Code-style consistency improvement:
Apply clang-format-all.sh using the _clang-format file through all the cpp/.h files. make sure not to apply it to certain serialization structures, since some parser expects the * as part of the name, instead of type. This commit contains no other changes aside from adding and applying clang-format-all.sh
This commit is contained in:
@@ -22,11 +22,11 @@ subject to the following restrictions:
|
||||
///Bvh Concave triangle mesh is a static-triangle mesh shape with Bounding Volume Hierarchy optimization.
|
||||
///Uses an interface to access the triangles to allow for sharing graphics/physics triangles.
|
||||
btBvhTriangleMeshShape::btBvhTriangleMeshShape(btStridingMeshInterface* meshInterface, bool useQuantizedAabbCompression, bool buildBvh)
|
||||
:btTriangleMeshShape(meshInterface),
|
||||
m_bvh(0),
|
||||
m_triangleInfoMap(0),
|
||||
m_useQuantizedAabbCompression(useQuantizedAabbCompression),
|
||||
m_ownsBvh(false)
|
||||
: btTriangleMeshShape(meshInterface),
|
||||
m_bvh(0),
|
||||
m_triangleInfoMap(0),
|
||||
m_useQuantizedAabbCompression(useQuantizedAabbCompression),
|
||||
m_ownsBvh(false)
|
||||
{
|
||||
m_shapeType = TRIANGLE_MESH_SHAPE_PROXYTYPE;
|
||||
//construct bvh from meshInterface
|
||||
@@ -37,16 +37,15 @@ m_ownsBvh(false)
|
||||
buildOptimizedBvh();
|
||||
}
|
||||
|
||||
#endif //DISABLE_BVH
|
||||
|
||||
#endif //DISABLE_BVH
|
||||
}
|
||||
|
||||
btBvhTriangleMeshShape::btBvhTriangleMeshShape(btStridingMeshInterface* meshInterface, bool useQuantizedAabbCompression,const btVector3& bvhAabbMin,const btVector3& bvhAabbMax,bool buildBvh)
|
||||
:btTriangleMeshShape(meshInterface),
|
||||
m_bvh(0),
|
||||
m_triangleInfoMap(0),
|
||||
m_useQuantizedAabbCompression(useQuantizedAabbCompression),
|
||||
m_ownsBvh(false)
|
||||
btBvhTriangleMeshShape::btBvhTriangleMeshShape(btStridingMeshInterface* meshInterface, bool useQuantizedAabbCompression, const btVector3& bvhAabbMin, const btVector3& bvhAabbMax, bool buildBvh)
|
||||
: btTriangleMeshShape(meshInterface),
|
||||
m_bvh(0),
|
||||
m_triangleInfoMap(0),
|
||||
m_useQuantizedAabbCompression(useQuantizedAabbCompression),
|
||||
m_ownsBvh(false)
|
||||
{
|
||||
m_shapeType = TRIANGLE_MESH_SHAPE_PROXYTYPE;
|
||||
//construct bvh from meshInterface
|
||||
@@ -54,30 +53,28 @@ m_ownsBvh(false)
|
||||
|
||||
if (buildBvh)
|
||||
{
|
||||
void* mem = btAlignedAlloc(sizeof(btOptimizedBvh),16);
|
||||
void* mem = btAlignedAlloc(sizeof(btOptimizedBvh), 16);
|
||||
m_bvh = new (mem) btOptimizedBvh();
|
||||
|
||||
m_bvh->build(meshInterface,m_useQuantizedAabbCompression,bvhAabbMin,bvhAabbMax);
|
||||
|
||||
m_bvh->build(meshInterface, m_useQuantizedAabbCompression, bvhAabbMin, bvhAabbMax);
|
||||
m_ownsBvh = true;
|
||||
}
|
||||
|
||||
#endif //DISABLE_BVH
|
||||
|
||||
#endif //DISABLE_BVH
|
||||
}
|
||||
|
||||
void btBvhTriangleMeshShape::partialRefitTree(const btVector3& aabbMin,const btVector3& aabbMax)
|
||||
void btBvhTriangleMeshShape::partialRefitTree(const btVector3& aabbMin, const btVector3& aabbMax)
|
||||
{
|
||||
m_bvh->refitPartial( m_meshInterface,aabbMin,aabbMax );
|
||||
|
||||
m_bvh->refitPartial(m_meshInterface, aabbMin, aabbMax);
|
||||
|
||||
m_localAabbMin.setMin(aabbMin);
|
||||
m_localAabbMax.setMax(aabbMax);
|
||||
}
|
||||
|
||||
|
||||
void btBvhTriangleMeshShape::refitTree(const btVector3& aabbMin,const btVector3& aabbMax)
|
||||
void btBvhTriangleMeshShape::refitTree(const btVector3& aabbMin, const btVector3& aabbMax)
|
||||
{
|
||||
m_bvh->refit( m_meshInterface, aabbMin,aabbMax );
|
||||
|
||||
m_bvh->refit(m_meshInterface, aabbMin, aabbMax);
|
||||
|
||||
recalcLocalAabb();
|
||||
}
|
||||
|
||||
@@ -90,27 +87,27 @@ btBvhTriangleMeshShape::~btBvhTriangleMeshShape()
|
||||
}
|
||||
}
|
||||
|
||||
void btBvhTriangleMeshShape::performRaycast (btTriangleCallback* callback, const btVector3& raySource, const btVector3& rayTarget)
|
||||
void btBvhTriangleMeshShape::performRaycast(btTriangleCallback* callback, const btVector3& raySource, const btVector3& rayTarget)
|
||||
{
|
||||
struct MyNodeOverlapCallback : public btNodeOverlapCallback
|
||||
struct MyNodeOverlapCallback : public btNodeOverlapCallback
|
||||
{
|
||||
btStridingMeshInterface* m_meshInterface;
|
||||
btStridingMeshInterface* m_meshInterface;
|
||||
btTriangleCallback* m_callback;
|
||||
|
||||
MyNodeOverlapCallback(btTriangleCallback* callback,btStridingMeshInterface* meshInterface)
|
||||
:m_meshInterface(meshInterface),
|
||||
m_callback(callback)
|
||||
MyNodeOverlapCallback(btTriangleCallback* callback, btStridingMeshInterface* meshInterface)
|
||||
: m_meshInterface(meshInterface),
|
||||
m_callback(callback)
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
virtual void processNode(int nodeSubPart, int nodeTriangleIndex)
|
||||
{
|
||||
btVector3 m_triangle[3];
|
||||
const unsigned char *vertexbase;
|
||||
const unsigned char* vertexbase;
|
||||
int numverts;
|
||||
PHY_ScalarType type;
|
||||
int stride;
|
||||
const unsigned char *indexbase;
|
||||
const unsigned char* indexbase;
|
||||
int indexstride;
|
||||
int numfaces;
|
||||
PHY_ScalarType indicestype;
|
||||
@@ -126,60 +123,60 @@ void btBvhTriangleMeshShape::performRaycast (btTriangleCallback* callback, const
|
||||
indicestype,
|
||||
nodeSubPart);
|
||||
|
||||
unsigned int* gfxbase = (unsigned int*)(indexbase+nodeTriangleIndex*indexstride);
|
||||
btAssert(indicestype==PHY_INTEGER||indicestype==PHY_SHORT);
|
||||
|
||||
unsigned int* gfxbase = (unsigned int*)(indexbase + nodeTriangleIndex * indexstride);
|
||||
btAssert(indicestype == PHY_INTEGER || indicestype == PHY_SHORT);
|
||||
|
||||
const btVector3& meshScaling = m_meshInterface->getScaling();
|
||||
for (int j=2;j>=0;j--)
|
||||
for (int j = 2; j >= 0; j--)
|
||||
{
|
||||
int graphicsindex = indicestype==PHY_SHORT?((unsigned short*)gfxbase)[j]:gfxbase[j];
|
||||
|
||||
int graphicsindex = indicestype == PHY_SHORT ? ((unsigned short*)gfxbase)[j] : gfxbase[j];
|
||||
|
||||
if (type == PHY_FLOAT)
|
||||
{
|
||||
float* graphicsbase = (float*)(vertexbase+graphicsindex*stride);
|
||||
|
||||
m_triangle[j] = btVector3(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),graphicsbase[2]*meshScaling.getZ());
|
||||
float* graphicsbase = (float*)(vertexbase + graphicsindex * stride);
|
||||
|
||||
m_triangle[j] = btVector3(graphicsbase[0] * meshScaling.getX(), graphicsbase[1] * meshScaling.getY(), graphicsbase[2] * meshScaling.getZ());
|
||||
}
|
||||
else
|
||||
{
|
||||
double* graphicsbase = (double*)(vertexbase+graphicsindex*stride);
|
||||
|
||||
m_triangle[j] = btVector3(btScalar(graphicsbase[0])*meshScaling.getX(),btScalar(graphicsbase[1])*meshScaling.getY(),btScalar(graphicsbase[2])*meshScaling.getZ());
|
||||
double* graphicsbase = (double*)(vertexbase + graphicsindex * stride);
|
||||
|
||||
m_triangle[j] = btVector3(btScalar(graphicsbase[0]) * meshScaling.getX(), btScalar(graphicsbase[1]) * meshScaling.getY(), btScalar(graphicsbase[2]) * meshScaling.getZ());
|
||||
}
|
||||
}
|
||||
|
||||
/* Perform ray vs. triangle collision here */
|
||||
m_callback->processTriangle(m_triangle,nodeSubPart,nodeTriangleIndex);
|
||||
m_callback->processTriangle(m_triangle, nodeSubPart, nodeTriangleIndex);
|
||||
m_meshInterface->unLockReadOnlyVertexBase(nodeSubPart);
|
||||
}
|
||||
};
|
||||
|
||||
MyNodeOverlapCallback myNodeCallback(callback,m_meshInterface);
|
||||
MyNodeOverlapCallback myNodeCallback(callback, m_meshInterface);
|
||||
|
||||
m_bvh->reportRayOverlappingNodex(&myNodeCallback,raySource,rayTarget);
|
||||
m_bvh->reportRayOverlappingNodex(&myNodeCallback, raySource, rayTarget);
|
||||
}
|
||||
|
||||
void btBvhTriangleMeshShape::performConvexcast (btTriangleCallback* callback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin, const btVector3& aabbMax)
|
||||
void btBvhTriangleMeshShape::performConvexcast(btTriangleCallback* callback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin, const btVector3& aabbMax)
|
||||
{
|
||||
struct MyNodeOverlapCallback : public btNodeOverlapCallback
|
||||
struct MyNodeOverlapCallback : public btNodeOverlapCallback
|
||||
{
|
||||
btStridingMeshInterface* m_meshInterface;
|
||||
btStridingMeshInterface* m_meshInterface;
|
||||
btTriangleCallback* m_callback;
|
||||
|
||||
MyNodeOverlapCallback(btTriangleCallback* callback,btStridingMeshInterface* meshInterface)
|
||||
:m_meshInterface(meshInterface),
|
||||
m_callback(callback)
|
||||
MyNodeOverlapCallback(btTriangleCallback* callback, btStridingMeshInterface* meshInterface)
|
||||
: m_meshInterface(meshInterface),
|
||||
m_callback(callback)
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
virtual void processNode(int nodeSubPart, int nodeTriangleIndex)
|
||||
{
|
||||
btVector3 m_triangle[3];
|
||||
const unsigned char *vertexbase;
|
||||
const unsigned char* vertexbase;
|
||||
int numverts;
|
||||
PHY_ScalarType type;
|
||||
int stride;
|
||||
const unsigned char *indexbase;
|
||||
const unsigned char* indexbase;
|
||||
int indexstride;
|
||||
int numfaces;
|
||||
PHY_ScalarType indicestype;
|
||||
@@ -195,77 +192,74 @@ void btBvhTriangleMeshShape::performConvexcast (btTriangleCallback* callback, co
|
||||
indicestype,
|
||||
nodeSubPart);
|
||||
|
||||
unsigned int* gfxbase = (unsigned int*)(indexbase+nodeTriangleIndex*indexstride);
|
||||
btAssert(indicestype==PHY_INTEGER||indicestype==PHY_SHORT);
|
||||
|
||||
unsigned int* gfxbase = (unsigned int*)(indexbase + nodeTriangleIndex * indexstride);
|
||||
btAssert(indicestype == PHY_INTEGER || indicestype == PHY_SHORT);
|
||||
|
||||
const btVector3& meshScaling = m_meshInterface->getScaling();
|
||||
for (int j=2;j>=0;j--)
|
||||
for (int j = 2; j >= 0; j--)
|
||||
{
|
||||
int graphicsindex = indicestype==PHY_SHORT?((unsigned short*)gfxbase)[j]:gfxbase[j];
|
||||
int graphicsindex = indicestype == PHY_SHORT ? ((unsigned short*)gfxbase)[j] : gfxbase[j];
|
||||
|
||||
if (type == PHY_FLOAT)
|
||||
{
|
||||
float* graphicsbase = (float*)(vertexbase+graphicsindex*stride);
|
||||
float* graphicsbase = (float*)(vertexbase + graphicsindex * stride);
|
||||
|
||||
m_triangle[j] = btVector3(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),graphicsbase[2]*meshScaling.getZ());
|
||||
m_triangle[j] = btVector3(graphicsbase[0] * meshScaling.getX(), graphicsbase[1] * meshScaling.getY(), graphicsbase[2] * meshScaling.getZ());
|
||||
}
|
||||
else
|
||||
{
|
||||
double* graphicsbase = (double*)(vertexbase+graphicsindex*stride);
|
||||
|
||||
m_triangle[j] = btVector3(btScalar(graphicsbase[0])*meshScaling.getX(),btScalar(graphicsbase[1])*meshScaling.getY(),btScalar(graphicsbase[2])*meshScaling.getZ());
|
||||
double* graphicsbase = (double*)(vertexbase + graphicsindex * stride);
|
||||
|
||||
m_triangle[j] = btVector3(btScalar(graphicsbase[0]) * meshScaling.getX(), btScalar(graphicsbase[1]) * meshScaling.getY(), btScalar(graphicsbase[2]) * meshScaling.getZ());
|
||||
}
|
||||
}
|
||||
|
||||
/* Perform ray vs. triangle collision here */
|
||||
m_callback->processTriangle(m_triangle,nodeSubPart,nodeTriangleIndex);
|
||||
m_callback->processTriangle(m_triangle, nodeSubPart, nodeTriangleIndex);
|
||||
m_meshInterface->unLockReadOnlyVertexBase(nodeSubPart);
|
||||
}
|
||||
};
|
||||
|
||||
MyNodeOverlapCallback myNodeCallback(callback,m_meshInterface);
|
||||
MyNodeOverlapCallback myNodeCallback(callback, m_meshInterface);
|
||||
|
||||
m_bvh->reportBoxCastOverlappingNodex (&myNodeCallback, raySource, rayTarget, aabbMin, aabbMax);
|
||||
m_bvh->reportBoxCastOverlappingNodex(&myNodeCallback, raySource, rayTarget, aabbMin, aabbMax);
|
||||
}
|
||||
|
||||
//perform bvh tree traversal and report overlapping triangles to 'callback'
|
||||
void btBvhTriangleMeshShape::processAllTriangles(btTriangleCallback* callback,const btVector3& aabbMin,const btVector3& aabbMax) const
|
||||
void btBvhTriangleMeshShape::processAllTriangles(btTriangleCallback* callback, const btVector3& aabbMin, const btVector3& aabbMax) const
|
||||
{
|
||||
|
||||
#ifdef DISABLE_BVH
|
||||
//brute force traverse all triangles
|
||||
btTriangleMeshShape::processAllTriangles(callback,aabbMin,aabbMax);
|
||||
btTriangleMeshShape::processAllTriangles(callback, aabbMin, aabbMax);
|
||||
#else
|
||||
|
||||
//first get all the nodes
|
||||
|
||||
|
||||
struct MyNodeOverlapCallback : public btNodeOverlapCallback
|
||||
struct MyNodeOverlapCallback : public btNodeOverlapCallback
|
||||
{
|
||||
btStridingMeshInterface* m_meshInterface;
|
||||
btTriangleCallback* m_callback;
|
||||
btVector3 m_triangle[3];
|
||||
btStridingMeshInterface* m_meshInterface;
|
||||
btTriangleCallback* m_callback;
|
||||
btVector3 m_triangle[3];
|
||||
int m_numOverlap;
|
||||
|
||||
MyNodeOverlapCallback(btTriangleCallback* callback,btStridingMeshInterface* meshInterface)
|
||||
:m_meshInterface(meshInterface),
|
||||
m_callback(callback),
|
||||
m_numOverlap(0)
|
||||
MyNodeOverlapCallback(btTriangleCallback* callback, btStridingMeshInterface* meshInterface)
|
||||
: m_meshInterface(meshInterface),
|
||||
m_callback(callback),
|
||||
m_numOverlap(0)
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
virtual void processNode(int nodeSubPart, int nodeTriangleIndex)
|
||||
{
|
||||
m_numOverlap++;
|
||||
const unsigned char *vertexbase;
|
||||
const unsigned char* vertexbase;
|
||||
int numverts;
|
||||
PHY_ScalarType type;
|
||||
int stride;
|
||||
const unsigned char *indexbase;
|
||||
const unsigned char* indexbase;
|
||||
int indexstride;
|
||||
int numfaces;
|
||||
PHY_ScalarType indicestype;
|
||||
|
||||
|
||||
m_meshInterface->getLockedReadOnlyVertexIndexBase(
|
||||
&vertexbase,
|
||||
@@ -278,67 +272,62 @@ void btBvhTriangleMeshShape::processAllTriangles(btTriangleCallback* callback,co
|
||||
indicestype,
|
||||
nodeSubPart);
|
||||
|
||||
unsigned int* gfxbase = (unsigned int*)(indexbase+nodeTriangleIndex*indexstride);
|
||||
btAssert(indicestype==PHY_INTEGER||indicestype==PHY_SHORT||indicestype==PHY_UCHAR);
|
||||
|
||||
const btVector3& meshScaling = m_meshInterface->getScaling();
|
||||
for (int j=2;j>=0;j--)
|
||||
{
|
||||
|
||||
int graphicsindex = indicestype==PHY_SHORT?((unsigned short*)gfxbase)[j]:indicestype==PHY_INTEGER?gfxbase[j]:((unsigned char*)gfxbase)[j];
|
||||
unsigned int* gfxbase = (unsigned int*)(indexbase + nodeTriangleIndex * indexstride);
|
||||
btAssert(indicestype == PHY_INTEGER || indicestype == PHY_SHORT || indicestype == PHY_UCHAR);
|
||||
|
||||
const btVector3& meshScaling = m_meshInterface->getScaling();
|
||||
for (int j = 2; j >= 0; j--)
|
||||
{
|
||||
int graphicsindex = indicestype == PHY_SHORT ? ((unsigned short*)gfxbase)[j] : indicestype == PHY_INTEGER ? gfxbase[j] : ((unsigned char*)gfxbase)[j];
|
||||
|
||||
#ifdef DEBUG_TRIANGLE_MESH
|
||||
printf("%d ,",graphicsindex);
|
||||
#endif //DEBUG_TRIANGLE_MESH
|
||||
printf("%d ,", graphicsindex);
|
||||
#endif //DEBUG_TRIANGLE_MESH
|
||||
if (type == PHY_FLOAT)
|
||||
{
|
||||
float* graphicsbase = (float*)(vertexbase+graphicsindex*stride);
|
||||
|
||||
float* graphicsbase = (float*)(vertexbase + graphicsindex * stride);
|
||||
|
||||
m_triangle[j] = btVector3(
|
||||
graphicsbase[0]*meshScaling.getX(),
|
||||
graphicsbase[1]*meshScaling.getY(),
|
||||
graphicsbase[2]*meshScaling.getZ());
|
||||
graphicsbase[0] * meshScaling.getX(),
|
||||
graphicsbase[1] * meshScaling.getY(),
|
||||
graphicsbase[2] * meshScaling.getZ());
|
||||
}
|
||||
else
|
||||
{
|
||||
double* graphicsbase = (double*)(vertexbase+graphicsindex*stride);
|
||||
double* graphicsbase = (double*)(vertexbase + graphicsindex * stride);
|
||||
|
||||
m_triangle[j] = btVector3(
|
||||
btScalar(graphicsbase[0])*meshScaling.getX(),
|
||||
btScalar(graphicsbase[1])*meshScaling.getY(),
|
||||
btScalar(graphicsbase[2])*meshScaling.getZ());
|
||||
btScalar(graphicsbase[0]) * meshScaling.getX(),
|
||||
btScalar(graphicsbase[1]) * meshScaling.getY(),
|
||||
btScalar(graphicsbase[2]) * meshScaling.getZ());
|
||||
}
|
||||
#ifdef DEBUG_TRIANGLE_MESH
|
||||
printf("triangle vertices:%f,%f,%f\n",triangle[j].x(),triangle[j].y(),triangle[j].z());
|
||||
#endif //DEBUG_TRIANGLE_MESH
|
||||
printf("triangle vertices:%f,%f,%f\n", triangle[j].x(), triangle[j].y(), triangle[j].z());
|
||||
#endif //DEBUG_TRIANGLE_MESH
|
||||
}
|
||||
|
||||
m_callback->processTriangle(m_triangle,nodeSubPart,nodeTriangleIndex);
|
||||
m_callback->processTriangle(m_triangle, nodeSubPart, nodeTriangleIndex);
|
||||
m_meshInterface->unLockReadOnlyVertexBase(nodeSubPart);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
MyNodeOverlapCallback myNodeCallback(callback,m_meshInterface);
|
||||
|
||||
m_bvh->reportAabbOverlappingNodex(&myNodeCallback,aabbMin,aabbMax);
|
||||
|
||||
#endif//DISABLE_BVH
|
||||
MyNodeOverlapCallback myNodeCallback(callback, m_meshInterface);
|
||||
|
||||
m_bvh->reportAabbOverlappingNodex(&myNodeCallback, aabbMin, aabbMax);
|
||||
|
||||
#endif //DISABLE_BVH
|
||||
}
|
||||
|
||||
void btBvhTriangleMeshShape::setLocalScaling(const btVector3& scaling)
|
||||
void btBvhTriangleMeshShape::setLocalScaling(const btVector3& scaling)
|
||||
{
|
||||
if ((getLocalScaling() -scaling).length2() > SIMD_EPSILON)
|
||||
{
|
||||
btTriangleMeshShape::setLocalScaling(scaling);
|
||||
buildOptimizedBvh();
|
||||
}
|
||||
if ((getLocalScaling() - scaling).length2() > SIMD_EPSILON)
|
||||
{
|
||||
btTriangleMeshShape::setLocalScaling(scaling);
|
||||
buildOptimizedBvh();
|
||||
}
|
||||
}
|
||||
|
||||
void btBvhTriangleMeshShape::buildOptimizedBvh()
|
||||
void btBvhTriangleMeshShape::buildOptimizedBvh()
|
||||
{
|
||||
if (m_ownsBvh)
|
||||
{
|
||||
@@ -346,43 +335,39 @@ void btBvhTriangleMeshShape::buildOptimizedBvh()
|
||||
btAlignedFree(m_bvh);
|
||||
}
|
||||
///m_localAabbMin/m_localAabbMax is already re-calculated in btTriangleMeshShape. We could just scale aabb, but this needs some more work
|
||||
void* mem = btAlignedAlloc(sizeof(btOptimizedBvh),16);
|
||||
m_bvh = new(mem) btOptimizedBvh();
|
||||
void* mem = btAlignedAlloc(sizeof(btOptimizedBvh), 16);
|
||||
m_bvh = new (mem) btOptimizedBvh();
|
||||
//rebuild the bvh...
|
||||
m_bvh->build(m_meshInterface,m_useQuantizedAabbCompression,m_localAabbMin,m_localAabbMax);
|
||||
m_bvh->build(m_meshInterface, m_useQuantizedAabbCompression, m_localAabbMin, m_localAabbMax);
|
||||
m_ownsBvh = true;
|
||||
}
|
||||
|
||||
void btBvhTriangleMeshShape::setOptimizedBvh(btOptimizedBvh* bvh, const btVector3& scaling)
|
||||
void btBvhTriangleMeshShape::setOptimizedBvh(btOptimizedBvh* bvh, const btVector3& scaling)
|
||||
{
|
||||
btAssert(!m_bvh);
|
||||
btAssert(!m_ownsBvh);
|
||||
btAssert(!m_bvh);
|
||||
btAssert(!m_ownsBvh);
|
||||
|
||||
m_bvh = bvh;
|
||||
m_ownsBvh = false;
|
||||
// update the scaling without rebuilding the bvh
|
||||
if ((getLocalScaling() -scaling).length2() > SIMD_EPSILON)
|
||||
{
|
||||
btTriangleMeshShape::setLocalScaling(scaling);
|
||||
}
|
||||
m_bvh = bvh;
|
||||
m_ownsBvh = false;
|
||||
// update the scaling without rebuilding the bvh
|
||||
if ((getLocalScaling() - scaling).length2() > SIMD_EPSILON)
|
||||
{
|
||||
btTriangleMeshShape::setLocalScaling(scaling);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
///fills the dataBuffer and returns the struct name (and 0 on failure)
|
||||
const char* btBvhTriangleMeshShape::serialize(void* dataBuffer, btSerializer* serializer) const
|
||||
const char* btBvhTriangleMeshShape::serialize(void* dataBuffer, btSerializer* serializer) const
|
||||
{
|
||||
btTriangleMeshShapeData* trimeshData = (btTriangleMeshShapeData*) dataBuffer;
|
||||
btTriangleMeshShapeData* trimeshData = (btTriangleMeshShapeData*)dataBuffer;
|
||||
|
||||
btCollisionShape::serialize(&trimeshData->m_collisionShapeData,serializer);
|
||||
btCollisionShape::serialize(&trimeshData->m_collisionShapeData, serializer);
|
||||
|
||||
m_meshInterface->serialize(&trimeshData->m_meshInterface, serializer);
|
||||
|
||||
trimeshData->m_collisionMargin = float(m_collisionMargin);
|
||||
|
||||
|
||||
|
||||
if (m_bvh && !(serializer->getSerializationFlags()&BT_SERIALIZE_NO_BVH))
|
||||
if (m_bvh && !(serializer->getSerializationFlags() & BT_SERIALIZE_NO_BVH))
|
||||
{
|
||||
void* chunk = serializer->findPointer(m_bvh);
|
||||
if (chunk)
|
||||
@@ -391,48 +376,49 @@ const char* btBvhTriangleMeshShape::serialize(void* dataBuffer, btSerializer* se
|
||||
trimeshData->m_quantizedDoubleBvh = (btQuantizedBvhData*)chunk;
|
||||
trimeshData->m_quantizedFloatBvh = 0;
|
||||
#else
|
||||
trimeshData->m_quantizedFloatBvh = (btQuantizedBvhData*)chunk;
|
||||
trimeshData->m_quantizedDoubleBvh= 0;
|
||||
#endif //BT_USE_DOUBLE_PRECISION
|
||||
} else
|
||||
trimeshData->m_quantizedFloatBvh = (btQuantizedBvhData*)chunk;
|
||||
trimeshData->m_quantizedDoubleBvh = 0;
|
||||
#endif //BT_USE_DOUBLE_PRECISION
|
||||
}
|
||||
else
|
||||
{
|
||||
|
||||
#ifdef BT_USE_DOUBLE_PRECISION
|
||||
trimeshData->m_quantizedDoubleBvh = (btQuantizedBvhData*)serializer->getUniquePointer(m_bvh);
|
||||
trimeshData->m_quantizedFloatBvh = 0;
|
||||
#else
|
||||
trimeshData->m_quantizedFloatBvh = (btQuantizedBvhData*)serializer->getUniquePointer(m_bvh);
|
||||
trimeshData->m_quantizedDoubleBvh= 0;
|
||||
#endif //BT_USE_DOUBLE_PRECISION
|
||||
|
||||
trimeshData->m_quantizedFloatBvh = (btQuantizedBvhData*)serializer->getUniquePointer(m_bvh);
|
||||
trimeshData->m_quantizedDoubleBvh = 0;
|
||||
#endif //BT_USE_DOUBLE_PRECISION
|
||||
|
||||
int sz = m_bvh->calculateSerializeBufferSizeNew();
|
||||
btChunk* chunk = serializer->allocate(sz,1);
|
||||
btChunk* chunk = serializer->allocate(sz, 1);
|
||||
const char* structType = m_bvh->serialize(chunk->m_oldPtr, serializer);
|
||||
serializer->finalizeChunk(chunk,structType,BT_QUANTIZED_BVH_CODE,m_bvh);
|
||||
serializer->finalizeChunk(chunk, structType, BT_QUANTIZED_BVH_CODE, m_bvh);
|
||||
}
|
||||
} else
|
||||
}
|
||||
else
|
||||
{
|
||||
trimeshData->m_quantizedFloatBvh = 0;
|
||||
trimeshData->m_quantizedDoubleBvh = 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
if (m_triangleInfoMap && !(serializer->getSerializationFlags()&BT_SERIALIZE_NO_TRIANGLEINFOMAP))
|
||||
if (m_triangleInfoMap && !(serializer->getSerializationFlags() & BT_SERIALIZE_NO_TRIANGLEINFOMAP))
|
||||
{
|
||||
void* chunk = serializer->findPointer(m_triangleInfoMap);
|
||||
if (chunk)
|
||||
{
|
||||
trimeshData->m_triangleInfoMap = (btTriangleInfoMapData*)chunk;
|
||||
} else
|
||||
}
|
||||
else
|
||||
{
|
||||
trimeshData->m_triangleInfoMap = (btTriangleInfoMapData*)serializer->getUniquePointer(m_triangleInfoMap);
|
||||
int sz = m_triangleInfoMap->calculateSerializeBufferSize();
|
||||
btChunk* chunk = serializer->allocate(sz,1);
|
||||
btChunk* chunk = serializer->allocate(sz, 1);
|
||||
const char* structType = m_triangleInfoMap->serialize(chunk->m_oldPtr, serializer);
|
||||
serializer->finalizeChunk(chunk,structType,BT_TRIANLGE_INFO_MAP,m_triangleInfoMap);
|
||||
serializer->finalizeChunk(chunk, structType, BT_TRIANLGE_INFO_MAP, m_triangleInfoMap);
|
||||
}
|
||||
} else
|
||||
}
|
||||
else
|
||||
{
|
||||
trimeshData->m_triangleInfoMap = 0;
|
||||
}
|
||||
@@ -443,28 +429,24 @@ const char* btBvhTriangleMeshShape::serialize(void* dataBuffer, btSerializer* se
|
||||
return "btTriangleMeshShapeData";
|
||||
}
|
||||
|
||||
void btBvhTriangleMeshShape::serializeSingleBvh(btSerializer* serializer) const
|
||||
void btBvhTriangleMeshShape::serializeSingleBvh(btSerializer* serializer) const
|
||||
{
|
||||
if (m_bvh)
|
||||
{
|
||||
int len = m_bvh->calculateSerializeBufferSizeNew(); //make sure not to use calculateSerializeBufferSize because it is used for in-place
|
||||
btChunk* chunk = serializer->allocate(len,1);
|
||||
int len = m_bvh->calculateSerializeBufferSizeNew(); //make sure not to use calculateSerializeBufferSize because it is used for in-place
|
||||
btChunk* chunk = serializer->allocate(len, 1);
|
||||
const char* structType = m_bvh->serialize(chunk->m_oldPtr, serializer);
|
||||
serializer->finalizeChunk(chunk,structType,BT_QUANTIZED_BVH_CODE,(void*)m_bvh);
|
||||
serializer->finalizeChunk(chunk, structType, BT_QUANTIZED_BVH_CODE, (void*)m_bvh);
|
||||
}
|
||||
}
|
||||
|
||||
void btBvhTriangleMeshShape::serializeSingleTriangleInfoMap(btSerializer* serializer) const
|
||||
void btBvhTriangleMeshShape::serializeSingleTriangleInfoMap(btSerializer* serializer) const
|
||||
{
|
||||
if (m_triangleInfoMap)
|
||||
{
|
||||
int len = m_triangleInfoMap->calculateSerializeBufferSize();
|
||||
btChunk* chunk = serializer->allocate(len,1);
|
||||
btChunk* chunk = serializer->allocate(len, 1);
|
||||
const char* structType = m_triangleInfoMap->serialize(chunk->m_oldPtr, serializer);
|
||||
serializer->finalizeChunk(chunk,structType,BT_TRIANLGE_INFO_MAP,(void*)m_triangleInfoMap);
|
||||
serializer->finalizeChunk(chunk, structType, BT_TRIANLGE_INFO_MAP, (void*)m_triangleInfoMap);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user