN_BYTES 2048
// 10 gives the potential for 1024 parts, with at most 2^21 (2097152) (minus one
// actually) triangles each (since the sign bit is reserved
@@ -58,7 +55,8 @@ class b3Serializer;
///b3QuantizedBvhNode is a compressed aabb node, 16 bytes.
///Node can be used for leafnode or internal node. Leafnodes can point to 32-bit triangle index (non-negative range).
B3_ATTRIBUTE_ALIGNED16 (struct) b3QuantizedBvhNode : public b3QuantizedBvhNodeData
B3_ATTRIBUTE_ALIGNED16(struct)
b3QuantizedBvhNode : public b3QuantizedBvhNodeData
{
B3_DECLARE_ALIGNED_ALLOCATOR();
@@ -72,48 +70,48 @@ B3_ATTRIBUTE_ALIGNED16 (struct) b3QuantizedBvhNode : public b3QuantizedBvhNodeDa
b3Assert(!isLeafNode());
return -m_escapeIndexOrTriangleIndex;
}
int getTriangleIndex() const
int getTriangleIndex() const
{
b3Assert(isLeafNode());
unsigned int x=0;
unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS);
unsigned int x = 0;
unsigned int y = (~(x & 0)) << (31 - MAX_NUM_PARTS_IN_BITS);
// Get only the lower bits where the triangle index is stored
return (m_escapeIndexOrTriangleIndex&~(y));
return (m_escapeIndexOrTriangleIndex & ~(y));
}
int getPartId() const
int getPartId() const
{
b3Assert(isLeafNode());
// Get only the highest bits where the part index is stored
return (m_escapeIndexOrTriangleIndex>>(31-MAX_NUM_PARTS_IN_BITS));
return (m_escapeIndexOrTriangleIndex >> (31 - MAX_NUM_PARTS_IN_BITS));
}
}
;
};
/// b3OptimizedBvhNode contains both internal and leaf node information.
/// Total node size is 44 bytes / node. You can use the compressed version of 16 bytes.
B3_ATTRIBUTE_ALIGNED16 (struct) b3OptimizedBvhNode
B3_ATTRIBUTE_ALIGNED16(struct)
b3OptimizedBvhNode
{
B3_DECLARE_ALIGNED_ALLOCATOR();
//32 bytes
b3Vector3 m_aabbMinOrg;
b3Vector3 m_aabbMaxOrg;
b3Vector3 m_aabbMinOrg;
b3Vector3 m_aabbMaxOrg;
//4
int m_escapeIndex;
int m_escapeIndex;
//8
//for child nodes
int m_subPart;
int m_triangleIndex;
int m_subPart;
int m_triangleIndex;
//pad the size to 64 bytes
char m_padding[20];
//pad the size to 64 bytes
char m_padding[20];
};
///b3BvhSubtreeInfo provides info to gather a subtree of limited size
B3_ATTRIBUTE_ALIGNED16(class) b3BvhSubtreeInfo : public b3BvhSubtreeInfoData
B3_ATTRIBUTE_ALIGNED16(class)
b3BvhSubtreeInfo : public b3BvhSubtreeInfoData
{
public:
B3_DECLARE_ALIGNED_ALLOCATOR();
@@ -123,8 +121,7 @@ public:
//memset(&m_padding[0], 0, sizeof(m_padding));
}
void setAabbFromQuantizeNode(const b3QuantizedBvhNode& quantizedNode)
void setAabbFromQuantizeNode(const b3QuantizedBvhNode& quantizedNode)
{
m_quantizedAabbMin[0] = quantizedNode.m_quantizedAabbMin[0];
m_quantizedAabbMin[1] = quantizedNode.m_quantizedAabbMin[1];
@@ -133,14 +130,12 @@ public:
m_quantizedAabbMax[1] = quantizedNode.m_quantizedAabbMax[1];
m_quantizedAabbMax[2] = quantizedNode.m_quantizedAabbMax[2];
}
}
;
};
class b3NodeOverlapCallback
{
public:
virtual ~b3NodeOverlapCallback() {};
virtual ~b3NodeOverlapCallback(){};
virtual void processNode(int subPart, int triangleIndex) = 0;
};
@@ -148,18 +143,16 @@ public:
#include "Bullet3Common/b3AlignedAllocator.h"
#include "Bullet3Common/b3AlignedObjectArray.h"
///for code readability:
typedef b3AlignedObjectArray<b3OptimizedBvhNode> NodeArray;
typedef b3AlignedObjectArray<b3QuantizedBvhNode> QuantizedNodeArray;
typedef b3AlignedObjectArray<b3BvhSubtreeInfo> BvhSubtreeInfoArray;
typedef b3AlignedObjectArray<b3OptimizedBvhNode> NodeArray;
typedef b3AlignedObjectArray<b3QuantizedBvhNode> QuantizedNodeArray;
typedef b3AlignedObjectArray<b3BvhSubtreeInfo> BvhSubtreeInfoArray;
///The b3QuantizedBvh class stores an AABB tree that can be quickly traversed on CPU and Cell SPU.
///It is used by the b3BvhTriangleMeshShape as midphase
///It is recommended to use quantization for better performance and lower memory requirements.
B3_ATTRIBUTE_ALIGNED16(class) b3QuantizedBvh
B3_ATTRIBUTE_ALIGNED16(class)
b3QuantizedBvh
{
public:
enum b3TraversalMode
@@ -169,56 +162,48 @@ public:
TRAVERSAL_RECURSIVE
};
b3Vector3 m_bvhAabbMin;
b3Vector3 m_bvhAabbMax;
b3Vector3 m_bvhQuantization;
b3Vector3 m_bvhAabbMin;
b3Vector3 m_bvhAabbMax;
b3Vector3 m_bvhQuantization;
protected:
int m_bulletVersion; //for serialization versioning. It could also be used to detect endianess.
int m_bulletVersion; //for serialization versioning. It could also be used to detect endianess.
int m_curNodeIndex;
int m_curNodeIndex;
//quantization data
bool m_useQuantization;
bool m_useQuantization;
NodeArray m_leafNodes;
NodeArray m_contiguousNodes;
QuantizedNodeArray m_quantizedLeafNodes;
QuantizedNodeArray m_quantizedContiguousNodes;
NodeArray m_leafNodes;
NodeArray m_contiguousNodes;
QuantizedNodeArray m_quantizedLeafNodes;
QuantizedNodeArray m_quantizedContiguousNodes;
b3TraversalMode m_traversalMode;
BvhSubtreeInfoArray m_SubtreeHeaders;
b3TraversalMode m_traversalMode;
BvhSubtreeInfoArray m_SubtreeHeaders;
//This is only used for serialization so we don't have to add serialization directly to b3AlignedObjectArray
mutable int m_subtreeHeaderCount;
///two versions, one for quantized and normal nodes. This allows code-reuse while maintaining readability (no template/macro!)
///this might be refactored into a virtual, it is usually not calculated at run-time
void setInternalNodeAabbMin(int nodeIndex, const b3Vector3& aabbMin)
void setInternalNodeAabbMin(int nodeIndex, const b3Vector3& aabbMin)
{
if (m_useQuantization)
{
quantize(&m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] ,aabbMin,0);
} else
quantize(&m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0], aabbMin, 0);
}
else
{
m_contiguousNodes[nodeIndex].m_aabbMinOrg = aabbMin;
}
}
void setInternalNodeAabbMax(int nodeIndex,const b3Vector3& aabbMax)
void setInternalNodeAabbMax(int nodeIndex, const b3Vector3& aabbMax)
{
if (m_useQuantization)
{
quantize(&m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0],aabbMax,1);
} else
quantize(&m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0], aabbMax, 1);
}
else
{
m_contiguousNodes[nodeIndex].m_aabbMaxOrg = aabbMax;
}
@@ -232,115 +217,102 @@ protected:
}
//non-quantized
return m_leafNodes[nodeIndex].m_aabbMinOrg;
}
b3Vector3 getAabbMax(int nodeIndex) const
{
if (m_useQuantization)
{
return unQuantize(&m_quantizedLeafNodes[nodeIndex].m_quantizedAabbMax[0]);
}
}
//non-quantized
return m_leafNodes[nodeIndex].m_aabbMaxOrg;
}
void setInternalNodeEscapeIndex(int nodeIndex, int escapeIndex)
void setInternalNodeEscapeIndex(int nodeIndex, int escapeIndex)
{
if (m_useQuantization)
{
m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = -escapeIndex;
}
}
else
{
m_contiguousNodes[nodeIndex].m_escapeIndex = escapeIndex;
}
}
void mergeInternalNodeAabb(int nodeIndex,const b3Vector3& newAabbMin,const b3Vector3& newAabbMax)
void mergeInternalNodeAabb(int nodeIndex, const b3Vector3& newAabbMin, const b3Vector3& newAabbMax)
{
if (m_useQuantization)
{
unsigned short int quantizedAabbMin[3];
unsigned short int quantizedAabbMax[3];
quantize(quantizedAabbMin,newAabbMin,0);
quantize(quantizedAabbMax,newAabbMax,1);
for (int i=0;i<3;i++)
quantize(quantizedAabbMin, newAabbMin, 0);
quantize(quantizedAabbMax, newAabbMax, 1);
for (int i = 0; i < 3; i++)
{
if (m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[i] > quantizedAabbMin[i])
m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[i] = quantizedAabbMin[i];
if (m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[i] < quantizedAabbMax[i])
m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[i] = quantizedAabbMax[i];
}
} else
}
else
{
//non-quantized
m_contiguousNodes[nodeIndex].m_aabbMinOrg.setMin(newAabbMin);
m_contiguousNodes[nodeIndex].m_aabbMaxOrg.setMax(newAabbMax);
m_contiguousNodes[nodeIndex].m_aabbMaxOrg.setMax(newAabbMax);
}
}
void swapLeafNodes(int firstIndex,int secondIndex);
void swapLeafNodes(int firstIndex, int secondIndex);
void assignInternalNodeFromLeafNode(int internalNode,int leafNodeIndex);
void assignInternalNodeFromLeafNode(int internalNode, int leafNodeIndex);
protected:
void buildTree(int startIndex, int endIndex);
int calcSplittingAxis(int startIndex, int endIndex);
void buildTree (int startIndex,int endIndex);
int sortAndCalcSplittingIndex(int startIndex, int endIndex, int splitAxis);
int calcSplittingAxis(int startIndex,int endIndex);
void walkStacklessTree(b3NodeOverlapCallback * nodeCallback, const b3Vector3& aabbMin, const b3Vector3& aabbMax) const;
int sortAndCalcSplittingIndex(int startIndex,int endIndex,int splitAxis);
void walkStacklessTree(b3NodeOverlapCallback* nodeCallback,const b3Vector3& aabbMin,const b3Vector3& aabbMax) const;
void walkStacklessQuantizedTreeAgainstRay(b3NodeOverlapCallback* nodeCallback, const b3Vector3& raySource, const b3Vector3& rayTarget, const b3Vector3& aabbMin, const b3Vector3& aabbMax, int startNodeIndex,int endNodeIndex) const;
void walkStacklessQuantizedTree(b3NodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax,int startNodeIndex,int endNodeIndex) const;
void walkStacklessTreeAgainstRay(b3NodeOverlapCallback* nodeCallback, const b3Vector3& raySource, const b3Vector3& rayTarget, const b3Vector3& aabbMin, const b3Vector3& aabbMax, int startNodeIndex,int endNodeIndex) const;
void walkStacklessQuantizedTreeAgainstRay(b3NodeOverlapCallback * nodeCallback, const b3Vector3& raySource, const b3Vector3& rayTarget, const b3Vector3& aabbMin, const b3Vector3& aabbMax, int startNodeIndex, int endNodeIndex) const;
void walkStacklessQuantizedTree(b3NodeOverlapCallback * nodeCallback, unsigned short int* quantizedQueryAabbMin, unsigned short int* quantizedQueryAabbMax, int startNodeIndex, int endNodeIndex) const;
void walkStacklessTreeAgainstRay(b3NodeOverlapCallback * nodeCallback, const b3Vector3& raySource, const b3Vector3& rayTarget, const b3Vector3& aabbMin, const b3Vector3& aabbMax, int startNodeIndex, int endNodeIndex) const;
///tree traversal designed for small-memory processors like PS3 SPU
void walkStacklessQuantizedTreeCacheFriendly(b3NodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const;
void walkStacklessQuantizedTreeCacheFriendly(b3NodeOverlapCallback * nodeCallback, unsigned short int* quantizedQueryAabbMin, unsigned short int* quantizedQueryAabbMax) const;
///use the 16-byte stackless 'skipindex' node tree to do a recursive traversal
void walkRecursiveQuantizedTreeAgainstQueryAabb(const b3QuantizedBvhNode* currentNode,b3NodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const;
void walkRecursiveQuantizedTreeAgainstQueryAabb(const b3QuantizedBvhNode* currentNode, b3NodeOverlapCallback* nodeCallback, unsigned short int* quantizedQueryAabbMin, unsigned short int* quantizedQueryAabbMax) const;
///use the 16-byte stackless 'skipindex' node tree to do a recursive traversal
void walkRecursiveQuantizedTreeAgainstQuantizedTree(const b3QuantizedBvhNode* treeNodeA,const b3QuantizedBvhNode* treeNodeB,b3NodeOverlapCallback* nodeCallback) const;
void walkRecursiveQuantizedTreeAgainstQuantizedTree(const b3QuantizedBvhNode* treeNodeA, const b3QuantizedBvhNode* treeNodeB, b3NodeOverlapCallback* nodeCallback) const;
void updateSubtreeHeaders(int leftChildNodexIndex,int rightChildNodexIndex);
void updateSubtreeHeaders(int leftChildNodexIndex, int rightChildNodexIndex);
public:
B3_DECLARE_ALIGNED_ALLOCATOR();
b3QuantizedBvh();
virtual ~b3QuantizedBvh();
///***************************************** expert/internal use only *************************
void setQuantizationValues(const b3Vector3& bvhAabbMin,const b3Vector3& bvhAabbMax,b3Scalar quantizationMargin=b3Scalar(1.0));
QuantizedNodeArray& getLeafNodeArray() { return m_quantizedLeafNodes; }
void setQuantizationValues(const b3Vector3& bvhAabbMin, const b3Vector3& bvhAabbMax, b3Scalar quantizationMargin = b3Scalar(1.0));
QuantizedNodeArray& getLeafNodeArray() { return m_quantizedLeafNodes; }
///buildInternal is expert use only: assumes that setQuantizationValues and LeafNodeArray are initialized
void buildInternal();
void buildInternal();
///***************************************** expert/internal use only *************************
void reportAabbOverlappingNodex(b3NodeOverlapCallback* nodeCallback,const b3Vector3& aabbMin,const b3Vector3& aabbMax) const;
void reportRayOverlappingNodex (b3NodeOverlapCallback* nodeCallback, const b3Vector3& raySource, const b3Vector3& rayTarget) const;
void reportBoxCastOverlappingNodex(b3NodeOverlapCallback* nodeCallback, const b3Vector3& raySource, const b3Vector3& rayTarget, const b3Vector3& aabbMin,const b3Vector3& aabbMax) const;
void reportAabbOverlappingNodex(b3NodeOverlapCallback * nodeCallback, const b3Vector3& aabbMin, const b3Vector3& aabbMax) const;
void reportRayOverlappingNodex(b3NodeOverlapCallback * nodeCallback, const b3Vector3& raySource, const b3Vector3& rayTarget) const;
void reportBoxCastOverlappingNodex(b3NodeOverlapCallback * nodeCallback, const b3Vector3& raySource, const b3Vector3& rayTarget, const b3Vector3& aabbMin, const b3Vector3& aabbMax) const;
B3_FORCE_INLINE void quantize(unsigned short* out, const b3Vector3& point,int isMax) const
B3_FORCE_INLINE void quantize(unsigned short* out, const b3Vector3& point, int isMax) const
{
b3Assert(m_useQuantization);
b3Assert(point.getX() <= m_bvhAabbMax.getX());
@@ -357,16 +329,16 @@ public:
///@todo: double-check this
if (isMax)
{
out[0] = (unsigned short) (((unsigned short)(v.getX()+b3Scalar(1.)) | 1));
out[1] = (unsigned short) (((unsigned short)(v.getY()+b3Scalar(1.)) | 1));
out[2] = (unsigned short) (((unsigned short)(v.getZ()+b3Scalar(1.)) | 1));
} else
{
out[0] = (unsigned short) (((unsigned short)(v.getX()) & 0xfffe));
out[1] = (unsigned short) (((unsigned short)(v.getY()) & 0xfffe));
out[2] = (unsigned short) (((unsigned short)(v.getZ()) & 0xfffe));
out[0] = (unsigned short)(((unsigned short)(v.getX() + b3Scalar(1.)) | 1));
out[1] = (unsigned short)(((unsigned short)(v.getY() + b3Scalar(1.)) | 1));
out[2] = (unsigned short)(((unsigned short)(v.getZ() + b3Scalar(1.)) | 1));
}
else
{
out[0] = (unsigned short)(((unsigned short)(v.getX()) & 0xfffe));
out[1] = (unsigned short)(((unsigned short)(v.getY()) & 0xfffe));
out[2] = (unsigned short)(((unsigned short)(v.getZ()) & 0xfffe));
}
#ifdef DEBUG_CHECK_DEQUANTIZATION
b3Vector3 newPoint = unQuantize(out);
@@ -374,105 +346,97 @@ public:
{
if (newPoint.getX() < point.getX())
{
printf("unconservative X, diffX = %f, oldX=%f,newX=%f\n",newPoint.getX()-point.getX(), newPoint.getX(),point.getX());
printf("unconservative X, diffX = %f, oldX=%f,newX=%f\n", newPoint.getX() - point.getX(), newPoint.getX(), point.getX());
}
if (newPoint.getY() < point.getY())
{
printf("unconservative Y, diffY = %f, oldY=%f,newY=%f\n",newPoint.getY()-point.getY(), newPoint.getY(),point.getY());
printf("unconservative Y, diffY = %f, oldY=%f,newY=%f\n", newPoint.getY() - point.getY(), newPoint.getY(), point.getY());
}
if (newPoint.getZ() < point.getZ())
{
printf("unconservative Z, diffZ = %f, oldZ=%f,newZ=%f\n",newPoint.getZ()-point.getZ(), newPoint.getZ(),point.getZ());
printf("unconservative Z, diffZ = %f, oldZ=%f,newZ=%f\n", newPoint.getZ() - point.getZ(), newPoint.getZ(), point.getZ());
}
} else
}
else
{
if (newPoint.getX() > point.getX())
{
printf("unconservative X, diffX = %f, oldX=%f,newX=%f\n",newPoint.getX()-point.getX(), newPoint.getX(),point.getX());
printf("unconservative X, diffX = %f, oldX=%f,newX=%f\n", newPoint.getX() - point.getX(), newPoint.getX(), point.getX());
}
if (newPoint.getY() > point.getY())
{
printf("unconservative Y, diffY = %f, oldY=%f,newY=%f\n",newPoint.getY()-point.getY(), newPoint.getY(),point.getY());
printf("unconservative Y, diffY = %f, oldY=%f,newY=%f\n", newPoint.getY() - point.getY(), newPoint.getY(), point.getY());
}
if (newPoint.getZ() > point.getZ())
{
printf("unconservative Z, diffZ = %f, oldZ=%f,newZ=%f\n",newPoint.getZ()-point.getZ(), newPoint.getZ(),point.getZ());
printf("unconservative Z, diffZ = %f, oldZ=%f,newZ=%f\n", newPoint.getZ() - point.getZ(), newPoint.getZ(), point.getZ());
}
}
#endif //DEBUG_CHECK_DEQUANTIZATION
#endif //DEBUG_CHECK_DEQUANTIZATION
}
B3_FORCE_INLINE void quantizeWithClamp(unsigned short* out, const b3Vector3& point2,int isMax) const
B3_FORCE_INLINE void quantizeWithClamp(unsigned short* out, const b3Vector3& point2, int isMax) const
{
b3Assert(m_useQuantization);
b3Vector3 clampedPoint(point2);
clampedPoint.setMax(m_bvhAabbMin);
clampedPoint.setMin(m_bvhAabbMax);
quantize(out,clampedPoint,isMax);
quantize(out, clampedPoint, isMax);
}
B3_FORCE_INLINE b3Vector3 unQuantize(const unsigned short* vecIn) const
B3_FORCE_INLINE b3Vector3 unQuantize(const unsigned short* vecIn) const
{
b3Vector3 vecOut;
vecOut.setValue(
b3Vector3 vecOut;
vecOut.setValue(
(b3Scalar)(vecIn[0]) / (m_bvhQuantization.getX()),
(b3Scalar)(vecIn[1]) / (m_bvhQuantization.getY()),
(b3Scalar)(vecIn[2]) / (m_bvhQuantization.getZ()));
vecOut += m_bvhAabbMin;
return vecOut;
vecOut += m_bvhAabbMin;
return vecOut;
}
///setTraversalMode let's you choose between stackless, recursive or stackless cache friendly tree traversal. Note this is only implemented for quantized trees.
void setTraversalMode(b3TraversalMode traversalMode)
void setTraversalMode(b3TraversalMode traversalMode)
{
m_traversalMode = traversalMode;
}
B3_FORCE_INLINE QuantizedNodeArray& getQuantizedNodeArray()
{
return m_quantizedContiguousNodes;
B3_FORCE_INLINE QuantizedNodeArray& getQuantizedNodeArray()
{
return m_quantizedContiguousNodes;
}
B3_FORCE_INLINE BvhSubtreeInfoArray& getSubtreeInfoArray()
B3_FORCE_INLINE BvhSubtreeInfoArray& getSubtreeInfoArray()
{
return m_SubtreeHeaders;
}
////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////
/////Calculate space needed to store BVH for serialization
unsigned calculateSerializeBufferSize() const;
/// Data buffer MUST be 16 byte aligned
virtual bool serialize(void *o_alignedDataBuffer, unsigned i_dataBufferSize, bool i_swapEndian) const;
virtual bool serialize(void* o_alignedDataBuffer, unsigned i_dataBufferSize, bool i_swapEndian) const;
///deSerializeInPlace loads and initializes a BVH from a buffer in memory 'in place'
static b3QuantizedBvh *deSerializeInPlace(void *i_alignedDataBuffer, unsigned int i_dataBufferSize, bool i_swapEndian);
static b3QuantizedBvh* deSerializeInPlace(void* i_alignedDataBuffer, unsigned int i_dataBufferSize, bool i_swapEndian);
static unsigned int getAlignmentSerializationPadding();
//////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////
virtual int calculateSerializeBufferSizeNew() const;
virtual int calculateSerializeBufferSizeNew() const;
///fills the dataBuffer and returns the struct name (and 0 on failure)
virtual const char* serialize(void* dataBuffer, b3Serializer* serializer) const;
virtual const char* serialize(void* dataBuffer, b3Serializer* serializer) const;
virtual void deSerializeFloat(struct b3QuantizedBvhFloatData& quantizedBvhFloatData);
virtual void deSerializeFloat(struct b3QuantizedBvhFloatData & quantizedBvhFloatData);
virtual void deSerializeDouble(struct b3QuantizedBvhDoubleData& quantizedBvhDoubleData);
virtual void deSerializeDouble(struct b3QuantizedBvhDoubleData & quantizedBvhDoubleData);
////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////
B3_FORCE_INLINE bool isQuantized()
{
@@ -483,74 +447,65 @@ private:
// Special "copy" constructor that allows for in-place deserialization
// Prevents b3Vector3's default constructor from being called, but doesn't inialize much else
// ownsMemory should most likely be false if deserializing, and if you are not, don't call this (it also changes the function signature, which we need)
b3QuantizedBvh(b3QuantizedBvh &other, bool ownsMemory);
}
;
b3QuantizedBvh(b3QuantizedBvh & other, bool ownsMemory);
};
struct b3OptimizedBvhNodeFloatData
{
b3Vector3FloatData m_aabbMinOrg;
b3Vector3FloatData m_aabbMaxOrg;
int m_escapeIndex;
int m_subPart;
int m_triangleIndex;
b3Vector3FloatData m_aabbMinOrg;
b3Vector3FloatData m_aabbMaxOrg;
int m_escapeIndex;
int m_subPart;
int m_triangleIndex;
char m_pad[4];
};
struct b3OptimizedBvhNodeDoubleData
{
b3Vector3DoubleData m_aabbMinOrg;
b3Vector3DoubleData m_aabbMaxOrg;
int m_escapeIndex;
int m_subPart;
int m_triangleIndex;
char m_pad[4];
b3Vector3DoubleData m_aabbMinOrg;
b3Vector3DoubleData m_aabbMaxOrg;
int m_escapeIndex;
int m_subPart;
int m_triangleIndex;
char m_pad[4];
};
struct b3QuantizedBvhFloatData
struct b3QuantizedBvhFloatData
{
b3Vector3FloatData m_bvhAabbMin;
b3Vector3FloatData m_bvhAabbMax;
b3Vector3FloatData m_bvhQuantization;
int m_curNodeIndex;
int m_useQuantization;
int m_numContiguousLeafNodes;
int m_numQuantizedContiguousNodes;
b3OptimizedBvhNodeFloatData *m_contiguousNodesPtr;
b3QuantizedBvhNodeData *m_quantizedContiguousNodesPtr;
b3BvhSubtreeInfoData *m_subTreeInfoPtr;
int m_traversalMode;
int m_numSubtreeHeaders;
b3Vector3FloatData m_bvhAabbMin;
b3Vector3FloatData m_bvhAabbMax;
b3Vector3FloatData m_bvhQuantization;
int m_curNodeIndex;
int m_useQuantization;
int m_numContiguousLeafNodes;
int m_numQuantizedContiguousNodes;
b3OptimizedBvhNodeFloatData* m_contiguousNodesPtr;
b3QuantizedBvhNodeData* m_quantizedContiguousNodesPtr;
b3BvhSubtreeInfoData* m_subTreeInfoPtr;
int m_traversalMode;
int m_numSubtreeHeaders;
};
struct b3QuantizedBvhDoubleData
struct b3QuantizedBvhDoubleData
{
b3Vector3DoubleData m_bvhAabbMin;
b3Vector3DoubleData m_bvhAabbMax;
b3Vector3DoubleData m_bvhQuantization;
int m_curNodeIndex;
int m_useQuantization;
int m_numContiguousLeafNodes;
int m_numQuantizedContiguousNodes;
b3OptimizedBvhNodeDoubleData *m_contiguousNodesPtr;
b3QuantizedBvhNodeData *m_quantizedContiguousNodesPtr;
b3Vector3DoubleData m_bvhAabbMin;
b3Vector3DoubleData m_bvhAabbMax;
b3Vector3DoubleData m_bvhQuantization;
int m_curNodeIndex;
int m_useQuantization;
int m_numContiguousLeafNodes;
int m_numQuantizedContiguousNodes;
b3OptimizedBvhNodeDoubleData* m_contiguousNodesPtr;
b3QuantizedBvhNodeData* m_quantizedContiguousNodesPtr;
int m_traversalMode;
int m_numSubtreeHeaders;
b3BvhSubtreeInfoData *m_subTreeInfoPtr;
int m_traversalMode;
int m_numSubtreeHeaders;
b3BvhSubtreeInfoData* m_subTreeInfoPtr;
};
B3_FORCE_INLINE int b3QuantizedBvh::calculateSerializeBufferSizeNew() const
B3_FORCE_INLINE int b3QuantizedBvh::calculateSerializeBufferSizeNew() const
{
return sizeof(b3QuantizedBvhData);
}
#endif //B3_QUANTIZED_BVH_H
#endif //B3_QUANTIZED_BVH_H

View File

@@ -15,35 +15,32 @@ subject to the following restrictions:
#include "b3StridingMeshInterface.h"
b3StridingMeshInterface::~b3StridingMeshInterface()
{
}
void b3StridingMeshInterface::InternalProcessAllTriangles(b3InternalTriangleIndexCallback* callback,const b3Vector3& aabbMin,const b3Vector3& aabbMax) const
void b3StridingMeshInterface::InternalProcessAllTriangles(b3InternalTriangleIndexCallback* callback, const b3Vector3& aabbMin, const b3Vector3& aabbMax) const
{
(void)aabbMin;
(void)aabbMax;
int numtotalphysicsverts = 0;
int part,graphicssubparts = getNumSubParts();
const unsigned char * vertexbase;
const unsigned char * indexbase;
int part, graphicssubparts = getNumSubParts();
const unsigned char* vertexbase;
const unsigned char* indexbase;
int indexstride;
PHY_ScalarType type;
PHY_ScalarType gfxindextype;
int stride,numverts,numtriangles;
int stride, numverts, numtriangles;
int gfxindex;
b3Vector3 triangle[3];
b3Vector3 meshScaling = getScaling();
///if the number of parts is big, the performance might drop due to the innerloop switch on indextype
for (part=0;part<graphicssubparts ;part++)
for (part = 0; part < graphicssubparts; part++)
{
getLockedReadOnlyVertexIndexBase(&vertexbase,numverts,type,stride,&indexbase,indexstride,numtriangles,gfxindextype,part);
numtotalphysicsverts+=numtriangles*3; //upper bound
getLockedReadOnlyVertexIndexBase(&vertexbase, numverts, type, stride, &indexbase, indexstride, numtriangles, gfxindextype, part);
numtotalphysicsverts += numtriangles * 3; //upper bound
///unlike that developers want to pass in double-precision meshes in single-precision Bullet build
///so disable this feature by default
@@ -51,143 +48,141 @@ void b3StridingMeshInterface::InternalProcessAllTriangles(b3InternalTriangleInde
switch (type)
{
case PHY_FLOAT:
{
case PHY_FLOAT:
{
float* graphicsbase;
float* graphicsbase;
switch (gfxindextype)
{
case PHY_INTEGER:
{
for (gfxindex = 0; gfxindex < numtriangles; gfxindex++)
{
unsigned int* tri_indices = (unsigned int*)(indexbase + gfxindex * indexstride);
graphicsbase = (float*)(vertexbase + tri_indices[0] * stride);
triangle[0].setValue(graphicsbase[0] * meshScaling.getX(), graphicsbase[1] * meshScaling.getY(), graphicsbase[2] * meshScaling.getZ());
graphicsbase = (float*)(vertexbase + tri_indices[1] * stride);
triangle[1].setValue(graphicsbase[0] * meshScaling.getX(), graphicsbase[1] * meshScaling.getY(), graphicsbase[2] * meshScaling.getZ());
graphicsbase = (float*)(vertexbase + tri_indices[2] * stride);
triangle[2].setValue(graphicsbase[0] * meshScaling.getX(), graphicsbase[1] * meshScaling.getY(), graphicsbase[2] * meshScaling.getZ());
callback->internalProcessTriangleIndex(triangle, part, gfxindex);
}
break;
}
case PHY_SHORT:
{
for (gfxindex = 0; gfxindex < numtriangles; gfxindex++)
{
unsigned short int* tri_indices = (unsigned short int*)(indexbase + gfxindex * indexstride);
graphicsbase = (float*)(vertexbase + tri_indices[0] * stride);
triangle[0].setValue(graphicsbase[0] * meshScaling.getX(), graphicsbase[1] * meshScaling.getY(), graphicsbase[2] * meshScaling.getZ());
graphicsbase = (float*)(vertexbase + tri_indices[1] * stride);
triangle[1].setValue(graphicsbase[0] * meshScaling.getX(), graphicsbase[1] * meshScaling.getY(), graphicsbase[2] * meshScaling.getZ());
graphicsbase = (float*)(vertexbase + tri_indices[2] * stride);
triangle[2].setValue(graphicsbase[0] * meshScaling.getX(), graphicsbase[1] * meshScaling.getY(), graphicsbase[2] * meshScaling.getZ());
callback->internalProcessTriangleIndex(triangle, part, gfxindex);
}
break;
}
case PHY_UCHAR:
{
for (gfxindex = 0; gfxindex < numtriangles; gfxindex++)
{
unsigned char* tri_indices = (unsigned char*)(indexbase + gfxindex * indexstride);
graphicsbase = (float*)(vertexbase + tri_indices[0] * stride);
triangle[0].setValue(graphicsbase[0] * meshScaling.getX(), graphicsbase[1] * meshScaling.getY(), graphicsbase[2] * meshScaling.getZ());
graphicsbase = (float*)(vertexbase + tri_indices[1] * stride);
triangle[1].setValue(graphicsbase[0] * meshScaling.getX(), graphicsbase[1] * meshScaling.getY(), graphicsbase[2] * meshScaling.getZ());
graphicsbase = (float*)(vertexbase + tri_indices[2] * stride);
triangle[2].setValue(graphicsbase[0] * meshScaling.getX(), graphicsbase[1] * meshScaling.getY(), graphicsbase[2] * meshScaling.getZ());
callback->internalProcessTriangleIndex(triangle, part, gfxindex);
}
break;
}
default:
b3Assert((gfxindextype == PHY_INTEGER) || (gfxindextype == PHY_SHORT));
}
break;
}
switch (gfxindextype)
{
case PHY_INTEGER:
{
for (gfxindex=0;gfxindex<numtriangles;gfxindex++)
{
unsigned int* tri_indices= (unsigned int*)(indexbase+gfxindex*indexstride);
graphicsbase = (float*)(vertexbase+tri_indices[0]*stride);
triangle[0].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),graphicsbase[2]*meshScaling.getZ());
graphicsbase = (float*)(vertexbase+tri_indices[1]*stride);
triangle[1].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(), graphicsbase[2]*meshScaling.getZ());
graphicsbase = (float*)(vertexbase+tri_indices[2]*stride);
triangle[2].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(), graphicsbase[2]*meshScaling.getZ());
callback->internalProcessTriangleIndex(triangle,part,gfxindex);
}
break;
}
case PHY_SHORT:
{
for (gfxindex=0;gfxindex<numtriangles;gfxindex++)
{
unsigned short int* tri_indices= (unsigned short int*)(indexbase+gfxindex*indexstride);
graphicsbase = (float*)(vertexbase+tri_indices[0]*stride);
triangle[0].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),graphicsbase[2]*meshScaling.getZ());
graphicsbase = (float*)(vertexbase+tri_indices[1]*stride);
triangle[1].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(), graphicsbase[2]*meshScaling.getZ());
graphicsbase = (float*)(vertexbase+tri_indices[2]*stride);
triangle[2].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(), graphicsbase[2]*meshScaling.getZ());
callback->internalProcessTriangleIndex(triangle,part,gfxindex);
}
break;
}
case PHY_UCHAR:
{
for (gfxindex=0;gfxindex<numtriangles;gfxindex++)
{
unsigned char* tri_indices= (unsigned char*)(indexbase+gfxindex*indexstride);
graphicsbase = (float*)(vertexbase+tri_indices[0]*stride);
triangle[0].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),graphicsbase[2]*meshScaling.getZ());
graphicsbase = (float*)(vertexbase+tri_indices[1]*stride);
triangle[1].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(), graphicsbase[2]*meshScaling.getZ());
graphicsbase = (float*)(vertexbase+tri_indices[2]*stride);
triangle[2].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(), graphicsbase[2]*meshScaling.getZ());
callback->internalProcessTriangleIndex(triangle,part,gfxindex);
}
break;
}
default:
b3Assert((gfxindextype == PHY_INTEGER) || (gfxindextype == PHY_SHORT));
}
break;
}
case PHY_DOUBLE:
case PHY_DOUBLE:
{
double* graphicsbase;
switch (gfxindextype)
{
case PHY_INTEGER:
case PHY_INTEGER:
{
for (gfxindex=0;gfxindex<numtriangles;gfxindex++)
for (gfxindex = 0; gfxindex < numtriangles; gfxindex++)
{
unsigned int* tri_indices= (unsigned int*)(indexbase+gfxindex*indexstride);
graphicsbase = (double*)(vertexbase+tri_indices[0]*stride);
triangle[0].setValue((b3Scalar)graphicsbase[0]*meshScaling.getX(),(b3Scalar)graphicsbase[1]*meshScaling.getY(),(b3Scalar)graphicsbase[2]*meshScaling.getZ());
graphicsbase = (double*)(vertexbase+tri_indices[1]*stride);
triangle[1].setValue((b3Scalar)graphicsbase[0]*meshScaling.getX(),(b3Scalar)graphicsbase[1]*meshScaling.getY(), (b3Scalar)graphicsbase[2]*meshScaling.getZ());
graphicsbase = (double*)(vertexbase+tri_indices[2]*stride);
triangle[2].setValue((b3Scalar)graphicsbase[0]*meshScaling.getX(),(b3Scalar)graphicsbase[1]*meshScaling.getY(), (b3Scalar)graphicsbase[2]*meshScaling.getZ());
callback->internalProcessTriangleIndex(triangle,part,gfxindex);
unsigned int* tri_indices = (unsigned int*)(indexbase + gfxindex * indexstride);
graphicsbase = (double*)(vertexbase + tri_indices[0] * stride);
triangle[0].setValue((b3Scalar)graphicsbase[0] * meshScaling.getX(), (b3Scalar)graphicsbase[1] * meshScaling.getY(), (b3Scalar)graphicsbase[2] * meshScaling.getZ());
graphicsbase = (double*)(vertexbase + tri_indices[1] * stride);
triangle[1].setValue((b3Scalar)graphicsbase[0] * meshScaling.getX(), (b3Scalar)graphicsbase[1] * meshScaling.getY(), (b3Scalar)graphicsbase[2] * meshScaling.getZ());
graphicsbase = (double*)(vertexbase + tri_indices[2] * stride);
triangle[2].setValue((b3Scalar)graphicsbase[0] * meshScaling.getX(), (b3Scalar)graphicsbase[1] * meshScaling.getY(), (b3Scalar)graphicsbase[2] * meshScaling.getZ());
callback->internalProcessTriangleIndex(triangle, part, gfxindex);
}
break;
}
case PHY_SHORT:
case PHY_SHORT:
{
for (gfxindex=0;gfxindex<numtriangles;gfxindex++)
for (gfxindex = 0; gfxindex < numtriangles; gfxindex++)
{
unsigned short int* tri_indices= (unsigned short int*)(indexbase+gfxindex*indexstride);
graphicsbase = (double*)(vertexbase+tri_indices[0]*stride);
triangle[0].setValue((b3Scalar)graphicsbase[0]*meshScaling.getX(),(b3Scalar)graphicsbase[1]*meshScaling.getY(),(b3Scalar)graphicsbase[2]*meshScaling.getZ());
graphicsbase = (double*)(vertexbase+tri_indices[1]*stride);
triangle[1].setValue((b3Scalar)graphicsbase[0]*meshScaling.getX(),(b3Scalar)graphicsbase[1]*meshScaling.getY(), (b3Scalar)graphicsbase[2]*meshScaling.getZ());
graphicsbase = (double*)(vertexbase+tri_indices[2]*stride);
triangle[2].setValue((b3Scalar)graphicsbase[0]*meshScaling.getX(),(b3Scalar)graphicsbase[1]*meshScaling.getY(), (b3Scalar)graphicsbase[2]*meshScaling.getZ());
callback->internalProcessTriangleIndex(triangle,part,gfxindex);
unsigned short int* tri_indices = (unsigned short int*)(indexbase + gfxindex * indexstride);
graphicsbase = (double*)(vertexbase + tri_indices[0] * stride);
triangle[0].setValue((b3Scalar)graphicsbase[0] * meshScaling.getX(), (b3Scalar)graphicsbase[1] * meshScaling.getY(), (b3Scalar)graphicsbase[2] * meshScaling.getZ());
graphicsbase = (double*)(vertexbase + tri_indices[1] * stride);
triangle[1].setValue((b3Scalar)graphicsbase[0] * meshScaling.getX(), (b3Scalar)graphicsbase[1] * meshScaling.getY(), (b3Scalar)graphicsbase[2] * meshScaling.getZ());
graphicsbase = (double*)(vertexbase + tri_indices[2] * stride);
triangle[2].setValue((b3Scalar)graphicsbase[0] * meshScaling.getX(), (b3Scalar)graphicsbase[1] * meshScaling.getY(), (b3Scalar)graphicsbase[2] * meshScaling.getZ());
callback->internalProcessTriangleIndex(triangle, part, gfxindex);
}
break;
}
case PHY_UCHAR:
case PHY_UCHAR:
{
for (gfxindex=0;gfxindex<numtriangles;gfxindex++)
for (gfxindex = 0; gfxindex < numtriangles; gfxindex++)
{
unsigned char* tri_indices= (unsigned char*)(indexbase+gfxindex*indexstride);
graphicsbase = (double*)(vertexbase+tri_indices[0]*stride);
triangle[0].setValue((b3Scalar)graphicsbase[0]*meshScaling.getX(),(b3Scalar)graphicsbase[1]*meshScaling.getY(),(b3Scalar)graphicsbase[2]*meshScaling.getZ());
graphicsbase = (double*)(vertexbase+tri_indices[1]*stride);
triangle[1].setValue((b3Scalar)graphicsbase[0]*meshScaling.getX(),(b3Scalar)graphicsbase[1]*meshScaling.getY(), (b3Scalar)graphicsbase[2]*meshScaling.getZ());
graphicsbase = (double*)(vertexbase+tri_indices[2]*stride);
triangle[2].setValue((b3Scalar)graphicsbase[0]*meshScaling.getX(),(b3Scalar)graphicsbase[1]*meshScaling.getY(), (b3Scalar)graphicsbase[2]*meshScaling.getZ());
callback->internalProcessTriangleIndex(triangle,part,gfxindex);
unsigned char* tri_indices = (unsigned char*)(indexbase + gfxindex * indexstride);
graphicsbase = (double*)(vertexbase + tri_indices[0] * stride);
triangle[0].setValue((b3Scalar)graphicsbase[0] * meshScaling.getX(), (b3Scalar)graphicsbase[1] * meshScaling.getY(), (b3Scalar)graphicsbase[2] * meshScaling.getZ());
graphicsbase = (double*)(vertexbase + tri_indices[1] * stride);
triangle[1].setValue((b3Scalar)graphicsbase[0] * meshScaling.getX(), (b3Scalar)graphicsbase[1] * meshScaling.getY(), (b3Scalar)graphicsbase[2] * meshScaling.getZ());
graphicsbase = (double*)(vertexbase + tri_indices[2] * stride);
triangle[2].setValue((b3Scalar)graphicsbase[0] * meshScaling.getX(), (b3Scalar)graphicsbase[1] * meshScaling.getY(), (b3Scalar)graphicsbase[2] * meshScaling.getZ());
callback->internalProcessTriangleIndex(triangle, part, gfxindex);
}
break;
}
default:
b3Assert((gfxindextype == PHY_INTEGER) || (gfxindextype == PHY_SHORT));
default:
b3Assert((gfxindextype == PHY_INTEGER) || (gfxindextype == PHY_SHORT));
}
break;
}
default:
b3Assert((type == PHY_FLOAT) || (type == PHY_DOUBLE));
default:
b3Assert((type == PHY_FLOAT) || (type == PHY_DOUBLE));
}
unLockReadOnlyVertexBase(part);
}
}
void b3StridingMeshInterface::calculateAabbBruteForce(b3Vector3& aabbMin,b3Vector3& aabbMax)
void b3StridingMeshInterface::calculateAabbBruteForce(b3Vector3& aabbMin, b3Vector3& aabbMax)
{
struct AabbCalculationCallback : public b3InternalTriangleIndexCallback
struct AabbCalculationCallback : public b3InternalTriangleIndexCallback
{
b3Vector3 m_aabbMin;
b3Vector3 m_aabbMax;
b3Vector3 m_aabbMin;
b3Vector3 m_aabbMax;
AabbCalculationCallback()
{
m_aabbMin.setValue(b3Scalar(B3_LARGE_FLOAT),b3Scalar(B3_LARGE_FLOAT),b3Scalar(B3_LARGE_FLOAT));
m_aabbMax.setValue(b3Scalar(-B3_LARGE_FLOAT),b3Scalar(-B3_LARGE_FLOAT),b3Scalar(-B3_LARGE_FLOAT));
m_aabbMin.setValue(b3Scalar(B3_LARGE_FLOAT), b3Scalar(B3_LARGE_FLOAT), b3Scalar(B3_LARGE_FLOAT));
m_aabbMax.setValue(b3Scalar(-B3_LARGE_FLOAT), b3Scalar(-B3_LARGE_FLOAT), b3Scalar(-B3_LARGE_FLOAT));
}
virtual void internalProcessTriangleIndex(b3Vector3* triangle,int partId,int triangleIndex)
virtual void internalProcessTriangleIndex(b3Vector3* triangle, int partId, int triangleIndex)
{
(void)partId;
(void)triangleIndex;
@@ -202,13 +197,11 @@ void b3StridingMeshInterface::calculateAabbBruteForce(b3Vector3& aabbMin,b3Vecto
};
//first calculate the total aabb for all triangles
AabbCalculationCallback aabbCallback;
aabbMin.setValue(b3Scalar(-B3_LARGE_FLOAT),b3Scalar(-B3_LARGE_FLOAT),b3Scalar(-B3_LARGE_FLOAT));
aabbMax.setValue(b3Scalar(B3_LARGE_FLOAT),b3Scalar(B3_LARGE_FLOAT),b3Scalar(B3_LARGE_FLOAT));
InternalProcessAllTriangles(&aabbCallback,aabbMin,aabbMax);
AabbCalculationCallback aabbCallback;
aabbMin.setValue(b3Scalar(-B3_LARGE_FLOAT), b3Scalar(-B3_LARGE_FLOAT), b3Scalar(-B3_LARGE_FLOAT));
aabbMax.setValue(b3Scalar(B3_LARGE_FLOAT), b3Scalar(B3_LARGE_FLOAT), b3Scalar(B3_LARGE_FLOAT));
InternalProcessAllTriangles(&aabbCallback, aabbMin, aabbMax);
aabbMin = aabbCallback.m_aabbMin;
aabbMax = aabbCallback.m_aabbMax;
}

View File

@@ -20,148 +20,139 @@ subject to the following restrictions:
#include "b3TriangleCallback.h"
//#include "b3ConcaveShape.h"
enum PHY_ScalarType {
PHY_FLOAT, PHY_DOUBLE, PHY_INTEGER, PHY_SHORT,
PHY_FIXEDPOINT88, PHY_UCHAR
enum PHY_ScalarType
{
PHY_FLOAT,
PHY_DOUBLE,
PHY_INTEGER,
PHY_SHORT,
PHY_FIXEDPOINT88,
PHY_UCHAR
};
/// The b3StridingMeshInterface is the interface class for high performance generic access to triangle meshes, used in combination with b3BvhTriangleMeshShape and some other collision shapes.
/// Using index striding of 3*sizeof(integer) it can use triangle arrays, using index striding of 1*sizeof(integer) it can handle triangle strips.
/// It allows for sharing graphics and collision meshes. Also it provides locking/unlocking of graphics meshes that are in gpu memory.
B3_ATTRIBUTE_ALIGNED16(class ) b3StridingMeshInterface
B3_ATTRIBUTE_ALIGNED16(class)
b3StridingMeshInterface
{
protected:
b3Vector3 m_scaling;
protected:
b3Vector3 m_scaling;
public:
B3_DECLARE_ALIGNED_ALLOCATOR();
b3StridingMeshInterface() :m_scaling(b3MakeVector3(b3Scalar(1.),b3Scalar(1.),b3Scalar(1.)))
{
public:
B3_DECLARE_ALIGNED_ALLOCATOR();
}
b3StridingMeshInterface() : m_scaling(b3MakeVector3(b3Scalar(1.), b3Scalar(1.), b3Scalar(1.)))
{
}
virtual ~b3StridingMeshInterface();
virtual ~b3StridingMeshInterface();
virtual void InternalProcessAllTriangles(b3InternalTriangleIndexCallback * callback, const b3Vector3& aabbMin, const b3Vector3& aabbMax) const;
///brute force method to calculate aabb
void calculateAabbBruteForce(b3Vector3 & aabbMin, b3Vector3 & aabbMax);
virtual void InternalProcessAllTriangles(b3InternalTriangleIndexCallback* callback,const b3Vector3& aabbMin,const b3Vector3& aabbMax) const;
/// get read and write access to a subpart of a triangle mesh
/// this subpart has a continuous array of vertices and indices
/// in this way the mesh can be handled as chunks of memory with striding
/// very similar to OpenGL vertexarray support
/// make a call to unLockVertexBase when the read and write access is finished
virtual void getLockedVertexIndexBase(unsigned char** vertexbase, int& numverts, PHY_ScalarType& type, int& stride, unsigned char** indexbase, int& indexstride, int& numfaces, PHY_ScalarType& indicestype, int subpart = 0) = 0;
///brute force method to calculate aabb
void calculateAabbBruteForce(b3Vector3& aabbMin,b3Vector3& aabbMax);
virtual void getLockedReadOnlyVertexIndexBase(const unsigned char** vertexbase, int& numverts, PHY_ScalarType& type, int& stride, const unsigned char** indexbase, int& indexstride, int& numfaces, PHY_ScalarType& indicestype, int subpart = 0) const = 0;
/// get read and write access to a subpart of a triangle mesh
/// this subpart has a continuous array of vertices and indices
/// in this way the mesh can be handled as chunks of memory with striding
/// very similar to OpenGL vertexarray support
/// make a call to unLockVertexBase when the read and write access is finished
virtual void getLockedVertexIndexBase(unsigned char **vertexbase, int& numverts,PHY_ScalarType& type, int& stride,unsigned char **indexbase,int & indexstride,int& numfaces,PHY_ScalarType& indicestype,int subpart=0)=0;
virtual void getLockedReadOnlyVertexIndexBase(const unsigned char **vertexbase, int& numverts,PHY_ScalarType& type, int& stride,const unsigned char **indexbase,int & indexstride,int& numfaces,PHY_ScalarType& indicestype,int subpart=0) const=0;
/// unLockVertexBase finishes the access to a subpart of the triangle mesh
/// make a call to unLockVertexBase when the read and write access (using getLockedVertexIndexBase) is finished
virtual void unLockVertexBase(int subpart)=0;
/// unLockVertexBase finishes the access to a subpart of the triangle mesh
/// make a call to unLockVertexBase when the read and write access (using getLockedVertexIndexBase) is finished
virtual void unLockVertexBase(int subpart) = 0;
virtual void unLockReadOnlyVertexBase(int subpart) const=0;
virtual void unLockReadOnlyVertexBase(int subpart) const = 0;
/// getNumSubParts returns the number of seperate subparts
/// each subpart has a continuous array of vertices and indices
virtual int getNumSubParts() const = 0;
/// getNumSubParts returns the number of seperate subparts
/// each subpart has a continuous array of vertices and indices
virtual int getNumSubParts() const=0;
virtual void preallocateVertices(int numverts) = 0;
virtual void preallocateIndices(int numindices) = 0;
virtual void preallocateVertices(int numverts)=0;
virtual void preallocateIndices(int numindices)=0;
virtual bool hasPremadeAabb() const { return false; }
virtual void setPremadeAabb(const b3Vector3& aabbMin, const b3Vector3& aabbMax) const
{
(void)aabbMin;
(void)aabbMax;
}
virtual void getPremadeAabb(b3Vector3 * aabbMin, b3Vector3 * aabbMax) const
{
(void)aabbMin;
(void)aabbMax;
}
virtual bool hasPremadeAabb() const { return false; }
virtual void setPremadeAabb(const b3Vector3& aabbMin, const b3Vector3& aabbMax ) const
{
(void) aabbMin;
(void) aabbMax;
}
virtual void getPremadeAabb(b3Vector3* aabbMin, b3Vector3* aabbMax ) const
{
(void) aabbMin;
(void) aabbMax;
}
const b3Vector3& getScaling() const {
return m_scaling;
}
void setScaling(const b3Vector3& scaling)
{
m_scaling = scaling;
}
virtual int calculateSerializeBufferSize() const;
///fills the dataBuffer and returns the struct name (and 0 on failure)
//virtual const char* serialize(void* dataBuffer, b3Serializer* serializer) const;
const b3Vector3& getScaling() const
{
return m_scaling;
}
void setScaling(const b3Vector3& scaling)
{
m_scaling = scaling;
}
virtual int calculateSerializeBufferSize() const;
///fills the dataBuffer and returns the struct name (and 0 on failure)
//virtual const char* serialize(void* dataBuffer, b3Serializer* serializer) const;
};
struct b3IntIndexData
struct b3IntIndexData
{
int m_value;
int m_value;
};
struct b3ShortIntIndexData
struct b3ShortIntIndexData
{
short m_value;
char m_pad[2];
};
struct b3ShortIntIndexTripletData
struct b3ShortIntIndexTripletData
{
short m_values[3];
char m_pad[2];
short m_values[3];
char m_pad[2];
};
struct b3CharIndexTripletData
struct b3CharIndexTripletData
{
unsigned char m_values[3];
char m_pad;
char m_pad;
};
///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
struct b3MeshPartData
struct b3MeshPartData
{
b3Vector3FloatData *m_vertices3f;
b3Vector3DoubleData *m_vertices3d;
b3Vector3FloatData* m_vertices3f;
b3Vector3DoubleData* m_vertices3d;
b3IntIndexData *m_indices32;
b3ShortIntIndexTripletData *m_3indices16;
b3CharIndexTripletData *m_3indices8;
b3IntIndexData* m_indices32;
b3ShortIntIndexTripletData* m_3indices16;
b3CharIndexTripletData* m_3indices8;
b3ShortIntIndexData *m_indices16;//backwards compatibility
b3ShortIntIndexData* m_indices16; //backwards compatibility
int m_numTriangles;//length of m_indices = m_numTriangles
int m_numVertices;
int m_numTriangles; //length of m_indices = m_numTriangles
int m_numVertices;
};
///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
struct b3StridingMeshInterfaceData
struct b3StridingMeshInterfaceData
{
b3MeshPartData *m_meshPartsPtr;
b3Vector3FloatData m_scaling;
int m_numMeshParts;
b3MeshPartData* m_meshPartsPtr;
b3Vector3FloatData m_scaling;
int m_numMeshParts;
char m_padding[4];
};
B3_FORCE_INLINE int b3StridingMeshInterface::calculateSerializeBufferSize() const
B3_FORCE_INLINE int b3StridingMeshInterface::calculateSerializeBufferSize() const
{
return sizeof(b3StridingMeshInterfaceData);
}
#endif //B3_STRIDING_MESHINTERFACE_H
#endif //B3_STRIDING_MESHINTERFACE_H

View File

@@ -6,33 +6,29 @@
#include "Bullet3Common/b3AlignedObjectArray.h"
#include "b3VectorFloat4.h"
struct b3GjkPairDetector;
inline b3Vector3 localGetSupportVertexWithMargin(const float4& supportVec,const struct b3ConvexPolyhedronData* hull,
const b3AlignedObjectArray<b3Vector3>& verticesA, b3Scalar margin)
inline b3Vector3 localGetSupportVertexWithMargin(const float4& supportVec, const struct b3ConvexPolyhedronData* hull,
const b3AlignedObjectArray<b3Vector3>& verticesA, b3Scalar margin)
{
b3Vector3 supVec = b3MakeVector3(b3Scalar(0.),b3Scalar(0.),b3Scalar(0.));
b3Vector3 supVec = b3MakeVector3(b3Scalar(0.), b3Scalar(0.), b3Scalar(0.));
b3Scalar maxDot = b3Scalar(-B3_LARGE_FLOAT);
// Here we take advantage of dot(a, b*c) = dot(a*b, c). Note: This is true mathematically, but not numerically.
if( 0 < hull->m_numVertices )
{
const b3Vector3 scaled = supportVec;
int index = (int) scaled.maxDot( &verticesA[hull->m_vertexOffset], hull->m_numVertices, maxDot);
return verticesA[hull->m_vertexOffset+index];
}
return supVec;
// Here we take advantage of dot(a, b*c) = dot(a*b, c). Note: This is true mathematically, but not numerically.
if (0 < hull->m_numVertices)
{
const b3Vector3 scaled = supportVec;
int index = (int)scaled.maxDot(&verticesA[hull->m_vertexOffset], hull->m_numVertices, maxDot);
return verticesA[hull->m_vertexOffset + index];
}
return supVec;
}
inline b3Vector3 localGetSupportVertexWithoutMargin(const float4& supportVec,const struct b3ConvexPolyhedronData* hull,
const b3AlignedObjectArray<b3Vector3>& verticesA)
inline b3Vector3 localGetSupportVertexWithoutMargin(const float4& supportVec, const struct b3ConvexPolyhedronData* hull,
const b3AlignedObjectArray<b3Vector3>& verticesA)
{
return localGetSupportVertexWithMargin(supportVec,hull,verticesA,0.f);
return localGetSupportVertexWithMargin(supportVec, hull, verticesA, 0.f);
}
#endif //B3_SUPPORT_MAPPINGS_H
#endif //B3_SUPPORT_MAPPINGS_H

View File

@@ -17,12 +17,8 @@ subject to the following restrictions:
b3TriangleCallback::~b3TriangleCallback()
{
}
b3InternalTriangleIndexCallback::~b3InternalTriangleIndexCallback()
{
}

View File

@@ -18,13 +18,11 @@ subject to the following restrictions:
#include "Bullet3Common/b3Vector3.h"
///The b3TriangleCallback provides a callback for each overlapping triangle when calling processAllTriangles.
///This callback is called by processAllTriangles for all b3ConcaveShape derived class, such as b3BvhTriangleMeshShape, b3StaticPlaneShape and b3HeightfieldTerrainShape.
class b3TriangleCallback
{
public:
virtual ~b3TriangleCallback();
virtual void processTriangle(b3Vector3* triangle, int partId, int triangleIndex) = 0;
};
@@ -32,11 +30,8 @@ public:
class b3InternalTriangleIndexCallback
{
public:
virtual ~b3InternalTriangleIndexCallback();
virtual void internalProcessTriangleIndex(b3Vector3* triangle,int partId,int triangleIndex) = 0;
virtual void internalProcessTriangleIndex(b3Vector3* triangle, int partId, int triangleIndex) = 0;
};
#endif //B3_TRIANGLE_CALLBACK_H
#endif //B3_TRIANGLE_CALLBACK_H

View File

@@ -15,81 +15,76 @@ subject to the following restrictions:
#include "b3TriangleIndexVertexArray.h"
b3TriangleIndexVertexArray::b3TriangleIndexVertexArray(int numTriangles,int* triangleIndexBase,int triangleIndexStride,int numVertices,b3Scalar* vertexBase,int vertexStride)
: m_hasAabb(0)
b3TriangleIndexVertexArray::b3TriangleIndexVertexArray(int numTriangles, int* triangleIndexBase, int triangleIndexStride, int numVertices, b3Scalar* vertexBase, int vertexStride)
: m_hasAabb(0)
{
b3IndexedMesh mesh;
mesh.m_numTriangles = numTriangles;
mesh.m_triangleIndexBase = (const unsigned char *)triangleIndexBase;
mesh.m_triangleIndexBase = (const unsigned char*)triangleIndexBase;
mesh.m_triangleIndexStride = triangleIndexStride;
mesh.m_numVertices = numVertices;
mesh.m_vertexBase = (const unsigned char *)vertexBase;
mesh.m_vertexBase = (const unsigned char*)vertexBase;
mesh.m_vertexStride = vertexStride;
addIndexedMesh(mesh);
}
b3TriangleIndexVertexArray::~b3TriangleIndexVertexArray()
{
}
void b3TriangleIndexVertexArray::getLockedVertexIndexBase(unsigned char **vertexbase, int& numverts,PHY_ScalarType& type, int& vertexStride,unsigned char **indexbase,int & indexstride,int& numfaces,PHY_ScalarType& indicestype,int subpart)
void b3TriangleIndexVertexArray::getLockedVertexIndexBase(unsigned char** vertexbase, int& numverts, PHY_ScalarType& type, int& vertexStride, unsigned char** indexbase, int& indexstride, int& numfaces, PHY_ScalarType& indicestype, int subpart)
{
b3Assert(subpart< getNumSubParts() );
b3Assert(subpart < getNumSubParts());
b3IndexedMesh& mesh = m_indexedMeshes[subpart];
numverts = mesh.m_numVertices;
(*vertexbase) = (unsigned char *) mesh.m_vertexBase;
(*vertexbase) = (unsigned char*)mesh.m_vertexBase;
type = mesh.m_vertexType;
type = mesh.m_vertexType;
vertexStride = mesh.m_vertexStride;
numfaces = mesh.m_numTriangles;
(*indexbase) = (unsigned char *)mesh.m_triangleIndexBase;
(*indexbase) = (unsigned char*)mesh.m_triangleIndexBase;
indexstride = mesh.m_triangleIndexStride;
indicestype = mesh.m_indexType;
}
void b3TriangleIndexVertexArray::getLockedReadOnlyVertexIndexBase(const unsigned char **vertexbase, int& numverts,PHY_ScalarType& type, int& vertexStride,const unsigned char **indexbase,int & indexstride,int& numfaces,PHY_ScalarType& indicestype,int subpart) const
void b3TriangleIndexVertexArray::getLockedReadOnlyVertexIndexBase(const unsigned char** vertexbase, int& numverts, PHY_ScalarType& type, int& vertexStride, const unsigned char** indexbase, int& indexstride, int& numfaces, PHY_ScalarType& indicestype, int subpart) const
{
const b3IndexedMesh& mesh = m_indexedMeshes[subpart];
numverts = mesh.m_numVertices;
(*vertexbase) = (const unsigned char *)mesh.m_vertexBase;
(*vertexbase) = (const unsigned char*)mesh.m_vertexBase;
type = mesh.m_vertexType;
type = mesh.m_vertexType;
vertexStride = mesh.m_vertexStride;
numfaces = mesh.m_numTriangles;
(*indexbase) = (const unsigned char *)mesh.m_triangleIndexBase;
(*indexbase) = (const unsigned char*)mesh.m_triangleIndexBase;
indexstride = mesh.m_triangleIndexStride;
indicestype = mesh.m_indexType;
}
bool b3TriangleIndexVertexArray::hasPremadeAabb() const
bool b3TriangleIndexVertexArray::hasPremadeAabb() const
{
return (m_hasAabb == 1);
}
void b3TriangleIndexVertexArray::setPremadeAabb(const b3Vector3& aabbMin, const b3Vector3& aabbMax ) const
void b3TriangleIndexVertexArray::setPremadeAabb(const b3Vector3& aabbMin, const b3Vector3& aabbMax) const
{
m_aabbMin = aabbMin;
m_aabbMax = aabbMax;
m_hasAabb = 1; // this is intentionally an int see notes in header
m_hasAabb = 1; // this is intentionally an int see notes in header
}
void b3TriangleIndexVertexArray::getPremadeAabb(b3Vector3* aabbMin, b3Vector3* aabbMax ) const
void b3TriangleIndexVertexArray::getPremadeAabb(b3Vector3* aabbMin, b3Vector3* aabbMax) const
{
*aabbMin = m_aabbMin;
*aabbMax = m_aabbMax;
}

View File

@@ -20,62 +20,59 @@ subject to the following restrictions:
#include "Bullet3Common/b3AlignedObjectArray.h"
#include "Bullet3Common/b3Scalar.h"
///The b3IndexedMesh indexes a single vertex and index array. Multiple b3IndexedMesh objects can be passed into a b3TriangleIndexVertexArray using addIndexedMesh.
///Instead of the number of indices, we pass the number of triangles.
B3_ATTRIBUTE_ALIGNED16( struct) b3IndexedMesh
B3_ATTRIBUTE_ALIGNED16(struct)
b3IndexedMesh
{
B3_DECLARE_ALIGNED_ALLOCATOR();
int m_numTriangles;
const unsigned char * m_triangleIndexBase;
// Size in byte of the indices for one triangle (3*sizeof(index_type) if the indices are tightly packed)
int m_triangleIndexStride;
int m_numVertices;
const unsigned char * m_vertexBase;
// Size of a vertex, in bytes
int m_vertexStride;
int m_numTriangles;
const unsigned char* m_triangleIndexBase;
// Size in byte of the indices for one triangle (3*sizeof(index_type) if the indices are tightly packed)
int m_triangleIndexStride;
int m_numVertices;
const unsigned char* m_vertexBase;
// Size of a vertex, in bytes
int m_vertexStride;
// The index type is set when adding an indexed mesh to the
// b3TriangleIndexVertexArray, do not set it manually
PHY_ScalarType m_indexType;
// The index type is set when adding an indexed mesh to the
// b3TriangleIndexVertexArray, do not set it manually
PHY_ScalarType m_indexType;
// The vertex type has a default type similar to Bullet's precision mode (float or double)
// but can be set manually if you for example run Bullet with double precision but have
// mesh data in single precision..
PHY_ScalarType m_vertexType;
// The vertex type has a default type similar to Bullet's precision mode (float or double)
// but can be set manually if you for example run Bullet with double precision but have
// mesh data in single precision..
PHY_ScalarType m_vertexType;
b3IndexedMesh()
:m_indexType(PHY_INTEGER),
b3IndexedMesh()
: m_indexType(PHY_INTEGER),
#ifdef B3_USE_DOUBLE_PRECISION
m_vertexType(PHY_DOUBLE)
#else // B3_USE_DOUBLE_PRECISION
m_vertexType(PHY_FLOAT)
#endif // B3_USE_DOUBLE_PRECISION
{
}
}
;
m_vertexType(PHY_DOUBLE)
#else // B3_USE_DOUBLE_PRECISION
m_vertexType(PHY_FLOAT)
#endif // B3_USE_DOUBLE_PRECISION
{
}
};
typedef b3AlignedObjectArray<b3IndexedMesh> IndexedMeshArray;
typedef b3AlignedObjectArray<b3IndexedMesh> IndexedMeshArray;
///The b3TriangleIndexVertexArray allows to access multiple triangle meshes, by indexing into existing triangle/index arrays.
///Additional meshes can be added using addIndexedMesh
///No duplcate is made of the vertex/index data, it only indexes into external vertex/index arrays.
///So keep those arrays around during the lifetime of this b3TriangleIndexVertexArray.
B3_ATTRIBUTE_ALIGNED16( class) b3TriangleIndexVertexArray : public b3StridingMeshInterface
B3_ATTRIBUTE_ALIGNED16(class)
b3TriangleIndexVertexArray : public b3StridingMeshInterface
{
protected:
IndexedMeshArray m_indexedMeshes;
IndexedMeshArray m_indexedMeshes;
int m_pad[2];
mutable int m_hasAabb; // using int instead of bool to maintain alignment
mutable int m_hasAabb; // using int instead of bool to maintain alignment
mutable b3Vector3 m_aabbMin;
mutable b3Vector3 m_aabbMax;
public:
B3_DECLARE_ALIGNED_ALLOCATOR();
b3TriangleIndexVertexArray() : m_hasAabb(0)
@@ -85,49 +82,47 @@ public:
virtual ~b3TriangleIndexVertexArray();
//just to be backwards compatible
b3TriangleIndexVertexArray(int numTriangles,int* triangleIndexBase,int triangleIndexStride,int numVertices,b3Scalar* vertexBase,int vertexStride);
void addIndexedMesh(const b3IndexedMesh& mesh, PHY_ScalarType indexType = PHY_INTEGER)
b3TriangleIndexVertexArray(int numTriangles, int* triangleIndexBase, int triangleIndexStride, int numVertices, b3Scalar* vertexBase, int vertexStride);
void addIndexedMesh(const b3IndexedMesh& mesh, PHY_ScalarType indexType = PHY_INTEGER)
{
m_indexedMeshes.push_back(mesh);
m_indexedMeshes[m_indexedMeshes.size()-1].m_indexType = indexType;
m_indexedMeshes[m_indexedMeshes.size() - 1].m_indexType = indexType;
}
virtual void getLockedVertexIndexBase(unsigned char **vertexbase, int& numverts,PHY_ScalarType& type, int& vertexStride,unsigned char **indexbase,int & indexstride,int& numfaces,PHY_ScalarType& indicestype,int subpart=0);
virtual void getLockedReadOnlyVertexIndexBase(const unsigned char **vertexbase, int& numverts,PHY_ScalarType& type, int& vertexStride,const unsigned char **indexbase,int & indexstride,int& numfaces,PHY_ScalarType& indicestype,int subpart=0) const;
virtual void getLockedVertexIndexBase(unsigned char** vertexbase, int& numverts, PHY_ScalarType& type, int& vertexStride, unsigned char** indexbase, int& indexstride, int& numfaces, PHY_ScalarType& indicestype, int subpart = 0);
virtual void getLockedReadOnlyVertexIndexBase(const unsigned char** vertexbase, int& numverts, PHY_ScalarType& type, int& vertexStride, const unsigned char** indexbase, int& indexstride, int& numfaces, PHY_ScalarType& indicestype, int subpart = 0) const;
/// unLockVertexBase finishes the access to a subpart of the triangle mesh
/// make a call to unLockVertexBase when the read and write access (using getLockedVertexIndexBase) is finished
virtual void unLockVertexBase(int subpart) {(void)subpart;}
virtual void unLockVertexBase(int subpart) { (void)subpart; }
virtual void unLockReadOnlyVertexBase(int subpart) const {(void)subpart;}
virtual void unLockReadOnlyVertexBase(int subpart) const { (void)subpart; }
/// getNumSubParts returns the number of seperate subparts
/// each subpart has a continuous array of vertices and indices
virtual int getNumSubParts() const {
virtual int getNumSubParts() const
{
return (int)m_indexedMeshes.size();
}
IndexedMeshArray& getIndexedMeshArray()
IndexedMeshArray& getIndexedMeshArray()
{
return m_indexedMeshes;
}
const IndexedMeshArray& getIndexedMeshArray() const
const IndexedMeshArray& getIndexedMeshArray() const
{
return m_indexedMeshes;
}
virtual void preallocateVertices(int numverts){(void) numverts;}
virtual void preallocateIndices(int numindices){(void) numindices;}
virtual void preallocateVertices(int numverts) { (void)numverts; }
virtual void preallocateIndices(int numindices) { (void)numindices; }
virtual bool hasPremadeAabb() const;
virtual void setPremadeAabb(const b3Vector3& aabbMin, const b3Vector3& aabbMax ) const;
virtual void getPremadeAabb(b3Vector3* aabbMin, b3Vector3* aabbMax ) const;
virtual bool hasPremadeAabb() const;
virtual void setPremadeAabb(const b3Vector3& aabbMin, const b3Vector3& aabbMax) const;
virtual void getPremadeAabb(b3Vector3 * aabbMin, b3Vector3 * aabbMax) const;
};
}
;
#endif //B3_TRIANGLE_INDEX_VERTEX_ARRAY_H
#endif //B3_TRIANGLE_INDEX_VERTEX_ARRAY_H

View File

@@ -7,5 +7,4 @@
#define float4 b3Vector3
//#define make_float4(x,y,z,w) b3Vector4(x,y,z,w)
#endif //B3_VECTOR_FLOAT4_H
#endif //B3_VECTOR_FLOAT4_H

View File

@@ -23,26 +23,24 @@ subject to the following restrictions:
*/
#include "b3VoronoiSimplexSolver.h"
#define VERTA 0
#define VERTB 1
#define VERTC 2
#define VERTD 3
#define VERTA 0
#define VERTB 1
#define VERTC 2
#define VERTD 3
#define B3_CATCH_DEGENERATE_TETRAHEDRON 1
void b3VoronoiSimplexSolver::removeVertex(int index)
void b3VoronoiSimplexSolver::removeVertex(int index)
{
b3Assert(m_numVertices>0);
b3Assert(m_numVertices > 0);
m_numVertices--;
m_simplexVectorW[index] = m_simplexVectorW[m_numVertices];
m_simplexPointsP[index] = m_simplexPointsP[m_numVertices];
m_simplexPointsQ[index] = m_simplexPointsQ[m_numVertices];
}
void b3VoronoiSimplexSolver::reduceVertices (const b3UsageBitfield& usedVerts)
void b3VoronoiSimplexSolver::reduceVertices(const b3UsageBitfield& usedVerts)
{
if ((numVertices() >= 4) && (!usedVerts.usedVertexD))
removeVertex(3);
@@ -52,29 +50,22 @@ void b3VoronoiSimplexSolver::reduceVertices (const b3UsageBitfield& usedVerts)
if ((numVertices() >= 2) && (!usedVerts.usedVertexB))
removeVertex(1);
if ((numVertices() >= 1) && (!usedVerts.usedVertexA))
removeVertex(0);
}
//clear the simplex, remove all the vertices
void b3VoronoiSimplexSolver::reset()
{
m_cachedValidClosest = false;
m_numVertices = 0;
m_needsUpdate = true;
m_lastW = b3MakeVector3(b3Scalar(B3_LARGE_FLOAT),b3Scalar(B3_LARGE_FLOAT),b3Scalar(B3_LARGE_FLOAT));
m_lastW = b3MakeVector3(b3Scalar(B3_LARGE_FLOAT), b3Scalar(B3_LARGE_FLOAT), b3Scalar(B3_LARGE_FLOAT));
m_cachedBC.reset();
}
//add a vertex
//add a vertex
void b3VoronoiSimplexSolver::addVertex(const b3Vector3& w, const b3Vector3& p, const b3Vector3& q)
{
m_lastW = w;
@@ -87,9 +78,8 @@ void b3VoronoiSimplexSolver::addVertex(const b3Vector3& w, const b3Vector3& p, c
m_numVertices++;
}
bool b3VoronoiSimplexSolver::updateClosestVectorAndPoints()
bool b3VoronoiSimplexSolver::updateClosestVectorAndPoints()
{
if (m_needsUpdate)
{
m_cachedBC.reset();
@@ -98,127 +88,131 @@ bool b3VoronoiSimplexSolver::updateClosestVectorAndPoints()
switch (numVertices())
{
case 0:
case 0:
m_cachedValidClosest = false;
break;
case 1:
case 1:
{
m_cachedP1 = m_simplexPointsP[0];
m_cachedP2 = m_simplexPointsQ[0];
m_cachedV = m_cachedP1-m_cachedP2; //== m_simplexVectorW[0]
m_cachedV = m_cachedP1 - m_cachedP2; //== m_simplexVectorW[0]
m_cachedBC.reset();
m_cachedBC.setBarycentricCoordinates(b3Scalar(1.),b3Scalar(0.),b3Scalar(0.),b3Scalar(0.));
m_cachedBC.setBarycentricCoordinates(b3Scalar(1.), b3Scalar(0.), b3Scalar(0.), b3Scalar(0.));
m_cachedValidClosest = m_cachedBC.isValid();
break;
};
case 2:
case 2:
{
//closest point origin from line segment
const b3Vector3& from = m_simplexVectorW[0];
const b3Vector3& to = m_simplexVectorW[1];
b3Vector3 nearest;
//closest point origin from line segment
const b3Vector3& from = m_simplexVectorW[0];
const b3Vector3& to = m_simplexVectorW[1];
b3Vector3 nearest;
b3Vector3 p =b3MakeVector3(b3Scalar(0.),b3Scalar(0.),b3Scalar(0.));
b3Vector3 diff = p - from;
b3Vector3 v = to - from;
b3Scalar t = v.dot(diff);
if (t > 0) {
b3Scalar dotVV = v.dot(v);
if (t < dotVV) {
t /= dotVV;
diff -= t*v;
m_cachedBC.m_usedVertices.usedVertexA = true;
m_cachedBC.m_usedVertices.usedVertexB = true;
} else {
t = 1;
diff -= v;
//reduce to 1 point
m_cachedBC.m_usedVertices.usedVertexB = true;
}
} else
b3Vector3 p = b3MakeVector3(b3Scalar(0.), b3Scalar(0.), b3Scalar(0.));
b3Vector3 diff = p - from;
b3Vector3 v = to - from;
b3Scalar t = v.dot(diff);
if (t > 0)
{
b3Scalar dotVV = v.dot(v);
if (t < dotVV)
{
t = 0;
//reduce to 1 point
t /= dotVV;
diff -= t * v;
m_cachedBC.m_usedVertices.usedVertexA = true;
m_cachedBC.m_usedVertices.usedVertexB = true;
}
m_cachedBC.setBarycentricCoordinates(1-t,t);
nearest = from + t*v;
else
{
t = 1;
diff -= v;
//reduce to 1 point
m_cachedBC.m_usedVertices.usedVertexB = true;
}
}
else
{
t = 0;
//reduce to 1 point
m_cachedBC.m_usedVertices.usedVertexA = true;
}
m_cachedBC.setBarycentricCoordinates(1 - t, t);
nearest = from + t * v;
m_cachedP1 = m_simplexPointsP[0] + t * (m_simplexPointsP[1] - m_simplexPointsP[0]);
m_cachedP2 = m_simplexPointsQ[0] + t * (m_simplexPointsQ[1] - m_simplexPointsQ[0]);
m_cachedV = m_cachedP1 - m_cachedP2;
reduceVertices(m_cachedBC.m_usedVertices);
m_cachedP1 = m_simplexPointsP[0] + t * (m_simplexPointsP[1] - m_simplexPointsP[0]);
m_cachedP2 = m_simplexPointsQ[0] + t * (m_simplexPointsQ[1] - m_simplexPointsQ[0]);
m_cachedV = m_cachedP1 - m_cachedP2;
m_cachedValidClosest = m_cachedBC.isValid();
break;
reduceVertices(m_cachedBC.m_usedVertices);
m_cachedValidClosest = m_cachedBC.isValid();
break;
}
case 3:
{
//closest point origin from triangle
b3Vector3 p =b3MakeVector3(b3Scalar(0.),b3Scalar(0.),b3Scalar(0.));
const b3Vector3& a = m_simplexVectorW[0];
const b3Vector3& b = m_simplexVectorW[1];
const b3Vector3& c = m_simplexVectorW[2];
closestPtPointTriangle(p,a,b,c,m_cachedBC);
m_cachedP1 = m_simplexPointsP[0] * m_cachedBC.m_barycentricCoords[0] +
m_simplexPointsP[1] * m_cachedBC.m_barycentricCoords[1] +
m_simplexPointsP[2] * m_cachedBC.m_barycentricCoords[2];
m_cachedP2 = m_simplexPointsQ[0] * m_cachedBC.m_barycentricCoords[0] +
m_simplexPointsQ[1] * m_cachedBC.m_barycentricCoords[1] +
m_simplexPointsQ[2] * m_cachedBC.m_barycentricCoords[2];
m_cachedV = m_cachedP1-m_cachedP2;
reduceVertices (m_cachedBC.m_usedVertices);
m_cachedValidClosest = m_cachedBC.isValid();
break;
}
case 4:
case 3:
{
//closest point origin from triangle
b3Vector3 p = b3MakeVector3(b3Scalar(0.), b3Scalar(0.), b3Scalar(0.));
const b3Vector3& a = m_simplexVectorW[0];
const b3Vector3& b = m_simplexVectorW[1];
const b3Vector3& c = m_simplexVectorW[2];
closestPtPointTriangle(p, a, b, c, m_cachedBC);
m_cachedP1 = m_simplexPointsP[0] * m_cachedBC.m_barycentricCoords[0] +
m_simplexPointsP[1] * m_cachedBC.m_barycentricCoords[1] +
m_simplexPointsP[2] * m_cachedBC.m_barycentricCoords[2];
m_cachedP2 = m_simplexPointsQ[0] * m_cachedBC.m_barycentricCoords[0] +
m_simplexPointsQ[1] * m_cachedBC.m_barycentricCoords[1] +
m_simplexPointsQ[2] * m_cachedBC.m_barycentricCoords[2];
m_cachedV = m_cachedP1 - m_cachedP2;
reduceVertices(m_cachedBC.m_usedVertices);
m_cachedValidClosest = m_cachedBC.isValid();
break;
}
case 4:
{
b3Vector3 p = b3MakeVector3(b3Scalar(0.), b3Scalar(0.), b3Scalar(0.));
b3Vector3 p =b3MakeVector3(b3Scalar(0.),b3Scalar(0.),b3Scalar(0.));
const b3Vector3& a = m_simplexVectorW[0];
const b3Vector3& b = m_simplexVectorW[1];
const b3Vector3& c = m_simplexVectorW[2];
const b3Vector3& d = m_simplexVectorW[3];
bool hasSeperation = closestPtPointTetrahedron(p,a,b,c,d,m_cachedBC);
bool hasSeperation = closestPtPointTetrahedron(p, a, b, c, d, m_cachedBC);
if (hasSeperation)
{
m_cachedP1 = m_simplexPointsP[0] * m_cachedBC.m_barycentricCoords[0] +
m_simplexPointsP[1] * m_cachedBC.m_barycentricCoords[1] +
m_simplexPointsP[2] * m_cachedBC.m_barycentricCoords[2] +
m_simplexPointsP[3] * m_cachedBC.m_barycentricCoords[3];
m_simplexPointsP[1] * m_cachedBC.m_barycentricCoords[1] +
m_simplexPointsP[2] * m_cachedBC.m_barycentricCoords[2] +
m_simplexPointsP[3] * m_cachedBC.m_barycentricCoords[3];
m_cachedP2 = m_simplexPointsQ[0] * m_cachedBC.m_barycentricCoords[0] +
m_simplexPointsQ[1] * m_cachedBC.m_barycentricCoords[1] +
m_simplexPointsQ[2] * m_cachedBC.m_barycentricCoords[2] +
m_simplexPointsQ[3] * m_cachedBC.m_barycentricCoords[3];
m_simplexPointsQ[1] * m_cachedBC.m_barycentricCoords[1] +
m_simplexPointsQ[2] * m_cachedBC.m_barycentricCoords[2] +
m_simplexPointsQ[3] * m_cachedBC.m_barycentricCoords[3];
m_cachedV = m_cachedP1-m_cachedP2;
reduceVertices (m_cachedBC.m_usedVertices);
} else
m_cachedV = m_cachedP1 - m_cachedP2;
reduceVertices(m_cachedBC.m_usedVertices);
}
else
{
// printf("sub distance got penetration\n");
// printf("sub distance got penetration\n");
if (m_cachedBC.m_degenerate)
{
m_cachedValidClosest = false;
} else
}
else
{
m_cachedValidClosest = true;
//degenerate case == false, penetration = true + zero
m_cachedV.setValue(b3Scalar(0.),b3Scalar(0.),b3Scalar(0.));
m_cachedV.setValue(b3Scalar(0.), b3Scalar(0.), b3Scalar(0.));
}
break;
}
@@ -228,7 +222,7 @@ bool b3VoronoiSimplexSolver::updateClosestVectorAndPoints()
//closest point origin from tetrahedron
break;
}
default:
default:
{
m_cachedValidClosest = false;
}
@@ -236,7 +230,6 @@ bool b3VoronoiSimplexSolver::updateClosestVectorAndPoints()
}
return m_cachedValidClosest;
}
//return/calculate the closest vertex
@@ -247,13 +240,11 @@ bool b3VoronoiSimplexSolver::closest(b3Vector3& v)
return succes;
}
b3Scalar b3VoronoiSimplexSolver::maxVertex()
{
int i, numverts = numVertices();
b3Scalar maxV = b3Scalar(0.);
for (i=0;i<numverts;i++)
for (i = 0; i < numverts; i++)
{
b3Scalar curLen2 = m_simplexVectorW[i].length2();
if (maxV < curLen2)
@@ -262,13 +253,11 @@ b3Scalar b3VoronoiSimplexSolver::maxVertex()
return maxV;
}
//return the current simplex
int b3VoronoiSimplexSolver::getSimplex(b3Vector3 *pBuf, b3Vector3 *qBuf, b3Vector3 *yBuf) const
//return the current simplex
int b3VoronoiSimplexSolver::getSimplex(b3Vector3* pBuf, b3Vector3* qBuf, b3Vector3* yBuf) const
{
int i;
for (i=0;i<numVertices();i++)
for (i = 0; i < numVertices(); i++)
{
yBuf[i] = m_simplexVectorW[i];
pBuf[i] = m_simplexPointsP[i];
@@ -277,20 +266,17 @@ int b3VoronoiSimplexSolver::getSimplex(b3Vector3 *pBuf, b3Vector3 *qBuf, b3Vecto
return numVertices();
}
bool b3VoronoiSimplexSolver::inSimplex(const b3Vector3& w)
{
bool found = false;
int i, numverts = numVertices();
//b3Scalar maxV = b3Scalar(0.);
//w is in the current (reduced) simplex
for (i=0;i<numverts;i++)
for (i = 0; i < numverts; i++)
{
#ifdef BT_USE_EQUAL_VERTEX_THRESHOLD
if ( m_simplexVectorW[i].distance2(w) <= m_equalVertexThreshold)
if (m_simplexVectorW[i].distance2(w) <= m_equalVertexThreshold)
#else
if (m_simplexVectorW[i] == w)
#endif
@@ -300,199 +286,190 @@ bool b3VoronoiSimplexSolver::inSimplex(const b3Vector3& w)
//check in case lastW is already removed
if (w == m_lastW)
return true;
return found;
}
void b3VoronoiSimplexSolver::backup_closest(b3Vector3& v)
void b3VoronoiSimplexSolver::backup_closest(b3Vector3& v)
{
v = m_cachedV;
}
bool b3VoronoiSimplexSolver::emptySimplex() const
bool b3VoronoiSimplexSolver::emptySimplex() const
{
return (numVertices() == 0);
}
void b3VoronoiSimplexSolver::compute_points(b3Vector3& p1, b3Vector3& p2)
void b3VoronoiSimplexSolver::compute_points(b3Vector3& p1, b3Vector3& p2)
{
updateClosestVectorAndPoints();
p1 = m_cachedP1;
p2 = m_cachedP2;
}
bool b3VoronoiSimplexSolver::closestPtPointTriangle(const b3Vector3& p, const b3Vector3& a, const b3Vector3& b, const b3Vector3& c,b3SubSimplexClosestResult& result)
bool b3VoronoiSimplexSolver::closestPtPointTriangle(const b3Vector3& p, const b3Vector3& a, const b3Vector3& b, const b3Vector3& c, b3SubSimplexClosestResult& result)
{
result.m_usedVertices.reset();
// Check if P in vertex region outside A
b3Vector3 ab = b - a;
b3Vector3 ac = c - a;
b3Vector3 ap = p - a;
b3Scalar d1 = ab.dot(ap);
b3Scalar d2 = ac.dot(ap);
if (d1 <= b3Scalar(0.0) && d2 <= b3Scalar(0.0))
// Check if P in vertex region outside A
b3Vector3 ab = b - a;
b3Vector3 ac = c - a;
b3Vector3 ap = p - a;
b3Scalar d1 = ab.dot(ap);
b3Scalar d2 = ac.dot(ap);
if (d1 <= b3Scalar(0.0) && d2 <= b3Scalar(0.0))
{
result.m_closestPointOnSimplex = a;
result.m_usedVertices.usedVertexA = true;
result.setBarycentricCoordinates(1,0,0);
return true;// a; // barycentric coordinates (1,0,0)
result.setBarycentricCoordinates(1, 0, 0);
return true; // a; // barycentric coordinates (1,0,0)
}
// Check if P in vertex region outside B
b3Vector3 bp = p - b;
b3Scalar d3 = ab.dot(bp);
b3Scalar d4 = ac.dot(bp);
if (d3 >= b3Scalar(0.0) && d4 <= d3)
// Check if P in vertex region outside B
b3Vector3 bp = p - b;
b3Scalar d3 = ab.dot(bp);
b3Scalar d4 = ac.dot(bp);
if (d3 >= b3Scalar(0.0) && d4 <= d3)
{
result.m_closestPointOnSimplex = b;
result.m_usedVertices.usedVertexB = true;
result.setBarycentricCoordinates(0,1,0);
result.setBarycentricCoordinates(0, 1, 0);
return true; // b; // barycentric coordinates (0,1,0)
return true; // b; // barycentric coordinates (0,1,0)
}
// Check if P in edge region of AB, if so return projection of P onto AB
b3Scalar vc = d1*d4 - d3*d2;
if (vc <= b3Scalar(0.0) && d1 >= b3Scalar(0.0) && d3 <= b3Scalar(0.0)) {
b3Scalar v = d1 / (d1 - d3);
// Check if P in edge region of AB, if so return projection of P onto AB
b3Scalar vc = d1 * d4 - d3 * d2;
if (vc <= b3Scalar(0.0) && d1 >= b3Scalar(0.0) && d3 <= b3Scalar(0.0))
{
b3Scalar v = d1 / (d1 - d3);
result.m_closestPointOnSimplex = a + v * ab;
result.m_usedVertices.usedVertexA = true;
result.m_usedVertices.usedVertexB = true;
result.setBarycentricCoordinates(1-v,v,0);
result.setBarycentricCoordinates(1 - v, v, 0);
return true;
//return a + v * ab; // barycentric coordinates (1-v,v,0)
}
//return a + v * ab; // barycentric coordinates (1-v,v,0)
}
// Check if P in vertex region outside C
b3Vector3 cp = p - c;
b3Scalar d5 = ab.dot(cp);
b3Scalar d6 = ac.dot(cp);
if (d6 >= b3Scalar(0.0) && d5 <= d6)
// Check if P in vertex region outside C
b3Vector3 cp = p - c;
b3Scalar d5 = ab.dot(cp);
b3Scalar d6 = ac.dot(cp);
if (d6 >= b3Scalar(0.0) && d5 <= d6)
{
result.m_closestPointOnSimplex = c;
result.m_usedVertices.usedVertexC = true;
result.setBarycentricCoordinates(0,0,1);
return true;//c; // barycentric coordinates (0,0,1)
result.setBarycentricCoordinates(0, 0, 1);
return true; //c; // barycentric coordinates (0,0,1)
}
// Check if P in edge region of AC, if so return projection of P onto AC
b3Scalar vb = d5*d2 - d1*d6;
if (vb <= b3Scalar(0.0) && d2 >= b3Scalar(0.0) && d6 <= b3Scalar(0.0)) {
b3Scalar w = d2 / (d2 - d6);
// Check if P in edge region of AC, if so return projection of P onto AC
b3Scalar vb = d5 * d2 - d1 * d6;
if (vb <= b3Scalar(0.0) && d2 >= b3Scalar(0.0) && d6 <= b3Scalar(0.0))
{
b3Scalar w = d2 / (d2 - d6);
result.m_closestPointOnSimplex = a + w * ac;
result.m_usedVertices.usedVertexA = true;
result.m_usedVertices.usedVertexC = true;
result.setBarycentricCoordinates(1-w,0,w);
result.setBarycentricCoordinates(1 - w, 0, w);
return true;
//return a + w * ac; // barycentric coordinates (1-w,0,w)
}
//return a + w * ac; // barycentric coordinates (1-w,0,w)
}
// Check if P in edge region of BC, if so return projection of P onto BC
b3Scalar va = d3 * d6 - d5 * d4;
if (va <= b3Scalar(0.0) && (d4 - d3) >= b3Scalar(0.0) && (d5 - d6) >= b3Scalar(0.0))
{
b3Scalar w = (d4 - d3) / ((d4 - d3) + (d5 - d6));
// Check if P in edge region of BC, if so return projection of P onto BC
b3Scalar va = d3*d6 - d5*d4;
if (va <= b3Scalar(0.0) && (d4 - d3) >= b3Scalar(0.0) && (d5 - d6) >= b3Scalar(0.0)) {
b3Scalar w = (d4 - d3) / ((d4 - d3) + (d5 - d6));
result.m_closestPointOnSimplex = b + w * (c - b);
result.m_usedVertices.usedVertexB = true;
result.m_usedVertices.usedVertexC = true;
result.setBarycentricCoordinates(0,1-w,w);
return true;
// return b + w * (c - b); // barycentric coordinates (0,1-w,w)
}
result.setBarycentricCoordinates(0, 1 - w, w);
return true;
// return b + w * (c - b); // barycentric coordinates (0,1-w,w)
}
// P inside face region. Compute Q through its barycentric coordinates (u,v,w)
b3Scalar denom = b3Scalar(1.0) / (va + vb + vc);
b3Scalar v = vb * denom;
b3Scalar w = vc * denom;
// P inside face region. Compute Q through its barycentric coordinates (u,v,w)
b3Scalar denom = b3Scalar(1.0) / (va + vb + vc);
b3Scalar v = vb * denom;
b3Scalar w = vc * denom;
result.m_closestPointOnSimplex = a + ab * v + ac * w;
result.m_usedVertices.usedVertexA = true;
result.m_usedVertices.usedVertexB = true;
result.m_usedVertices.usedVertexC = true;
result.setBarycentricCoordinates(1-v-w,v,w);
result.setBarycentricCoordinates(1 - v - w, v, w);
return true;
// return a + ab * v + ac * w; // = u*a + v*b + w*c, u = va * denom = b3Scalar(1.0) - v - w
// return a + ab * v + ac * w; // = u*a + v*b + w*c, u = va * denom = b3Scalar(1.0) - v - w
}
/// Test if point p and d lie on opposite sides of plane through abc
int b3VoronoiSimplexSolver::pointOutsideOfPlane(const b3Vector3& p, const b3Vector3& a, const b3Vector3& b, const b3Vector3& c, const b3Vector3& d)
{
b3Vector3 normal = (b-a).cross(c-a);
b3Vector3 normal = (b - a).cross(c - a);
b3Scalar signp = (p - a).dot(normal); // [AP AB AC]
b3Scalar signd = (d - a).dot( normal); // [AD AB AC]
b3Scalar signp = (p - a).dot(normal); // [AP AB AC]
b3Scalar signd = (d - a).dot(normal); // [AD AB AC]
#ifdef B3_CATCH_DEGENERATE_TETRAHEDRON
#ifdef BT_USE_DOUBLE_PRECISION
if (signd * signd < (b3Scalar(1e-8) * b3Scalar(1e-8)))
if (signd * signd < (b3Scalar(1e-8) * b3Scalar(1e-8)))
{
return -1;
}
#else
if (signd * signd < (b3Scalar(1e-4) * b3Scalar(1e-4)))
{
// printf("affine dependent/degenerate\n");//
// printf("affine dependent/degenerate\n");//
return -1;
}
#endif
#endif
// Points on opposite sides if expression signs are opposite
return signp * signd < b3Scalar(0.);
return signp * signd < b3Scalar(0.);
}
bool b3VoronoiSimplexSolver::closestPtPointTetrahedron(const b3Vector3& p, const b3Vector3& a, const b3Vector3& b, const b3Vector3& c, const b3Vector3& d, b3SubSimplexClosestResult& finalResult)
bool b3VoronoiSimplexSolver::closestPtPointTetrahedron(const b3Vector3& p, const b3Vector3& a, const b3Vector3& b, const b3Vector3& c, const b3Vector3& d, b3SubSimplexClosestResult& finalResult)
{
b3SubSimplexClosestResult tempResult;
// Start out assuming point inside all halfspaces, so closest to itself
// Start out assuming point inside all halfspaces, so closest to itself
finalResult.m_closestPointOnSimplex = p;
finalResult.m_usedVertices.reset();
finalResult.m_usedVertices.usedVertexA = true;
finalResult.m_usedVertices.usedVertexA = true;
finalResult.m_usedVertices.usedVertexB = true;
finalResult.m_usedVertices.usedVertexC = true;
finalResult.m_usedVertices.usedVertexD = true;
int pointOutsideABC = pointOutsideOfPlane(p, a, b, c, d);
int pointOutsideABC = pointOutsideOfPlane(p, a, b, c, d);
int pointOutsideACD = pointOutsideOfPlane(p, a, c, d, b);
int pointOutsideADB = pointOutsideOfPlane(p, a, d, b, c);
int pointOutsideBDC = pointOutsideOfPlane(p, b, d, c, a);
int pointOutsideADB = pointOutsideOfPlane(p, a, d, b, c);
int pointOutsideBDC = pointOutsideOfPlane(p, b, d, c, a);
if (pointOutsideABC < 0 || pointOutsideACD < 0 || pointOutsideADB < 0 || pointOutsideBDC < 0)
{
finalResult.m_degenerate = true;
return false;
}
if (!pointOutsideABC && !pointOutsideACD && !pointOutsideADB && !pointOutsideBDC)
{
return false;
}
b3Scalar bestSqDist = FLT_MAX;
// If point outside face abc then compute closest point on abc
if (pointOutsideABC)
if (pointOutsideABC < 0 || pointOutsideACD < 0 || pointOutsideADB < 0 || pointOutsideBDC < 0)
{
closestPtPointTriangle(p, a, b, c,tempResult);
finalResult.m_degenerate = true;
return false;
}
if (!pointOutsideABC && !pointOutsideACD && !pointOutsideADB && !pointOutsideBDC)
{
return false;
}
b3Scalar bestSqDist = FLT_MAX;
// If point outside face abc then compute closest point on abc
if (pointOutsideABC)
{
closestPtPointTriangle(p, a, b, c, tempResult);
b3Vector3 q = tempResult.m_closestPointOnSimplex;
b3Scalar sqDist = (q - p).dot( q - p);
// Update best closest point if (squared) distance is less than current best
if (sqDist < bestSqDist) {
b3Scalar sqDist = (q - p).dot(q - p);
// Update best closest point if (squared) distance is less than current best
if (sqDist < bestSqDist)
{
bestSqDist = sqDist;
finalResult.m_closestPointOnSimplex = q;
//convert result bitmask!
@@ -501,25 +478,22 @@ bool b3VoronoiSimplexSolver::closestPtPointTetrahedron(const b3Vector3& p, const
finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexB;
finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexC;
finalResult.setBarycentricCoordinates(
tempResult.m_barycentricCoords[VERTA],
tempResult.m_barycentricCoords[VERTB],
tempResult.m_barycentricCoords[VERTC],
0
);
tempResult.m_barycentricCoords[VERTA],
tempResult.m_barycentricCoords[VERTB],
tempResult.m_barycentricCoords[VERTC],
0);
}
}
}
// Repeat test for face acd
if (pointOutsideACD)
if (pointOutsideACD)
{
closestPtPointTriangle(p, a, c, d,tempResult);
closestPtPointTriangle(p, a, c, d, tempResult);
b3Vector3 q = tempResult.m_closestPointOnSimplex;
//convert result bitmask!
b3Scalar sqDist = (q - p).dot( q - p);
if (sqDist < bestSqDist)
b3Scalar sqDist = (q - p).dot(q - p);
if (sqDist < bestSqDist)
{
bestSqDist = sqDist;
finalResult.m_closestPointOnSimplex = q;
@@ -529,52 +503,46 @@ bool b3VoronoiSimplexSolver::closestPtPointTetrahedron(const b3Vector3& p, const
finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexB;
finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexC;
finalResult.setBarycentricCoordinates(
tempResult.m_barycentricCoords[VERTA],
0,
tempResult.m_barycentricCoords[VERTB],
tempResult.m_barycentricCoords[VERTC]
);
tempResult.m_barycentricCoords[VERTA],
0,
tempResult.m_barycentricCoords[VERTB],
tempResult.m_barycentricCoords[VERTC]);
}
}
// Repeat test for face adb
}
// Repeat test for face adb
if (pointOutsideADB)
{
closestPtPointTriangle(p, a, d, b,tempResult);
closestPtPointTriangle(p, a, d, b, tempResult);
b3Vector3 q = tempResult.m_closestPointOnSimplex;
//convert result bitmask!
b3Scalar sqDist = (q - p).dot( q - p);
if (sqDist < bestSqDist)
b3Scalar sqDist = (q - p).dot(q - p);
if (sqDist < bestSqDist)
{
bestSqDist = sqDist;
finalResult.m_closestPointOnSimplex = q;
finalResult.m_usedVertices.reset();
finalResult.m_usedVertices.usedVertexA = tempResult.m_usedVertices.usedVertexA;
finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexC;
finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexB;
finalResult.setBarycentricCoordinates(
tempResult.m_barycentricCoords[VERTA],
tempResult.m_barycentricCoords[VERTC],
0,
tempResult.m_barycentricCoords[VERTB]
);
tempResult.m_barycentricCoords[VERTA],
tempResult.m_barycentricCoords[VERTC],
0,
tempResult.m_barycentricCoords[VERTB]);
}
}
// Repeat test for face bdc
}
// Repeat test for face bdc
if (pointOutsideBDC)
{
closestPtPointTriangle(p, b, d, c,tempResult);
closestPtPointTriangle(p, b, d, c, tempResult);
b3Vector3 q = tempResult.m_closestPointOnSimplex;
//convert result bitmask!
b3Scalar sqDist = (q - p).dot( q - p);
if (sqDist < bestSqDist)
b3Scalar sqDist = (q - p).dot(q - p);
if (sqDist < bestSqDist)
{
bestSqDist = sqDist;
finalResult.m_closestPointOnSimplex = q;
@@ -585,25 +553,22 @@ bool b3VoronoiSimplexSolver::closestPtPointTetrahedron(const b3Vector3& p, const
finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexB;
finalResult.setBarycentricCoordinates(
0,
tempResult.m_barycentricCoords[VERTA],
tempResult.m_barycentricCoords[VERTC],
tempResult.m_barycentricCoords[VERTB]
);
0,
tempResult.m_barycentricCoords[VERTA],
tempResult.m_barycentricCoords[VERTC],
tempResult.m_barycentricCoords[VERTB]);
}
}
}
//help! we ended up full !
if (finalResult.m_usedVertices.usedVertexA &&
finalResult.m_usedVertices.usedVertexB &&
finalResult.m_usedVertices.usedVertexC &&
finalResult.m_usedVertices.usedVertexD)
finalResult.m_usedVertices.usedVertexD)
{
return true;
}
return true;
return true;
}

View File

@@ -13,22 +13,19 @@ subject to the following restrictions:
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B3_VORONOI_SIMPLEX_SOLVER_H
#define B3_VORONOI_SIMPLEX_SOLVER_H
#include "Bullet3Common/b3Vector3.h"
#define VORONOI_SIMPLEX_MAX_VERTS 5
///disable next define, or use defaultCollisionConfiguration->getSimplexSolver()->setEqualVertexThreshold(0.f) to disable/configure
//#define BT_USE_EQUAL_VERTEX_THRESHOLD
#define VORONOI_DEFAULT_EQUAL_VERTEX_THRESHOLD 0.0001f
struct b3UsageBitfield{
struct b3UsageBitfield
{
b3UsageBitfield()
{
reset();
@@ -41,137 +38,127 @@ struct b3UsageBitfield{
usedVertexC = false;
usedVertexD = false;
}
unsigned short usedVertexA : 1;
unsigned short usedVertexB : 1;
unsigned short usedVertexC : 1;
unsigned short usedVertexD : 1;
unsigned short unused1 : 1;
unsigned short unused2 : 1;
unsigned short unused3 : 1;
unsigned short unused4 : 1;
unsigned short usedVertexA : 1;
unsigned short usedVertexB : 1;
unsigned short usedVertexC : 1;
unsigned short usedVertexD : 1;
unsigned short unused1 : 1;
unsigned short unused2 : 1;
unsigned short unused3 : 1;
unsigned short unused4 : 1;
};
struct b3SubSimplexClosestResult
struct b3SubSimplexClosestResult
{
b3Vector3 m_closestPointOnSimplex;
b3Vector3 m_closestPointOnSimplex;
//MASK for m_usedVertices
//stores the simplex vertex-usage, using the MASK,
//stores the simplex vertex-usage, using the MASK,
// if m_usedVertices & MASK then the related vertex is used
b3UsageBitfield m_usedVertices;
b3Scalar m_barycentricCoords[4];
b3UsageBitfield m_usedVertices;
b3Scalar m_barycentricCoords[4];
bool m_degenerate;
void reset()
void reset()
{
m_degenerate = false;
setBarycentricCoordinates();
m_usedVertices.reset();
}
bool isValid()
bool isValid()
{
bool valid = (m_barycentricCoords[0] >= b3Scalar(0.)) &&
(m_barycentricCoords[1] >= b3Scalar(0.)) &&
(m_barycentricCoords[2] >= b3Scalar(0.)) &&
(m_barycentricCoords[3] >= b3Scalar(0.));
(m_barycentricCoords[1] >= b3Scalar(0.)) &&
(m_barycentricCoords[2] >= b3Scalar(0.)) &&
(m_barycentricCoords[3] >= b3Scalar(0.));
return valid;
}
void setBarycentricCoordinates(b3Scalar a=b3Scalar(0.),b3Scalar b=b3Scalar(0.),b3Scalar c=b3Scalar(0.),b3Scalar d=b3Scalar(0.))
void setBarycentricCoordinates(b3Scalar a = b3Scalar(0.), b3Scalar b = b3Scalar(0.), b3Scalar c = b3Scalar(0.), b3Scalar d = b3Scalar(0.))
{
m_barycentricCoords[0] = a;
m_barycentricCoords[1] = b;
m_barycentricCoords[2] = c;
m_barycentricCoords[3] = d;
}
};
/// b3VoronoiSimplexSolver is an implementation of the closest point distance algorithm from a 1-4 points simplex to the origin.
/// Can be used with GJK, as an alternative to Johnson distance algorithm.
B3_ATTRIBUTE_ALIGNED16(class) b3VoronoiSimplexSolver
B3_ATTRIBUTE_ALIGNED16(class)
b3VoronoiSimplexSolver
{
public:
B3_DECLARE_ALIGNED_ALLOCATOR();
int m_numVertices;
int m_numVertices;
b3Vector3 m_simplexVectorW[VORONOI_SIMPLEX_MAX_VERTS];
b3Vector3 m_simplexPointsP[VORONOI_SIMPLEX_MAX_VERTS];
b3Vector3 m_simplexPointsQ[VORONOI_SIMPLEX_MAX_VERTS];
b3Vector3 m_simplexVectorW[VORONOI_SIMPLEX_MAX_VERTS];
b3Vector3 m_simplexPointsP[VORONOI_SIMPLEX_MAX_VERTS];
b3Vector3 m_simplexPointsQ[VORONOI_SIMPLEX_MAX_VERTS];
b3Vector3 m_cachedP1;
b3Vector3 m_cachedP2;
b3Vector3 m_cachedV;
b3Vector3 m_lastW;
b3Scalar m_equalVertexThreshold;
bool m_cachedValidClosest;
b3Vector3 m_cachedP1;
b3Vector3 m_cachedP2;
b3Vector3 m_cachedV;
b3Vector3 m_lastW;
b3Scalar m_equalVertexThreshold;
bool m_cachedValidClosest;
b3SubSimplexClosestResult m_cachedBC;
bool m_needsUpdate;
void removeVertex(int index);
void reduceVertices (const b3UsageBitfield& usedVerts);
bool updateClosestVectorAndPoints();
bool m_needsUpdate;
bool closestPtPointTetrahedron(const b3Vector3& p, const b3Vector3& a, const b3Vector3& b, const b3Vector3& c, const b3Vector3& d, b3SubSimplexClosestResult& finalResult);
int pointOutsideOfPlane(const b3Vector3& p, const b3Vector3& a, const b3Vector3& b, const b3Vector3& c, const b3Vector3& d);
bool closestPtPointTriangle(const b3Vector3& p, const b3Vector3& a, const b3Vector3& b, const b3Vector3& c,b3SubSimplexClosestResult& result);
void removeVertex(int index);
void reduceVertices(const b3UsageBitfield& usedVerts);
bool updateClosestVectorAndPoints();
bool closestPtPointTetrahedron(const b3Vector3& p, const b3Vector3& a, const b3Vector3& b, const b3Vector3& c, const b3Vector3& d, b3SubSimplexClosestResult& finalResult);
int pointOutsideOfPlane(const b3Vector3& p, const b3Vector3& a, const b3Vector3& b, const b3Vector3& c, const b3Vector3& d);
bool closestPtPointTriangle(const b3Vector3& p, const b3Vector3& a, const b3Vector3& b, const b3Vector3& c, b3SubSimplexClosestResult& result);
public:
b3VoronoiSimplexSolver()
: m_equalVertexThreshold(VORONOI_DEFAULT_EQUAL_VERTEX_THRESHOLD)
: m_equalVertexThreshold(VORONOI_DEFAULT_EQUAL_VERTEX_THRESHOLD)
{
}
void reset();
void reset();
void addVertex(const b3Vector3& w, const b3Vector3& p, const b3Vector3& q);
void addVertex(const b3Vector3& w, const b3Vector3& p, const b3Vector3& q);
void setEqualVertexThreshold(b3Scalar threshold)
{
m_equalVertexThreshold = threshold;
}
void setEqualVertexThreshold(b3Scalar threshold)
{
m_equalVertexThreshold = threshold;
}
b3Scalar getEqualVertexThreshold() const
{
return m_equalVertexThreshold;
}
b3Scalar getEqualVertexThreshold() const
{
return m_equalVertexThreshold;
}
bool closest(b3Vector3& v);
bool closest(b3Vector3 & v);
b3Scalar maxVertex();
b3Scalar maxVertex();
bool fullSimplex() const
{
return (m_numVertices == 4);
}
bool fullSimplex() const
{
return (m_numVertices == 4);
}
int getSimplex(b3Vector3 *pBuf, b3Vector3 *qBuf, b3Vector3 *yBuf) const;
int getSimplex(b3Vector3 * pBuf, b3Vector3 * qBuf, b3Vector3 * yBuf) const;
bool inSimplex(const b3Vector3& w);
void backup_closest(b3Vector3& v) ;
bool inSimplex(const b3Vector3& w);
bool emptySimplex() const ;
void backup_closest(b3Vector3 & v);
void compute_points(b3Vector3& p1, b3Vector3& p2) ;
int numVertices() const
{
return m_numVertices;
}
bool emptySimplex() const;
void compute_points(b3Vector3 & p1, b3Vector3 & p2);
int numVertices() const
{
return m_numVertices;
}
};
#endif //B3_VORONOI_SIMPLEX_SOLVER_H
#endif //B3_VORONOI_SIMPLEX_SOLVER_H

View File

@@ -1,258 +1,257 @@
//this file is autogenerated using stringify.bat (premake --stringify) in the build folder of this project
static const char* bvhTraversalKernelCL= \
"//keep this enum in sync with the CPU version (in btCollidable.h)\n"
"//written by Erwin Coumans\n"
"#define SHAPE_CONVEX_HULL 3\n"
"#define SHAPE_CONCAVE_TRIMESH 5\n"
"#define TRIANGLE_NUM_CONVEX_FACES 5\n"
"#define SHAPE_COMPOUND_OF_CONVEX_HULLS 6\n"
"#define SHAPE_SPHERE 7\n"
"typedef unsigned int u32;\n"
"#define MAX_NUM_PARTS_IN_BITS 10\n"
"///btQuantizedBvhNode is a compressed aabb node, 16 bytes.\n"
"///Node can be used for leafnode or internal node. Leafnodes can point to 32-bit triangle index (non-negative range).\n"
"typedef struct\n"
"{\n"
" //12 bytes\n"
" unsigned short int m_quantizedAabbMin[3];\n"
" unsigned short int m_quantizedAabbMax[3];\n"
" //4 bytes\n"
" int m_escapeIndexOrTriangleIndex;\n"
"} btQuantizedBvhNode;\n"
"typedef struct\n"
"{\n"
" float4 m_aabbMin;\n"
" float4 m_aabbMax;\n"
" float4 m_quantization;\n"
" int m_numNodes;\n"
" int m_numSubTrees;\n"
" int m_nodeOffset;\n"
" int m_subTreeOffset;\n"
"} b3BvhInfo;\n"
"int getTriangleIndex(const btQuantizedBvhNode* rootNode)\n"
"{\n"
" unsigned int x=0;\n"
" unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS);\n"
" // Get only the lower bits where the triangle index is stored\n"
" return (rootNode->m_escapeIndexOrTriangleIndex&~(y));\n"
"}\n"
"int isLeaf(const btQuantizedBvhNode* rootNode)\n"
"{\n"
" //skipindex is negative (internal node), triangleindex >=0 (leafnode)\n"
" return (rootNode->m_escapeIndexOrTriangleIndex >= 0)? 1 : 0;\n"
"}\n"
" \n"
"int getEscapeIndex(const btQuantizedBvhNode* rootNode)\n"
"{\n"
" return -rootNode->m_escapeIndexOrTriangleIndex;\n"
"}\n"
"typedef struct\n"
"{\n"
" //12 bytes\n"
" unsigned short int m_quantizedAabbMin[3];\n"
" unsigned short int m_quantizedAabbMax[3];\n"
" //4 bytes, points to the root of the subtree\n"
" int m_rootNodeIndex;\n"
" //4 bytes\n"
" int m_subtreeSize;\n"
" int m_padding[3];\n"
"} btBvhSubtreeInfo;\n"
"///keep this in sync with btCollidable.h\n"
"typedef struct\n"
"{\n"
" int m_numChildShapes;\n"
" int blaat2;\n"
" int m_shapeType;\n"
" int m_shapeIndex;\n"
" \n"
"} btCollidableGpu;\n"
"typedef struct\n"
"{\n"
" float4 m_childPosition;\n"
" float4 m_childOrientation;\n"
" int m_shapeIndex;\n"
" int m_unused0;\n"
" int m_unused1;\n"
" int m_unused2;\n"
"} btGpuChildShape;\n"
"typedef struct\n"
"{\n"
" float4 m_pos;\n"
" float4 m_quat;\n"
" float4 m_linVel;\n"
" float4 m_angVel;\n"
" u32 m_collidableIdx;\n"
" float m_invMass;\n"
" float m_restituitionCoeff;\n"
" float m_frictionCoeff;\n"
"} BodyData;\n"
"typedef struct \n"
"{\n"
" union\n"
" {\n"
" float4 m_min;\n"
" float m_minElems[4];\n"
" int m_minIndices[4];\n"
" };\n"
" union\n"
" {\n"
" float4 m_max;\n"
" float m_maxElems[4];\n"
" int m_maxIndices[4];\n"
" };\n"
"} btAabbCL;\n"
"int testQuantizedAabbAgainstQuantizedAabb(\n"
" const unsigned short int* aabbMin1,\n"
" const unsigned short int* aabbMax1,\n"
" const unsigned short int* aabbMin2,\n"
" const unsigned short int* aabbMax2)\n"
"{\n"
" //int overlap = 1;\n"
" if (aabbMin1[0] > aabbMax2[0])\n"
" return 0;\n"
" if (aabbMax1[0] < aabbMin2[0])\n"
" return 0;\n"
" if (aabbMin1[1] > aabbMax2[1])\n"
" return 0;\n"
" if (aabbMax1[1] < aabbMin2[1])\n"
" return 0;\n"
" if (aabbMin1[2] > aabbMax2[2])\n"
" return 0;\n"
" if (aabbMax1[2] < aabbMin2[2])\n"
" return 0;\n"
" return 1;\n"
" //overlap = ((aabbMin1[0] > aabbMax2[0]) || (aabbMax1[0] < aabbMin2[0])) ? 0 : overlap;\n"
" //overlap = ((aabbMin1[2] > aabbMax2[2]) || (aabbMax1[2] < aabbMin2[2])) ? 0 : overlap;\n"
" //overlap = ((aabbMin1[1] > aabbMax2[1]) || (aabbMax1[1] < aabbMin2[1])) ? 0 : overlap;\n"
" //return overlap;\n"
"}\n"
"void quantizeWithClamp(unsigned short* out, float4 point2,int isMax, float4 bvhAabbMin, float4 bvhAabbMax, float4 bvhQuantization)\n"
"{\n"
" float4 clampedPoint = max(point2,bvhAabbMin);\n"
" clampedPoint = min (clampedPoint, bvhAabbMax);\n"
" float4 v = (clampedPoint - bvhAabbMin) * bvhQuantization;\n"
" if (isMax)\n"
" {\n"
" out[0] = (unsigned short) (((unsigned short)(v.x+1.f) | 1));\n"
" out[1] = (unsigned short) (((unsigned short)(v.y+1.f) | 1));\n"
" out[2] = (unsigned short) (((unsigned short)(v.z+1.f) | 1));\n"
" } else\n"
" {\n"
" out[0] = (unsigned short) (((unsigned short)(v.x) & 0xfffe));\n"
" out[1] = (unsigned short) (((unsigned short)(v.y) & 0xfffe));\n"
" out[2] = (unsigned short) (((unsigned short)(v.z) & 0xfffe));\n"
" }\n"
"}\n"
"// work-in-progress\n"
"__kernel void bvhTraversalKernel( __global const int4* pairs, \n"
" __global const BodyData* rigidBodies, \n"
" __global const btCollidableGpu* collidables,\n"
" __global btAabbCL* aabbs,\n"
" __global int4* concavePairsOut,\n"
" __global volatile int* numConcavePairsOut,\n"
" __global const btBvhSubtreeInfo* subtreeHeadersRoot,\n"
" __global const btQuantizedBvhNode* quantizedNodesRoot,\n"
" __global const b3BvhInfo* bvhInfos,\n"
" int numPairs,\n"
" int maxNumConcavePairsCapacity)\n"
"{\n"
" int id = get_global_id(0);\n"
" if (id>=numPairs)\n"
" return;\n"
" \n"
" int bodyIndexA = pairs[id].x;\n"
" int bodyIndexB = pairs[id].y;\n"
" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n"
" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n"
" \n"
" //once the broadphase avoids static-static pairs, we can remove this test\n"
" if ((rigidBodies[bodyIndexA].m_invMass==0) &&(rigidBodies[bodyIndexB].m_invMass==0))\n"
" {\n"
" return;\n"
" }\n"
" \n"
" if (collidables[collidableIndexA].m_shapeType!=SHAPE_CONCAVE_TRIMESH)\n"
" return;\n"
" int shapeTypeB = collidables[collidableIndexB].m_shapeType;\n"
" \n"
" if (shapeTypeB!=SHAPE_CONVEX_HULL &&\n"
" shapeTypeB!=SHAPE_SPHERE &&\n"
" shapeTypeB!=SHAPE_COMPOUND_OF_CONVEX_HULLS\n"
" )\n"
" return;\n"
" b3BvhInfo bvhInfo = bvhInfos[collidables[collidableIndexA].m_numChildShapes];\n"
" float4 bvhAabbMin = bvhInfo.m_aabbMin;\n"
" float4 bvhAabbMax = bvhInfo.m_aabbMax;\n"
" float4 bvhQuantization = bvhInfo.m_quantization;\n"
" int numSubtreeHeaders = bvhInfo.m_numSubTrees;\n"
" __global const btBvhSubtreeInfo* subtreeHeaders = &subtreeHeadersRoot[bvhInfo.m_subTreeOffset];\n"
" __global const btQuantizedBvhNode* quantizedNodes = &quantizedNodesRoot[bvhInfo.m_nodeOffset];\n"
" \n"
" unsigned short int quantizedQueryAabbMin[3];\n"
" unsigned short int quantizedQueryAabbMax[3];\n"
" quantizeWithClamp(quantizedQueryAabbMin,aabbs[bodyIndexB].m_min,false,bvhAabbMin, bvhAabbMax,bvhQuantization);\n"
" quantizeWithClamp(quantizedQueryAabbMax,aabbs[bodyIndexB].m_max,true ,bvhAabbMin, bvhAabbMax,bvhQuantization);\n"
" \n"
" for (int i=0;i<numSubtreeHeaders;i++)\n"
" {\n"
" btBvhSubtreeInfo subtree = subtreeHeaders[i];\n"
" \n"
" int overlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,subtree.m_quantizedAabbMin,subtree.m_quantizedAabbMax);\n"
" if (overlap != 0)\n"
" {\n"
" int startNodeIndex = subtree.m_rootNodeIndex;\n"
" int endNodeIndex = subtree.m_rootNodeIndex+subtree.m_subtreeSize;\n"
" int curIndex = startNodeIndex;\n"
" int escapeIndex;\n"
" int isLeafNode;\n"
" int aabbOverlap;\n"
" while (curIndex < endNodeIndex)\n"
" {\n"
" btQuantizedBvhNode rootNode = quantizedNodes[curIndex];\n"
" aabbOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode.m_quantizedAabbMin,rootNode.m_quantizedAabbMax);\n"
" isLeafNode = isLeaf(&rootNode);\n"
" if (aabbOverlap)\n"
" {\n"
" if (isLeafNode)\n"
" {\n"
" int triangleIndex = getTriangleIndex(&rootNode);\n"
" if (shapeTypeB==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n"
" {\n"
" int numChildrenB = collidables[collidableIndexB].m_numChildShapes;\n"
" int pairIdx = atomic_add(numConcavePairsOut,numChildrenB);\n"
" for (int b=0;b<numChildrenB;b++)\n"
" {\n"
" if ((pairIdx+b)<maxNumConcavePairsCapacity)\n"
" {\n"
" int childShapeIndexB = collidables[collidableIndexB].m_shapeIndex+b;\n"
" int4 newPair = (int4)(bodyIndexA,bodyIndexB,triangleIndex,childShapeIndexB);\n"
" concavePairsOut[pairIdx+b] = newPair;\n"
" }\n"
" }\n"
" } else\n"
" {\n"
" int pairIdx = atomic_inc(numConcavePairsOut);\n"
" if (pairIdx<maxNumConcavePairsCapacity)\n"
" {\n"
" int4 newPair = (int4)(bodyIndexA,bodyIndexB,triangleIndex,0);\n"
" concavePairsOut[pairIdx] = newPair;\n"
" }\n"
" }\n"
" } \n"
" curIndex++;\n"
" } else\n"
" {\n"
" if (isLeafNode)\n"
" {\n"
" curIndex++;\n"
" } else\n"
" {\n"
" escapeIndex = getEscapeIndex(&rootNode);\n"
" curIndex += escapeIndex;\n"
" }\n"
" }\n"
" }\n"
" }\n"
" }\n"
"}\n"
;
static const char* bvhTraversalKernelCL =
"//keep this enum in sync with the CPU version (in btCollidable.h)\n"
"//written by Erwin Coumans\n"
"#define SHAPE_CONVEX_HULL 3\n"
"#define SHAPE_CONCAVE_TRIMESH 5\n"
"#define TRIANGLE_NUM_CONVEX_FACES 5\n"
"#define SHAPE_COMPOUND_OF_CONVEX_HULLS 6\n"
"#define SHAPE_SPHERE 7\n"
"typedef unsigned int u32;\n"
"#define MAX_NUM_PARTS_IN_BITS 10\n"
"///btQuantizedBvhNode is a compressed aabb node, 16 bytes.\n"
"///Node can be used for leafnode or internal node. Leafnodes can point to 32-bit triangle index (non-negative range).\n"
"typedef struct\n"
"{\n"
" //12 bytes\n"
" unsigned short int m_quantizedAabbMin[3];\n"
" unsigned short int m_quantizedAabbMax[3];\n"
" //4 bytes\n"
" int m_escapeIndexOrTriangleIndex;\n"
"} btQuantizedBvhNode;\n"
"typedef struct\n"
"{\n"
" float4 m_aabbMin;\n"
" float4 m_aabbMax;\n"
" float4 m_quantization;\n"
" int m_numNodes;\n"
" int m_numSubTrees;\n"
" int m_nodeOffset;\n"
" int m_subTreeOffset;\n"
"} b3BvhInfo;\n"
"int getTriangleIndex(const btQuantizedBvhNode* rootNode)\n"
"{\n"
" unsigned int x=0;\n"
" unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS);\n"
" // Get only the lower bits where the triangle index is stored\n"
" return (rootNode->m_escapeIndexOrTriangleIndex&~(y));\n"
"}\n"
"int isLeaf(const btQuantizedBvhNode* rootNode)\n"
"{\n"
" //skipindex is negative (internal node), triangleindex >=0 (leafnode)\n"
" return (rootNode->m_escapeIndexOrTriangleIndex >= 0)? 1 : 0;\n"
"}\n"
" \n"
"int getEscapeIndex(const btQuantizedBvhNode* rootNode)\n"
"{\n"
" return -rootNode->m_escapeIndexOrTriangleIndex;\n"
"}\n"
"typedef struct\n"
"{\n"
" //12 bytes\n"
" unsigned short int m_quantizedAabbMin[3];\n"
" unsigned short int m_quantizedAabbMax[3];\n"
" //4 bytes, points to the root of the subtree\n"
" int m_rootNodeIndex;\n"
" //4 bytes\n"
" int m_subtreeSize;\n"
" int m_padding[3];\n"
"} btBvhSubtreeInfo;\n"
"///keep this in sync with btCollidable.h\n"
"typedef struct\n"
"{\n"
" int m_numChildShapes;\n"
" int blaat2;\n"
" int m_shapeType;\n"
" int m_shapeIndex;\n"
" \n"
"} btCollidableGpu;\n"
"typedef struct\n"
"{\n"
" float4 m_childPosition;\n"
" float4 m_childOrientation;\n"
" int m_shapeIndex;\n"
" int m_unused0;\n"
" int m_unused1;\n"
" int m_unused2;\n"
"} btGpuChildShape;\n"
"typedef struct\n"
"{\n"
" float4 m_pos;\n"
" float4 m_quat;\n"
" float4 m_linVel;\n"
" float4 m_angVel;\n"
" u32 m_collidableIdx;\n"
" float m_invMass;\n"
" float m_restituitionCoeff;\n"
" float m_frictionCoeff;\n"
"} BodyData;\n"
"typedef struct \n"
"{\n"
" union\n"
" {\n"
" float4 m_min;\n"
" float m_minElems[4];\n"
" int m_minIndices[4];\n"
" };\n"
" union\n"
" {\n"
" float4 m_max;\n"
" float m_maxElems[4];\n"
" int m_maxIndices[4];\n"
" };\n"
"} btAabbCL;\n"
"int testQuantizedAabbAgainstQuantizedAabb(\n"
" const unsigned short int* aabbMin1,\n"
" const unsigned short int* aabbMax1,\n"
" const unsigned short int* aabbMin2,\n"
" const unsigned short int* aabbMax2)\n"
"{\n"
" //int overlap = 1;\n"
" if (aabbMin1[0] > aabbMax2[0])\n"
" return 0;\n"
" if (aabbMax1[0] < aabbMin2[0])\n"
" return 0;\n"
" if (aabbMin1[1] > aabbMax2[1])\n"
" return 0;\n"
" if (aabbMax1[1] < aabbMin2[1])\n"
" return 0;\n"
" if (aabbMin1[2] > aabbMax2[2])\n"
" return 0;\n"
" if (aabbMax1[2] < aabbMin2[2])\n"
" return 0;\n"
" return 1;\n"
" //overlap = ((aabbMin1[0] > aabbMax2[0]) || (aabbMax1[0] < aabbMin2[0])) ? 0 : overlap;\n"
" //overlap = ((aabbMin1[2] > aabbMax2[2]) || (aabbMax1[2] < aabbMin2[2])) ? 0 : overlap;\n"
" //overlap = ((aabbMin1[1] > aabbMax2[1]) || (aabbMax1[1] < aabbMin2[1])) ? 0 : overlap;\n"
" //return overlap;\n"
"}\n"
"void quantizeWithClamp(unsigned short* out, float4 point2,int isMax, float4 bvhAabbMin, float4 bvhAabbMax, float4 bvhQuantization)\n"
"{\n"
" float4 clampedPoint = max(point2,bvhAabbMin);\n"
" clampedPoint = min (clampedPoint, bvhAabbMax);\n"
" float4 v = (clampedPoint - bvhAabbMin) * bvhQuantization;\n"
" if (isMax)\n"
" {\n"
" out[0] = (unsigned short) (((unsigned short)(v.x+1.f) | 1));\n"
" out[1] = (unsigned short) (((unsigned short)(v.y+1.f) | 1));\n"
" out[2] = (unsigned short) (((unsigned short)(v.z+1.f) | 1));\n"
" } else\n"
" {\n"
" out[0] = (unsigned short) (((unsigned short)(v.x) & 0xfffe));\n"
" out[1] = (unsigned short) (((unsigned short)(v.y) & 0xfffe));\n"
" out[2] = (unsigned short) (((unsigned short)(v.z) & 0xfffe));\n"
" }\n"
"}\n"
"// work-in-progress\n"
"__kernel void bvhTraversalKernel( __global const int4* pairs, \n"
" __global const BodyData* rigidBodies, \n"
" __global const btCollidableGpu* collidables,\n"
" __global btAabbCL* aabbs,\n"
" __global int4* concavePairsOut,\n"
" __global volatile int* numConcavePairsOut,\n"
" __global const btBvhSubtreeInfo* subtreeHeadersRoot,\n"
" __global const btQuantizedBvhNode* quantizedNodesRoot,\n"
" __global const b3BvhInfo* bvhInfos,\n"
" int numPairs,\n"
" int maxNumConcavePairsCapacity)\n"
"{\n"
" int id = get_global_id(0);\n"
" if (id>=numPairs)\n"
" return;\n"
" \n"
" int bodyIndexA = pairs[id].x;\n"
" int bodyIndexB = pairs[id].y;\n"
" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n"
" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n"
" \n"
" //once the broadphase avoids static-static pairs, we can remove this test\n"
" if ((rigidBodies[bodyIndexA].m_invMass==0) &&(rigidBodies[bodyIndexB].m_invMass==0))\n"
" {\n"
" return;\n"
" }\n"
" \n"
" if (collidables[collidableIndexA].m_shapeType!=SHAPE_CONCAVE_TRIMESH)\n"
" return;\n"
" int shapeTypeB = collidables[collidableIndexB].m_shapeType;\n"
" \n"
" if (shapeTypeB!=SHAPE_CONVEX_HULL &&\n"
" shapeTypeB!=SHAPE_SPHERE &&\n"
" shapeTypeB!=SHAPE_COMPOUND_OF_CONVEX_HULLS\n"
" )\n"
" return;\n"
" b3BvhInfo bvhInfo = bvhInfos[collidables[collidableIndexA].m_numChildShapes];\n"
" float4 bvhAabbMin = bvhInfo.m_aabbMin;\n"
" float4 bvhAabbMax = bvhInfo.m_aabbMax;\n"
" float4 bvhQuantization = bvhInfo.m_quantization;\n"
" int numSubtreeHeaders = bvhInfo.m_numSubTrees;\n"
" __global const btBvhSubtreeInfo* subtreeHeaders = &subtreeHeadersRoot[bvhInfo.m_subTreeOffset];\n"
" __global const btQuantizedBvhNode* quantizedNodes = &quantizedNodesRoot[bvhInfo.m_nodeOffset];\n"
" \n"
" unsigned short int quantizedQueryAabbMin[3];\n"
" unsigned short int quantizedQueryAabbMax[3];\n"
" quantizeWithClamp(quantizedQueryAabbMin,aabbs[bodyIndexB].m_min,false,bvhAabbMin, bvhAabbMax,bvhQuantization);\n"
" quantizeWithClamp(quantizedQueryAabbMax,aabbs[bodyIndexB].m_max,true ,bvhAabbMin, bvhAabbMax,bvhQuantization);\n"
" \n"
" for (int i=0;i<numSubtreeHeaders;i++)\n"
" {\n"
" btBvhSubtreeInfo subtree = subtreeHeaders[i];\n"
" \n"
" int overlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,subtree.m_quantizedAabbMin,subtree.m_quantizedAabbMax);\n"
" if (overlap != 0)\n"
" {\n"
" int startNodeIndex = subtree.m_rootNodeIndex;\n"
" int endNodeIndex = subtree.m_rootNodeIndex+subtree.m_subtreeSize;\n"
" int curIndex = startNodeIndex;\n"
" int escapeIndex;\n"
" int isLeafNode;\n"
" int aabbOverlap;\n"
" while (curIndex < endNodeIndex)\n"
" {\n"
" btQuantizedBvhNode rootNode = quantizedNodes[curIndex];\n"
" aabbOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode.m_quantizedAabbMin,rootNode.m_quantizedAabbMax);\n"
" isLeafNode = isLeaf(&rootNode);\n"
" if (aabbOverlap)\n"
" {\n"
" if (isLeafNode)\n"
" {\n"
" int triangleIndex = getTriangleIndex(&rootNode);\n"
" if (shapeTypeB==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n"
" {\n"
" int numChildrenB = collidables[collidableIndexB].m_numChildShapes;\n"
" int pairIdx = atomic_add(numConcavePairsOut,numChildrenB);\n"
" for (int b=0;b<numChildrenB;b++)\n"
" {\n"
" if ((pairIdx+b)<maxNumConcavePairsCapacity)\n"
" {\n"
" int childShapeIndexB = collidables[collidableIndexB].m_shapeIndex+b;\n"
" int4 newPair = (int4)(bodyIndexA,bodyIndexB,triangleIndex,childShapeIndexB);\n"
" concavePairsOut[pairIdx+b] = newPair;\n"
" }\n"
" }\n"
" } else\n"
" {\n"
" int pairIdx = atomic_inc(numConcavePairsOut);\n"
" if (pairIdx<maxNumConcavePairsCapacity)\n"
" {\n"
" int4 newPair = (int4)(bodyIndexA,bodyIndexB,triangleIndex,0);\n"
" concavePairsOut[pairIdx] = newPair;\n"
" }\n"
" }\n"
" } \n"
" curIndex++;\n"
" } else\n"
" {\n"
" if (isLeafNode)\n"
" {\n"
" curIndex++;\n"
" } else\n"
" {\n"
" escapeIndex = getEscapeIndex(&rootNode);\n"
" curIndex += escapeIndex;\n"
" }\n"
" }\n"
" }\n"
" }\n"
" }\n"
"}\n";

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff