Code-style consistency improvement:

Apply clang-format-all.sh using the _clang-format file through all the cpp/.h files.
make sure not to apply it to certain serialization structures, since some parser expects the * as part of the name, instead of type.
This commit contains no other changes aside from adding and applying clang-format-all.sh
This commit is contained in:
erwincoumans
2018-09-23 14:17:31 -07:00
parent b73b05e9fb
commit ab8f16961e
1773 changed files with 1081087 additions and 474249 deletions

View File

@@ -13,11 +13,10 @@ subject to the following restrictions:
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_OBJECT_ARRAY__
#define BT_OBJECT_ARRAY__
#include "btScalar.h" // has definitions like SIMD_FORCE_INLINE
#include "btScalar.h" // has definitions like SIMD_FORCE_INLINE
#include "btAlignedAllocator.h"
///If the platform doesn't support placement new, you can disable BT_USE_PLACEMENT_NEW
@@ -28,16 +27,16 @@ subject to the following restrictions:
#define BT_USE_PLACEMENT_NEW 1
//#define BT_USE_MEMCPY 1 //disable, because it is cumbersome to find out for each platform where memcpy is defined. It can be in <memory.h> or <string.h> or otherwise...
#define BT_ALLOW_ARRAY_COPY_OPERATOR // enabling this can accidently perform deep copies of data if you are not careful
#define BT_ALLOW_ARRAY_COPY_OPERATOR // enabling this can accidently perform deep copies of data if you are not careful
#ifdef BT_USE_MEMCPY
#include <memory.h>
#include <string.h>
#endif //BT_USE_MEMCPY
#endif //BT_USE_MEMCPY
#ifdef BT_USE_PLACEMENT_NEW
#include <new> //for placement new
#endif //BT_USE_PLACEMENT_NEW
#include <new> //for placement new
#endif //BT_USE_PLACEMENT_NEW
// The register keyword is deprecated in C++11 so don't use it.
#if __cplusplus > 199711L
@@ -48,374 +47,358 @@ subject to the following restrictions:
///The btAlignedObjectArray template class uses a subset of the stl::vector interface for its methods
///It is developed to replace stl::vector to avoid portability issues, including STL alignment issues to add SIMD/SSE data
template <typename T>
//template <class T>
template <typename T>
//template <class T>
class btAlignedObjectArray
{
btAlignedAllocator<T , 16> m_allocator;
btAlignedAllocator<T, 16> m_allocator;
int m_size;
int m_capacity;
T* m_data;
int m_size;
int m_capacity;
T* m_data;
//PCK: added this line
bool m_ownsMemory;
bool m_ownsMemory;
#ifdef BT_ALLOW_ARRAY_COPY_OPERATOR
public:
SIMD_FORCE_INLINE btAlignedObjectArray<T>& operator=(const btAlignedObjectArray<T> &other)
SIMD_FORCE_INLINE btAlignedObjectArray<T>& operator=(const btAlignedObjectArray<T>& other)
{
copyFromArray(other);
return *this;
}
#else//BT_ALLOW_ARRAY_COPY_OPERATOR
#else //BT_ALLOW_ARRAY_COPY_OPERATOR
private:
SIMD_FORCE_INLINE btAlignedObjectArray<T>& operator=(const btAlignedObjectArray<T> &other);
#endif//BT_ALLOW_ARRAY_COPY_OPERATOR
SIMD_FORCE_INLINE btAlignedObjectArray<T>& operator=(const btAlignedObjectArray<T>& other);
#endif //BT_ALLOW_ARRAY_COPY_OPERATOR
protected:
SIMD_FORCE_INLINE int allocSize(int size)
{
return (size ? size*2 : 1);
}
SIMD_FORCE_INLINE void copy(int start,int end, T* dest) const
{
int i;
for (i=start;i<end;++i)
SIMD_FORCE_INLINE int allocSize(int size)
{
return (size ? size * 2 : 1);
}
SIMD_FORCE_INLINE void copy(int start, int end, T* dest) const
{
int i;
for (i = start; i < end; ++i)
#ifdef BT_USE_PLACEMENT_NEW
new (&dest[i]) T(m_data[i]);
new (&dest[i]) T(m_data[i]);
#else
dest[i] = m_data[i];
#endif //BT_USE_PLACEMENT_NEW
}
dest[i] = m_data[i];
#endif //BT_USE_PLACEMENT_NEW
}
SIMD_FORCE_INLINE void init()
SIMD_FORCE_INLINE void init()
{
//PCK: added this line
m_ownsMemory = true;
m_data = 0;
m_size = 0;
m_capacity = 0;
}
SIMD_FORCE_INLINE void destroy(int first, int last)
{
int i;
for (i = first; i < last; i++)
{
//PCK: added this line
m_ownsMemory = true;
m_data = 0;
m_size = 0;
m_capacity = 0;
m_data[i].~T();
}
SIMD_FORCE_INLINE void destroy(int first,int last)
}
SIMD_FORCE_INLINE void* allocate(int size)
{
if (size)
return m_allocator.allocate(size);
return 0;
}
SIMD_FORCE_INLINE void deallocate()
{
if (m_data)
{
int i;
for (i=first; i<last;i++)
//PCK: enclosed the deallocation in this block
if (m_ownsMemory)
{
m_allocator.deallocate(m_data);
}
m_data = 0;
}
}
public:
btAlignedObjectArray()
{
init();
}
~btAlignedObjectArray()
{
clear();
}
///Generally it is best to avoid using the copy constructor of an btAlignedObjectArray, and use a (const) reference to the array instead.
btAlignedObjectArray(const btAlignedObjectArray& otherArray)
{
init();
int otherSize = otherArray.size();
resize(otherSize);
otherArray.copy(0, otherSize, m_data);
}
/// return the number of elements in the array
SIMD_FORCE_INLINE int size() const
{
return m_size;
}
SIMD_FORCE_INLINE const T& at(int n) const
{
btAssert(n >= 0);
btAssert(n < size());
return m_data[n];
}
SIMD_FORCE_INLINE T& at(int n)
{
btAssert(n >= 0);
btAssert(n < size());
return m_data[n];
}
SIMD_FORCE_INLINE const T& operator[](int n) const
{
btAssert(n >= 0);
btAssert(n < size());
return m_data[n];
}
SIMD_FORCE_INLINE T& operator[](int n)
{
btAssert(n >= 0);
btAssert(n < size());
return m_data[n];
}
///clear the array, deallocated memory. Generally it is better to use array.resize(0), to reduce performance overhead of run-time memory (de)allocations.
SIMD_FORCE_INLINE void clear()
{
destroy(0, size());
deallocate();
init();
}
SIMD_FORCE_INLINE void pop_back()
{
btAssert(m_size > 0);
m_size--;
m_data[m_size].~T();
}
///resize changes the number of elements in the array. If the new size is larger, the new elements will be constructed using the optional second argument.
///when the new number of elements is smaller, the destructor will be called, but memory will not be freed, to reduce performance overhead of run-time memory (de)allocations.
SIMD_FORCE_INLINE void resizeNoInitialize(int newsize)
{
if (newsize > size())
{
reserve(newsize);
}
m_size = newsize;
}
SIMD_FORCE_INLINE void resize(int newsize, const T& fillData = T())
{
const BT_REGISTER int curSize = size();
if (newsize < curSize)
{
for (int i = newsize; i < curSize; i++)
{
m_data[i].~T();
}
}
SIMD_FORCE_INLINE void* allocate(int size)
else
{
if (size)
return m_allocator.allocate(size);
return 0;
}
SIMD_FORCE_INLINE void deallocate()
{
if(m_data) {
//PCK: enclosed the deallocation in this block
if (m_ownsMemory)
{
m_allocator.deallocate(m_data);
}
m_data = 0;
}
}
public:
btAlignedObjectArray()
{
init();
}
~btAlignedObjectArray()
{
clear();
}
///Generally it is best to avoid using the copy constructor of an btAlignedObjectArray, and use a (const) reference to the array instead.
btAlignedObjectArray(const btAlignedObjectArray& otherArray)
{
init();
int otherSize = otherArray.size();
resize (otherSize);
otherArray.copy(0, otherSize, m_data);
}
/// return the number of elements in the array
SIMD_FORCE_INLINE int size() const
{
return m_size;
}
SIMD_FORCE_INLINE const T& at(int n) const
{
btAssert(n>=0);
btAssert(n<size());
return m_data[n];
}
SIMD_FORCE_INLINE T& at(int n)
{
btAssert(n>=0);
btAssert(n<size());
return m_data[n];
}
SIMD_FORCE_INLINE const T& operator[](int n) const
{
btAssert(n>=0);
btAssert(n<size());
return m_data[n];
}
SIMD_FORCE_INLINE T& operator[](int n)
{
btAssert(n>=0);
btAssert(n<size());
return m_data[n];
}
///clear the array, deallocated memory. Generally it is better to use array.resize(0), to reduce performance overhead of run-time memory (de)allocations.
SIMD_FORCE_INLINE void clear()
{
destroy(0,size());
deallocate();
init();
}
SIMD_FORCE_INLINE void pop_back()
{
btAssert(m_size>0);
m_size--;
m_data[m_size].~T();
}
///resize changes the number of elements in the array. If the new size is larger, the new elements will be constructed using the optional second argument.
///when the new number of elements is smaller, the destructor will be called, but memory will not be freed, to reduce performance overhead of run-time memory (de)allocations.
SIMD_FORCE_INLINE void resizeNoInitialize(int newsize)
{
if (newsize > size())
if (newsize > curSize)
{
reserve(newsize);
}
m_size = newsize;
#ifdef BT_USE_PLACEMENT_NEW
for (int i = curSize; i < newsize; i++)
{
new (&m_data[i]) T(fillData);
}
#endif //BT_USE_PLACEMENT_NEW
}
SIMD_FORCE_INLINE void resize(int newsize, const T& fillData=T())
m_size = newsize;
}
SIMD_FORCE_INLINE T& expandNonInitializing()
{
const BT_REGISTER int sz = size();
if (sz == capacity())
{
const BT_REGISTER int curSize = size();
if (newsize < curSize)
{
for(int i = newsize; i < curSize; i++)
{
m_data[i].~T();
}
} else
{
if (newsize > curSize)
{
reserve(newsize);
}
#ifdef BT_USE_PLACEMENT_NEW
for (int i=curSize;i<newsize;i++)
{
new ( &m_data[i]) T(fillData);
}
#endif //BT_USE_PLACEMENT_NEW
}
m_size = newsize;
reserve(allocSize(size()));
}
SIMD_FORCE_INLINE T& expandNonInitializing( )
{
const BT_REGISTER int sz = size();
if( sz == capacity() )
{
reserve( allocSize(size()) );
}
m_size++;
m_size++;
return m_data[sz];
return m_data[sz];
}
SIMD_FORCE_INLINE T& expand(const T& fillValue = T())
{
const BT_REGISTER int sz = size();
if (sz == capacity())
{
reserve(allocSize(size()));
}
SIMD_FORCE_INLINE T& expand( const T& fillValue=T())
{
const BT_REGISTER int sz = size();
if( sz == capacity() )
{
reserve( allocSize(size()) );
}
m_size++;
m_size++;
#ifdef BT_USE_PLACEMENT_NEW
new (&m_data[sz]) T(fillValue); //use the in-place new (not really allocating heap memory)
new (&m_data[sz]) T(fillValue); //use the in-place new (not really allocating heap memory)
#endif
return m_data[sz];
return m_data[sz];
}
SIMD_FORCE_INLINE void push_back(const T& _Val)
{
const BT_REGISTER int sz = size();
if (sz == capacity())
{
reserve(allocSize(size()));
}
SIMD_FORCE_INLINE void push_back(const T& _Val)
{
const BT_REGISTER int sz = size();
if( sz == capacity() )
{
reserve( allocSize(size()) );
}
#ifdef BT_USE_PLACEMENT_NEW
new ( &m_data[m_size] ) T(_Val);
new (&m_data[m_size]) T(_Val);
#else
m_data[size()] = _Val;
#endif //BT_USE_PLACEMENT_NEW
m_data[size()] = _Val;
#endif //BT_USE_PLACEMENT_NEW
m_size++;
m_size++;
}
/// return the pre-allocated (reserved) elements, this is at least as large as the total number of elements,see size() and reserve()
SIMD_FORCE_INLINE int capacity() const
{
return m_capacity;
}
SIMD_FORCE_INLINE void reserve(int _Count)
{ // determine new minimum length of allocated storage
if (capacity() < _Count)
{ // not enough room, reallocate
T* s = (T*)allocate(_Count);
copy(0, size(), s);
destroy(0, size());
deallocate();
//PCK: added this line
m_ownsMemory = true;
m_data = s;
m_capacity = _Count;
}
}
/// return the pre-allocated (reserved) elements, this is at least as large as the total number of elements,see size() and reserve()
SIMD_FORCE_INLINE int capacity() const
{
return m_capacity;
}
SIMD_FORCE_INLINE void reserve(int _Count)
{ // determine new minimum length of allocated storage
if (capacity() < _Count)
{ // not enough room, reallocate
T* s = (T*)allocate(_Count);
copy(0, size(), s);
destroy(0,size());
deallocate();
//PCK: added this line
m_ownsMemory = true;
m_data = s;
m_capacity = _Count;
}
}
class less
class less
{
public:
bool operator()(const T& a, const T& b) const
{
public:
return (a < b);
}
};
bool operator() ( const T& a, const T& b ) const
{
return ( a < b );
}
};
template <typename L>
void quickSortInternal(const L& CompareFunc,int lo, int hi)
{
template <typename L>
void quickSortInternal(const L& CompareFunc, int lo, int hi)
{
// lo is the lower index, hi is the upper index
// of the region of array a that is to be sorted
int i=lo, j=hi;
T x=m_data[(lo+hi)/2];
int i = lo, j = hi;
T x = m_data[(lo + hi) / 2];
// partition
do
{
while (CompareFunc(m_data[i],x))
i++;
while (CompareFunc(x,m_data[j]))
j--;
if (i<=j)
{
swap(i,j);
i++; j--;
}
} while (i<=j);
// recursion
if (lo<j)
quickSortInternal( CompareFunc, lo, j);
if (i<hi)
quickSortInternal( CompareFunc, i, hi);
}
template <typename L>
void quickSort(const L& CompareFunc)
// partition
do
{
//don't sort 0 or 1 elements
if (size()>1)
while (CompareFunc(m_data[i], x))
i++;
while (CompareFunc(x, m_data[j]))
j--;
if (i <= j)
{
quickSortInternal(CompareFunc,0,size()-1);
swap(i, j);
i++;
j--;
}
} while (i <= j);
// recursion
if (lo < j)
quickSortInternal(CompareFunc, lo, j);
if (i < hi)
quickSortInternal(CompareFunc, i, hi);
}
template <typename L>
void quickSort(const L& CompareFunc)
{
//don't sort 0 or 1 elements
if (size() > 1)
{
quickSortInternal(CompareFunc, 0, size() - 1);
}
}
///heap sort from http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Sort/Heap/
template <typename L>
void downHeap(T* pArr, int k, int n, const L& CompareFunc)
{
/* PRE: a[k+1..N] is a heap */
/* POST: a[k..N] is a heap */
T temp = pArr[k - 1];
/* k has child(s) */
while (k <= n / 2)
{
int child = 2 * k;
if ((child < n) && CompareFunc(pArr[child - 1], pArr[child]))
{
child++;
}
/* pick larger child */
if (CompareFunc(temp, pArr[child - 1]))
{
/* move child up */
pArr[k - 1] = pArr[child - 1];
k = child;
}
else
{
break;
}
}
pArr[k - 1] = temp;
} /*downHeap*/
///heap sort from http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Sort/Heap/
template <typename L>
void downHeap(T *pArr, int k, int n, const L& CompareFunc)
{
/* PRE: a[k+1..N] is a heap */
/* POST: a[k..N] is a heap */
T temp = pArr[k - 1];
/* k has child(s) */
while (k <= n/2)
{
int child = 2*k;
if ((child < n) && CompareFunc(pArr[child - 1] , pArr[child]))
{
child++;
}
/* pick larger child */
if (CompareFunc(temp , pArr[child - 1]))
{
/* move child up */
pArr[k - 1] = pArr[child - 1];
k = child;
}
else
{
break;
}
}
pArr[k - 1] = temp;
} /*downHeap*/
void swap(int index0,int index1)
{
void swap(int index0, int index1)
{
#ifdef BT_USE_MEMCPY
char temp[sizeof(T)];
memcpy(temp,&m_data[index0],sizeof(T));
memcpy(&m_data[index0],&m_data[index1],sizeof(T));
memcpy(&m_data[index1],temp,sizeof(T));
char temp[sizeof(T)];
memcpy(temp, &m_data[index0], sizeof(T));
memcpy(&m_data[index0], &m_data[index1], sizeof(T));
memcpy(&m_data[index1], temp, sizeof(T));
#else
T temp = m_data[index0];
m_data[index0] = m_data[index1];
m_data[index1] = temp;
#endif //BT_USE_PLACEMENT_NEW
}
T temp = m_data[index0];
m_data[index0] = m_data[index1];
m_data[index1] = temp;
#endif //BT_USE_PLACEMENT_NEW
}
template <typename L>
void heapSort(const L& CompareFunc)
@@ -423,49 +406,48 @@ protected:
/* sort a[0..N-1], N.B. 0 to N-1 */
int k;
int n = m_size;
for (k = n/2; k > 0; k--)
for (k = n / 2; k > 0; k--)
{
downHeap(m_data, k, n, CompareFunc);
}
/* a[1..N] is now a heap */
while ( n>=1 )
while (n >= 1)
{
swap(0,n-1); /* largest of a[0..n-1] */
swap(0, n - 1); /* largest of a[0..n-1] */
n = n - 1;
/* restore a[1..i-1] heap */
downHeap(m_data, 1, n, CompareFunc);
}
}
}
///non-recursive binary search, assumes sorted array
int findBinarySearch(const T& key) const
int findBinarySearch(const T& key) const
{
int first = 0;
int last = size()-1;
int last = size() - 1;
//assume sorted array
while (first <= last) {
while (first <= last)
{
int mid = (first + last) / 2; // compute mid point.
if (key > m_data[mid])
if (key > m_data[mid])
first = mid + 1; // repeat search in top half.
else if (key < m_data[mid])
last = mid - 1; // repeat search in bottom half.
else if (key < m_data[mid])
last = mid - 1; // repeat search in bottom half.
else
return mid; // found it. return position /////
return mid; // found it. return position /////
}
return size(); // failed to find key
return size(); // failed to find key
}
int findLinearSearch(const T& key) const
int findLinearSearch(const T& key) const
{
int index=size();
int index = size();
int i;
for (i=0;i<size();i++)
for (i = 0; i < size(); i++)
{
if (m_data[i] == key)
{
@@ -475,41 +457,41 @@ protected:
}
return index;
}
// If the key is not in the array, return -1 instead of 0,
// since 0 also means the first element in the array.
int findLinearSearch2(const T& key) const
{
int index=-1;
int i;
for (i=0;i<size();i++)
{
if (m_data[i] == key)
{
index = i;
break;
}
}
return index;
}
void removeAtIndex(int index)
{
if (index<size())
{
swap( index,size()-1);
pop_back();
}
}
void remove(const T& key)
// If the key is not in the array, return -1 instead of 0,
// since 0 also means the first element in the array.
int findLinearSearch2(const T& key) const
{
int index = -1;
int i;
for (i = 0; i < size(); i++)
{
if (m_data[i] == key)
{
index = i;
break;
}
}
return index;
}
void removeAtIndex(int index)
{
if (index < size())
{
swap(index, size() - 1);
pop_back();
}
}
void remove(const T& key)
{
int findIndex = findLinearSearch(key);
removeAtIndex(findIndex);
removeAtIndex(findIndex);
}
//PCK: whole function
void initializeFromBuffer(void *buffer, int size, int capacity)
void initializeFromBuffer(void* buffer, int size, int capacity)
{
clear();
m_ownsMemory = false;
@@ -521,10 +503,9 @@ protected:
void copyFromArray(const btAlignedObjectArray& otherArray)
{
int otherSize = otherArray.size();
resize (otherSize);
resize(otherSize);
otherArray.copy(0, otherSize, m_data);
}
};
#endif //BT_OBJECT_ARRAY__
#endif //BT_OBJECT_ARRAY__