Code-style consistency improvement:

Apply clang-format-all.sh using the _clang-format file through all the cpp/.h files.
make sure not to apply it to certain serialization structures, since some parser expects the * as part of the name, instead of type.
This commit contains no other changes aside from adding and applying clang-format-all.sh
This commit is contained in:
erwincoumans
2018-09-23 14:17:31 -07:00
parent b73b05e9fb
commit ab8f16961e
1773 changed files with 1081087 additions and 474249 deletions

View File

@@ -20,161 +20,152 @@ subject to the following restrictions:
#include "LinearMath/btTransformUtil.h"
#ifdef PFX_USE_FREE_VECTORMATH
#include "physics_effects/base_level/solver/pfx_constraint_row.h"
#include "physics_effects/base_level/solver/pfx_constraint_row.h"
typedef sce::PhysicsEffects::PfxConstraintRow btConstraintRow;
#else
// Don't change following order of parameters
ATTRIBUTE_ALIGNED16(struct) btConstraintRow {
btScalar m_normal[3];
btScalar m_rhs;
btScalar m_jacDiagInv;
btScalar m_lowerLimit;
btScalar m_upperLimit;
btScalar m_accumImpulse;
};
typedef btConstraintRow PfxConstraintRow;
#endif //PFX_USE_FREE_VECTORMATH
// Don't change following order of parameters
ATTRIBUTE_ALIGNED16(struct)
btConstraintRow
{
btScalar m_normal[3];
btScalar m_rhs;
btScalar m_jacDiagInv;
btScalar m_lowerLimit;
btScalar m_upperLimit;
btScalar m_accumImpulse;
};
typedef btConstraintRow PfxConstraintRow;
#endif //PFX_USE_FREE_VECTORMATH
enum btContactPointFlags
{
BT_CONTACT_FLAG_LATERAL_FRICTION_INITIALIZED=1,
BT_CONTACT_FLAG_HAS_CONTACT_CFM=2,
BT_CONTACT_FLAG_HAS_CONTACT_ERP=4,
BT_CONTACT_FLAG_CONTACT_STIFFNESS_DAMPING = 8,
BT_CONTACT_FLAG_LATERAL_FRICTION_INITIALIZED = 1,
BT_CONTACT_FLAG_HAS_CONTACT_CFM = 2,
BT_CONTACT_FLAG_HAS_CONTACT_ERP = 4,
BT_CONTACT_FLAG_CONTACT_STIFFNESS_DAMPING = 8,
BT_CONTACT_FLAG_FRICTION_ANCHOR = 16,
};
/// ManifoldContactPoint collects and maintains persistent contactpoints.
/// used to improve stability and performance of rigidbody dynamics response.
class btManifoldPoint
{
public:
btManifoldPoint()
: m_userPersistentData(0),
m_contactPointFlags(0),
m_appliedImpulse(0.f),
m_appliedImpulseLateral1(0.f),
m_appliedImpulseLateral2(0.f),
m_contactMotion1(0.f),
m_contactMotion2(0.f),
m_contactCFM(0.f),
m_contactERP(0.f),
m_frictionCFM(0.f),
m_lifeTime(0)
{
public:
btManifoldPoint()
:m_userPersistentData(0),
m_contactPointFlags(0),
m_appliedImpulse(0.f),
m_appliedImpulseLateral1(0.f),
m_appliedImpulseLateral2(0.f),
m_contactMotion1(0.f),
m_contactMotion2(0.f),
m_contactCFM(0.f),
m_contactERP(0.f),
m_frictionCFM(0.f),
m_lifeTime(0)
{
}
}
btManifoldPoint( const btVector3 &pointA, const btVector3 &pointB,
const btVector3 &normal,
btScalar distance ) :
m_localPointA( pointA ),
m_localPointB( pointB ),
m_normalWorldOnB( normal ),
m_distance1( distance ),
m_combinedFriction(btScalar(0.)),
m_combinedRollingFriction(btScalar(0.)),
m_combinedSpinningFriction(btScalar(0.)),
m_combinedRestitution(btScalar(0.)),
m_userPersistentData(0),
m_contactPointFlags(0),
m_appliedImpulse(0.f),
m_appliedImpulseLateral1(0.f),
m_appliedImpulseLateral2(0.f),
m_contactMotion1(0.f),
m_contactMotion2(0.f),
m_contactCFM(0.f),
m_contactERP(0.f),
m_frictionCFM(0.f),
m_lifeTime(0)
{
}
btManifoldPoint(const btVector3& pointA, const btVector3& pointB,
const btVector3& normal,
btScalar distance) : m_localPointA(pointA),
m_localPointB(pointB),
m_normalWorldOnB(normal),
m_distance1(distance),
m_combinedFriction(btScalar(0.)),
m_combinedRollingFriction(btScalar(0.)),
m_combinedSpinningFriction(btScalar(0.)),
m_combinedRestitution(btScalar(0.)),
m_userPersistentData(0),
m_contactPointFlags(0),
m_appliedImpulse(0.f),
m_appliedImpulseLateral1(0.f),
m_appliedImpulseLateral2(0.f),
m_contactMotion1(0.f),
m_contactMotion2(0.f),
m_contactCFM(0.f),
m_contactERP(0.f),
m_frictionCFM(0.f),
m_lifeTime(0)
{
}
btVector3 m_localPointA;
btVector3 m_localPointB;
btVector3 m_positionWorldOnB;
///m_positionWorldOnA is redundant information, see getPositionWorldOnA(), but for clarity
btVector3 m_positionWorldOnA;
btVector3 m_normalWorldOnB;
btVector3 m_localPointA;
btVector3 m_localPointB;
btVector3 m_positionWorldOnB;
///m_positionWorldOnA is redundant information, see getPositionWorldOnA(), but for clarity
btVector3 m_positionWorldOnA;
btVector3 m_normalWorldOnB;
btScalar m_distance1;
btScalar m_combinedFriction;
btScalar m_combinedRollingFriction;//torsional friction orthogonal to contact normal, useful to make spheres stop rolling forever
btScalar m_combinedSpinningFriction;//torsional friction around contact normal, useful for grasping objects
btScalar m_combinedRestitution;
btScalar m_distance1;
btScalar m_combinedFriction;
btScalar m_combinedRollingFriction; //torsional friction orthogonal to contact normal, useful to make spheres stop rolling forever
btScalar m_combinedSpinningFriction; //torsional friction around contact normal, useful for grasping objects
btScalar m_combinedRestitution;
//BP mod, store contact triangles.
int m_partId0;
int m_partId1;
int m_index0;
int m_index1;
mutable void* m_userPersistentData;
//bool m_lateralFrictionInitialized;
int m_contactPointFlags;
btScalar m_appliedImpulse;
btScalar m_appliedImpulseLateral1;
btScalar m_appliedImpulseLateral2;
btScalar m_contactMotion1;
btScalar m_contactMotion2;
union
{
btScalar m_contactCFM;
btScalar m_combinedContactStiffness1;
};
union
{
btScalar m_contactERP;
btScalar m_combinedContactDamping1;
};
//BP mod, store contact triangles.
int m_partId0;
int m_partId1;
int m_index0;
int m_index1;
btScalar m_frictionCFM;
mutable void* m_userPersistentData;
//bool m_lateralFrictionInitialized;
int m_contactPointFlags;
int m_lifeTime;//lifetime of the contactpoint in frames
btVector3 m_lateralFrictionDir1;
btVector3 m_lateralFrictionDir2;
btScalar getDistance() const
{
return m_distance1;
}
int getLifeTime() const
{
return m_lifeTime;
}
const btVector3& getPositionWorldOnA() const {
return m_positionWorldOnA;
// return m_positionWorldOnB + m_normalWorldOnB * m_distance1;
}
const btVector3& getPositionWorldOnB() const
{
return m_positionWorldOnB;
}
void setDistance(btScalar dist)
{
m_distance1 = dist;
}
///this returns the most recent applied impulse, to satisfy contact constraints by the constraint solver
btScalar getAppliedImpulse() const
{
return m_appliedImpulse;
}
btScalar m_appliedImpulse;
btScalar m_appliedImpulseLateral1;
btScalar m_appliedImpulseLateral2;
btScalar m_contactMotion1;
btScalar m_contactMotion2;
union {
btScalar m_contactCFM;
btScalar m_combinedContactStiffness1;
};
#endif //BT_MANIFOLD_CONTACT_POINT_H
union {
btScalar m_contactERP;
btScalar m_combinedContactDamping1;
};
btScalar m_frictionCFM;
int m_lifeTime; //lifetime of the contactpoint in frames
btVector3 m_lateralFrictionDir1;
btVector3 m_lateralFrictionDir2;
btScalar getDistance() const
{
return m_distance1;
}
int getLifeTime() const
{
return m_lifeTime;
}
const btVector3& getPositionWorldOnA() const
{
return m_positionWorldOnA;
// return m_positionWorldOnB + m_normalWorldOnB * m_distance1;
}
const btVector3& getPositionWorldOnB() const
{
return m_positionWorldOnB;
}
void setDistance(btScalar dist)
{
m_distance1 = dist;
}
///this returns the most recent applied impulse, to satisfy contact constraints by the constraint solver
btScalar getAppliedImpulse() const
{
return m_appliedImpulse;
}
};
#endif //BT_MANIFOLD_CONTACT_POINT_H