Code-style consistency improvement:

Apply clang-format-all.sh using the _clang-format file through all the cpp/.h files.
make sure not to apply it to certain serialization structures, since some parser expects the * as part of the name, instead of type.
This commit contains no other changes aside from adding and applying clang-format-all.sh
This commit is contained in:
erwincoumans
2018-09-23 14:17:31 -07:00
parent b73b05e9fb
commit ab8f16961e
1773 changed files with 1081087 additions and 474249 deletions

View File

@@ -24,296 +24,320 @@ subject to the following restrictions:
template <const int DWORDLEN>
unsigned int HsiehHash(const void* pdata)
{
const unsigned short* data=(const unsigned short*)pdata;
unsigned hash=DWORDLEN<<2,tmp;
for(int i=0;i<DWORDLEN;++i)
const unsigned short* data = (const unsigned short*)pdata;
unsigned hash = DWORDLEN << 2, tmp;
for (int i = 0; i < DWORDLEN; ++i)
{
hash += data[0];
tmp = (data[1]<<11)^hash;
hash = (hash<<16)^tmp;
data += 2;
hash += hash>>11;
hash += data[0];
tmp = (data[1] << 11) ^ hash;
hash = (hash << 16) ^ tmp;
data += 2;
hash += hash >> 11;
}
hash^=hash<<3;hash+=hash>>5;
hash^=hash<<4;hash+=hash>>17;
hash^=hash<<25;hash+=hash>>6;
return(hash);
hash ^= hash << 3;
hash += hash >> 5;
hash ^= hash << 4;
hash += hash >> 17;
hash ^= hash << 25;
hash += hash >> 6;
return (hash);
}
template <const int CELLSIZE>
struct btSparseSdf
struct btSparseSdf
{
//
// Inner types
//
struct IntFrac
{
int b;
int i;
btScalar f;
int b;
int i;
btScalar f;
};
struct Cell
struct Cell
{
btScalar d[CELLSIZE+1][CELLSIZE+1][CELLSIZE+1];
int c[3];
int puid;
unsigned hash;
const btCollisionShape* pclient;
Cell* next;
btScalar d[CELLSIZE + 1][CELLSIZE + 1][CELLSIZE + 1];
int c[3];
int puid;
unsigned hash;
const btCollisionShape* pclient;
Cell* next;
};
//
// Fields
//
btAlignedObjectArray<Cell*> cells;
btScalar voxelsz;
int puid;
int ncells;
int m_clampCells;
int nprobes;
int nqueries;
btAlignedObjectArray<Cell*> cells;
btScalar voxelsz;
int puid;
int ncells;
int m_clampCells;
int nprobes;
int nqueries;
//
// Methods
//
//
void Initialize(int hashsize=2383, int clampCells = 256*1024)
void Initialize(int hashsize = 2383, int clampCells = 256 * 1024)
{
//avoid a crash due to running out of memory, so clamp the maximum number of cells allocated
//if this limit is reached, the SDF is reset (at the cost of some performance during the reset)
m_clampCells = clampCells;
cells.resize(hashsize,0);
cells.resize(hashsize, 0);
Reset();
}
//
void Reset()
void Reset()
{
for(int i=0,ni=cells.size();i<ni;++i)
for (int i = 0, ni = cells.size(); i < ni; ++i)
{
Cell* pc=cells[i];
cells[i]=0;
while(pc)
Cell* pc = cells[i];
cells[i] = 0;
while (pc)
{
Cell* pn=pc->next;
Cell* pn = pc->next;
delete pc;
pc=pn;
pc = pn;
}
}
voxelsz =0.25;
puid =0;
ncells =0;
nprobes =1;
nqueries =1;
voxelsz = 0.25;
puid = 0;
ncells = 0;
nprobes = 1;
nqueries = 1;
}
//
void GarbageCollect(int lifetime=256)
void GarbageCollect(int lifetime = 256)
{
const int life=puid-lifetime;
for(int i=0;i<cells.size();++i)
const int life = puid - lifetime;
for (int i = 0; i < cells.size(); ++i)
{
Cell*& root=cells[i];
Cell* pp=0;
Cell* pc=root;
while(pc)
Cell*& root = cells[i];
Cell* pp = 0;
Cell* pc = root;
while (pc)
{
Cell* pn=pc->next;
if(pc->puid<life)
Cell* pn = pc->next;
if (pc->puid < life)
{
if(pp) pp->next=pn; else root=pn;
delete pc;pc=pp;--ncells;
if (pp)
pp->next = pn;
else
root = pn;
delete pc;
pc = pp;
--ncells;
}
pp=pc;pc=pn;
pp = pc;
pc = pn;
}
}
//printf("GC[%d]: %d cells, PpQ: %f\r\n",puid,ncells,nprobes/(btScalar)nqueries);
nqueries=1;
nprobes=1;
++puid; ///@todo: Reset puid's when int range limit is reached */
/* else setup a priority list... */
nqueries = 1;
nprobes = 1;
++puid; ///@todo: Reset puid's when int range limit is reached */
/* else setup a priority list... */
}
//
int RemoveReferences(btCollisionShape* pcs)
int RemoveReferences(btCollisionShape* pcs)
{
int refcount=0;
for(int i=0;i<cells.size();++i)
int refcount = 0;
for (int i = 0; i < cells.size(); ++i)
{
Cell*& root=cells[i];
Cell* pp=0;
Cell* pc=root;
while(pc)
Cell*& root = cells[i];
Cell* pp = 0;
Cell* pc = root;
while (pc)
{
Cell* pn=pc->next;
if(pc->pclient==pcs)
Cell* pn = pc->next;
if (pc->pclient == pcs)
{
if(pp) pp->next=pn; else root=pn;
delete pc;pc=pp;++refcount;
if (pp)
pp->next = pn;
else
root = pn;
delete pc;
pc = pp;
++refcount;
}
pp=pc;pc=pn;
pp = pc;
pc = pn;
}
}
return(refcount);
return (refcount);
}
//
btScalar Evaluate( const btVector3& x,
const btCollisionShape* shape,
btVector3& normal,
btScalar margin)
btScalar Evaluate(const btVector3& x,
const btCollisionShape* shape,
btVector3& normal,
btScalar margin)
{
/* Lookup cell */
const btVector3 scx=x/voxelsz;
const IntFrac ix=Decompose(scx.x());
const IntFrac iy=Decompose(scx.y());
const IntFrac iz=Decompose(scx.z());
const unsigned h=Hash(ix.b,iy.b,iz.b,shape);
Cell*& root=cells[static_cast<int>(h%cells.size())];
Cell* c=root;
/* Lookup cell */
const btVector3 scx = x / voxelsz;
const IntFrac ix = Decompose(scx.x());
const IntFrac iy = Decompose(scx.y());
const IntFrac iz = Decompose(scx.z());
const unsigned h = Hash(ix.b, iy.b, iz.b, shape);
Cell*& root = cells[static_cast<int>(h % cells.size())];
Cell* c = root;
++nqueries;
while(c)
while (c)
{
++nprobes;
if( (c->hash==h) &&
(c->c[0]==ix.b) &&
(c->c[1]==iy.b) &&
(c->c[2]==iz.b) &&
(c->pclient==shape))
{ break; }
if ((c->hash == h) &&
(c->c[0] == ix.b) &&
(c->c[1] == iy.b) &&
(c->c[2] == iz.b) &&
(c->pclient == shape))
{
break;
}
else
{ c=c->next; }
{
c = c->next;
}
}
if(!c)
if (!c)
{
++nprobes;
++nprobes;
++ncells;
//int sz = sizeof(Cell);
if (ncells>m_clampCells)
if (ncells > m_clampCells)
{
static int numResets=0;
static int numResets = 0;
numResets++;
// printf("numResets=%d\n",numResets);
// printf("numResets=%d\n",numResets);
Reset();
}
c=new Cell();
c->next=root;root=c;
c->pclient=shape;
c->hash=h;
c->c[0]=ix.b;c->c[1]=iy.b;c->c[2]=iz.b;
c = new Cell();
c->next = root;
root = c;
c->pclient = shape;
c->hash = h;
c->c[0] = ix.b;
c->c[1] = iy.b;
c->c[2] = iz.b;
BuildCell(*c);
}
c->puid=puid;
/* Extract infos */
const int o[]={ ix.i,iy.i,iz.i};
const btScalar d[]={ c->d[o[0]+0][o[1]+0][o[2]+0],
c->d[o[0]+1][o[1]+0][o[2]+0],
c->d[o[0]+1][o[1]+1][o[2]+0],
c->d[o[0]+0][o[1]+1][o[2]+0],
c->d[o[0]+0][o[1]+0][o[2]+1],
c->d[o[0]+1][o[1]+0][o[2]+1],
c->d[o[0]+1][o[1]+1][o[2]+1],
c->d[o[0]+0][o[1]+1][o[2]+1]};
/* Normal */
c->puid = puid;
/* Extract infos */
const int o[] = {ix.i, iy.i, iz.i};
const btScalar d[] = {c->d[o[0] + 0][o[1] + 0][o[2] + 0],
c->d[o[0] + 1][o[1] + 0][o[2] + 0],
c->d[o[0] + 1][o[1] + 1][o[2] + 0],
c->d[o[0] + 0][o[1] + 1][o[2] + 0],
c->d[o[0] + 0][o[1] + 0][o[2] + 1],
c->d[o[0] + 1][o[1] + 0][o[2] + 1],
c->d[o[0] + 1][o[1] + 1][o[2] + 1],
c->d[o[0] + 0][o[1] + 1][o[2] + 1]};
/* Normal */
#if 1
const btScalar gx[]={ d[1]-d[0],d[2]-d[3],
d[5]-d[4],d[6]-d[7]};
const btScalar gy[]={ d[3]-d[0],d[2]-d[1],
d[7]-d[4],d[6]-d[5]};
const btScalar gz[]={ d[4]-d[0],d[5]-d[1],
d[7]-d[3],d[6]-d[2]};
normal.setX(Lerp( Lerp(gx[0],gx[1],iy.f),
Lerp(gx[2],gx[3],iy.f),iz.f));
normal.setY(Lerp( Lerp(gy[0],gy[1],ix.f),
Lerp(gy[2],gy[3],ix.f),iz.f));
normal.setZ(Lerp( Lerp(gz[0],gz[1],ix.f),
Lerp(gz[2],gz[3],ix.f),iy.f));
normal = normal.normalized();
const btScalar gx[] = {d[1] - d[0], d[2] - d[3],
d[5] - d[4], d[6] - d[7]};
const btScalar gy[] = {d[3] - d[0], d[2] - d[1],
d[7] - d[4], d[6] - d[5]};
const btScalar gz[] = {d[4] - d[0], d[5] - d[1],
d[7] - d[3], d[6] - d[2]};
normal.setX(Lerp(Lerp(gx[0], gx[1], iy.f),
Lerp(gx[2], gx[3], iy.f), iz.f));
normal.setY(Lerp(Lerp(gy[0], gy[1], ix.f),
Lerp(gy[2], gy[3], ix.f), iz.f));
normal.setZ(Lerp(Lerp(gz[0], gz[1], ix.f),
Lerp(gz[2], gz[3], ix.f), iy.f));
normal = normal.normalized();
#else
normal = btVector3(d[1]-d[0],d[3]-d[0],d[4]-d[0]).normalized();
normal = btVector3(d[1] - d[0], d[3] - d[0], d[4] - d[0]).normalized();
#endif
/* Distance */
const btScalar d0=Lerp(Lerp(d[0],d[1],ix.f),
Lerp(d[3],d[2],ix.f),iy.f);
const btScalar d1=Lerp(Lerp(d[4],d[5],ix.f),
Lerp(d[7],d[6],ix.f),iy.f);
return(Lerp(d0,d1,iz.f)-margin);
/* Distance */
const btScalar d0 = Lerp(Lerp(d[0], d[1], ix.f),
Lerp(d[3], d[2], ix.f), iy.f);
const btScalar d1 = Lerp(Lerp(d[4], d[5], ix.f),
Lerp(d[7], d[6], ix.f), iy.f);
return (Lerp(d0, d1, iz.f) - margin);
}
//
void BuildCell(Cell& c)
void BuildCell(Cell& c)
{
const btVector3 org=btVector3( (btScalar)c.c[0],
(btScalar)c.c[1],
(btScalar)c.c[2]) *
CELLSIZE*voxelsz;
for(int k=0;k<=CELLSIZE;++k)
const btVector3 org = btVector3((btScalar)c.c[0],
(btScalar)c.c[1],
(btScalar)c.c[2]) *
CELLSIZE * voxelsz;
for (int k = 0; k <= CELLSIZE; ++k)
{
const btScalar z=voxelsz*k+org.z();
for(int j=0;j<=CELLSIZE;++j)
const btScalar z = voxelsz * k + org.z();
for (int j = 0; j <= CELLSIZE; ++j)
{
const btScalar y=voxelsz*j+org.y();
for(int i=0;i<=CELLSIZE;++i)
const btScalar y = voxelsz * j + org.y();
for (int i = 0; i <= CELLSIZE; ++i)
{
const btScalar x=voxelsz*i+org.x();
c.d[i][j][k]=DistanceToShape( btVector3(x,y,z),
c.pclient);
const btScalar x = voxelsz * i + org.x();
c.d[i][j][k] = DistanceToShape(btVector3(x, y, z),
c.pclient);
}
}
}
}
//
static inline btScalar DistanceToShape(const btVector3& x,
const btCollisionShape* shape)
static inline btScalar DistanceToShape(const btVector3& x,
const btCollisionShape* shape)
{
btTransform unit;
btTransform unit;
unit.setIdentity();
if(shape->isConvex())
if (shape->isConvex())
{
btGjkEpaSolver2::sResults res;
const btConvexShape* csh=static_cast<const btConvexShape*>(shape);
return(btGjkEpaSolver2::SignedDistance(x,0,csh,unit,res));
btGjkEpaSolver2::sResults res;
const btConvexShape* csh = static_cast<const btConvexShape*>(shape);
return (btGjkEpaSolver2::SignedDistance(x, 0, csh, unit, res));
}
return(0);
return (0);
}
//
static inline IntFrac Decompose(btScalar x)
static inline IntFrac Decompose(btScalar x)
{
/* That one need a lot of improvements... */
/* Remove test, faster floor... */
IntFrac r;
x/=CELLSIZE;
const int o=x<0?(int)(-x+1):0;
x+=o;r.b=(int)x;
const btScalar k=(x-r.b)*CELLSIZE;
r.i=(int)k;r.f=k-r.i;r.b-=o;
return(r);
/* Remove test, faster floor... */
IntFrac r;
x /= CELLSIZE;
const int o = x < 0 ? (int)(-x + 1) : 0;
x += o;
r.b = (int)x;
const btScalar k = (x - r.b) * CELLSIZE;
r.i = (int)k;
r.f = k - r.i;
r.b -= o;
return (r);
}
//
static inline btScalar Lerp(btScalar a,btScalar b,btScalar t)
static inline btScalar Lerp(btScalar a, btScalar b, btScalar t)
{
return(a+(b-a)*t);
return (a + (b - a) * t);
}
//
static inline unsigned int Hash(int x,int y,int z,const btCollisionShape* shape)
static inline unsigned int Hash(int x, int y, int z, const btCollisionShape* shape)
{
struct btS
{
int x,y,z;
{
int x, y, z;
void* p;
};
btS myset;
myset.x=x;myset.y=y;myset.z=z;myset.p=(void*)shape;
myset.x = x;
myset.y = y;
myset.z = z;
myset.p = (void*)shape;
const void* ptr = &myset;
unsigned int result = HsiehHash<sizeof(btS)/4> (ptr);
unsigned int result = HsiehHash<sizeof(btS) / 4>(ptr);
return result;
}
};
#endif //BT_SPARSE_SDF_H
#endif //BT_SPARSE_SDF_H