Code-style consistency improvement:

Apply clang-format-all.sh using the _clang-format file through all the cpp/.h files.
make sure not to apply it to certain serialization structures, since some parser expects the * as part of the name, instead of type.
This commit contains no other changes aside from adding and applying clang-format-all.sh
This commit is contained in:
erwincoumans
2018-09-23 14:17:31 -07:00
parent b73b05e9fb
commit ab8f16961e
1773 changed files with 1081087 additions and 474249 deletions

View File

@@ -11,228 +11,217 @@
#include "Bullet3OpenCL/RigidBody/kernels/batchingKernels.h"
#include "Bullet3OpenCL/RigidBody/kernels/batchingKernelsNew.h"
extern int gArgc;
extern char** gArgv;
namespace
{
struct CompileBullet3PgsContactSolverKernels : public ::testing::Test
struct CompileBullet3PgsContactSolverKernels : public ::testing::Test
{
cl_context m_clContext;
cl_device_id m_clDevice;
cl_command_queue m_clQueue;
char* m_clDeviceName;
cl_platform_id m_platformId;
CompileBullet3PgsContactSolverKernels()
: m_clDeviceName(0),
m_clContext(0),
m_clDevice(0),
m_clQueue(0),
m_platformId(0)
{
cl_context m_clContext;
cl_device_id m_clDevice;
cl_command_queue m_clQueue;
char* m_clDeviceName;
cl_platform_id m_platformId;
// You can do set-up work for each test here.
b3CommandLineArgs args(gArgc, gArgv);
int preferredDeviceIndex = -1;
int preferredPlatformIndex = -1;
bool allowCpuOpenCL = false;
CompileBullet3PgsContactSolverKernels()
:m_clDeviceName(0),
m_clContext(0),
m_clDevice(0),
m_clQueue(0),
m_platformId(0)
{
// You can do set-up work for each test here.
b3CommandLineArgs args(gArgc,gArgv);
int preferredDeviceIndex=-1;
int preferredPlatformIndex = -1;
bool allowCpuOpenCL = false;
initCL();
}
virtual ~CompileBullet3PgsContactSolverKernels()
{
// You can do clean-up work that doesn't throw exceptions here.
exitCL();
}
// If the constructor and destructor are not enough for setting up
// and cleaning up each test, you can define the following methods:
#include "initCL.h"
virtual void SetUp()
{
// Code here will be called immediately after the constructor (right
// before each test).
}
virtual void TearDown()
{
// Code here will be called immediately after each test (right
// before the destructor).
}
};
TEST_F(CompileBullet3PgsContactSolverKernels,solveFrictionCL)
{
const char* additionalMacros="";
cl_int errNum=0;
cl_program solveFrictionProg= b3OpenCLUtils::compileCLProgramFromString( m_clContext, m_clDevice, solveFrictionCL, &errNum,additionalMacros, 0,true);
ASSERT_EQ(CL_SUCCESS,errNum);
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString( m_clContext, m_clDevice, solveFrictionCL, "BatchSolveKernelFriction", &errNum, solveFrictionProg,additionalMacros );
ASSERT_EQ(CL_SUCCESS,errNum);
ASSERT_FALSE(k==0);
clReleaseKernel(k);
}
{
cl_kernel k =b3OpenCLUtils::compileCLKernelFromString( m_clContext, m_clDevice, solveFrictionCL, "solveSingleFrictionKernel", &errNum, solveFrictionProg,additionalMacros );
ASSERT_EQ(CL_SUCCESS,errNum);
ASSERT_FALSE(k==0);
clReleaseKernel(k);
}
clReleaseProgram(solveFrictionProg);
initCL();
}
TEST_F(CompileBullet3PgsContactSolverKernels,solverSetupCL)
virtual ~CompileBullet3PgsContactSolverKernels()
{
const char* additionalMacros="";
cl_int errNum=0;
cl_program solverSetupProg= b3OpenCLUtils::compileCLProgramFromString( m_clContext, m_clDevice, solverSetupCL, &errNum,additionalMacros, 0,true);
ASSERT_EQ(CL_SUCCESS,errNum);
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString( m_clContext, m_clDevice, solverSetupCL, "ContactToConstraintKernel", &errNum, solverSetupProg,additionalMacros );
ASSERT_EQ(CL_SUCCESS,errNum);
ASSERT_FALSE(k==0);
clReleaseKernel(k);
}
clReleaseProgram(solverSetupProg);
// You can do clean-up work that doesn't throw exceptions here.
exitCL();
}
TEST_F(CompileBullet3PgsContactSolverKernels,solverSetup2CL)
// If the constructor and destructor are not enough for setting up
// and cleaning up each test, you can define the following methods:
#include "initCL.h"
virtual void SetUp()
{
const char* additionalMacros="";
cl_int errNum=0;
cl_program solverSetup2Prog= b3OpenCLUtils::compileCLProgramFromString( m_clContext, m_clDevice, solverSetup2CL, &errNum,additionalMacros, 0,true);
ASSERT_EQ(CL_SUCCESS,errNum);
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString( m_clContext, m_clDevice, solverSetup2CL, "SetSortDataKernel", &errNum, solverSetup2Prog,additionalMacros );
ASSERT_EQ(CL_SUCCESS,errNum);
ASSERT_FALSE(k==0);
clReleaseKernel(k);
}
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString( m_clContext, m_clDevice, solverSetup2CL, "SetDeterminismSortDataBodyA", &errNum, solverSetup2Prog,additionalMacros );
ASSERT_EQ(CL_SUCCESS,errNum);
ASSERT_FALSE(k==0);
clReleaseKernel(k);
}
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString( m_clContext, m_clDevice, solverSetup2CL, "SetDeterminismSortDataBodyB", &errNum, solverSetup2Prog,additionalMacros );
ASSERT_EQ(CL_SUCCESS,errNum);
ASSERT_FALSE(k==0);
clReleaseKernel(k);
}
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString( m_clContext, m_clDevice, solverSetup2CL, "SetDeterminismSortDataChildShapeA", &errNum, solverSetup2Prog,additionalMacros );
ASSERT_EQ(CL_SUCCESS,errNum);
ASSERT_FALSE(k==0);
clReleaseKernel(k);
}
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString( m_clContext, m_clDevice, solverSetup2CL, "SetDeterminismSortDataChildShapeB", &errNum, solverSetup2Prog,additionalMacros );
ASSERT_EQ(CL_SUCCESS,errNum);
ASSERT_FALSE(k==0);
clReleaseKernel(k);
}
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString( m_clContext, m_clDevice, solverSetup2CL, "ReorderContactKernel", &errNum, solverSetup2Prog,additionalMacros );
ASSERT_EQ(CL_SUCCESS,errNum);
ASSERT_FALSE(k==0);
clReleaseKernel(k);
}
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString( m_clContext, m_clDevice, solverSetup2CL, "CopyConstraintKernel", &errNum, solverSetup2Prog,additionalMacros );
ASSERT_EQ(CL_SUCCESS,errNum);
ASSERT_FALSE(k==0);
clReleaseKernel(k);
}
clReleaseProgram(solverSetup2Prog);
// Code here will be called immediately after the constructor (right
// before each test).
}
TEST_F(CompileBullet3PgsContactSolverKernels,solveContactCL)
virtual void TearDown()
{
const char* additionalMacros="";
cl_int errNum=0;
cl_program solveContactProg= b3OpenCLUtils::compileCLProgramFromString( m_clContext, m_clDevice, solveContactCL, &errNum,additionalMacros, 0,true);
ASSERT_EQ(CL_SUCCESS,errNum);
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString( m_clContext, m_clDevice, solveContactCL, "BatchSolveKernelContact", &errNum, solveContactProg,additionalMacros );
ASSERT_EQ(CL_SUCCESS,errNum);
ASSERT_FALSE(k==0);
clReleaseKernel(k);
}
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString( m_clContext, m_clDevice, solveContactCL, "solveSingleContactKernel", &errNum, solveContactProg,additionalMacros );
ASSERT_EQ(CL_SUCCESS,errNum);
ASSERT_FALSE(k==0);
clReleaseKernel(k);
}
clReleaseProgram(solveContactProg);
// Code here will be called immediately after each test (right
// before the destructor).
}
TEST_F(CompileBullet3PgsContactSolverKernels,batchingKernelsCL)
{
const char* additionalMacros="";
cl_int errNum=0;
cl_program batchingProg = b3OpenCLUtils::compileCLProgramFromString( m_clContext, m_clDevice, batchingKernelsCL, &errNum,additionalMacros, 0,true);
ASSERT_EQ(CL_SUCCESS,errNum);
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString( m_clContext, m_clDevice, batchingKernelsCL, "CreateBatches", &errNum, batchingProg,additionalMacros );
ASSERT_EQ(CL_SUCCESS,errNum);
ASSERT_FALSE(k==0);
clReleaseKernel(k);
}
clReleaseProgram(batchingProg);
}
TEST_F(CompileBullet3PgsContactSolverKernels,batchingKernelsNewCL)
{
const char* additionalMacros="";
cl_int errNum=0;
cl_program batchingNewProg = b3OpenCLUtils::compileCLProgramFromString( m_clContext, m_clDevice, batchingKernelsNewCL, &errNum,additionalMacros, 0,true);
ASSERT_EQ(CL_SUCCESS,errNum);
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString( m_clContext, m_clDevice, batchingKernelsNewCL, "CreateBatchesNew", &errNum, batchingNewProg,additionalMacros );
ASSERT_EQ(CL_SUCCESS,errNum);
ASSERT_FALSE(k==0);
clReleaseKernel(k);
}
clReleaseProgram(batchingNewProg);
}
};
TEST_F(CompileBullet3PgsContactSolverKernels, solveFrictionCL)
{
const char* additionalMacros = "";
cl_int errNum = 0;
cl_program solveFrictionProg = b3OpenCLUtils::compileCLProgramFromString(m_clContext, m_clDevice, solveFrictionCL, &errNum, additionalMacros, 0, true);
ASSERT_EQ(CL_SUCCESS, errNum);
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, solveFrictionCL, "BatchSolveKernelFriction", &errNum, solveFrictionProg, additionalMacros);
ASSERT_EQ(CL_SUCCESS, errNum);
ASSERT_FALSE(k == 0);
clReleaseKernel(k);
}
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, solveFrictionCL, "solveSingleFrictionKernel", &errNum, solveFrictionProg, additionalMacros);
ASSERT_EQ(CL_SUCCESS, errNum);
ASSERT_FALSE(k == 0);
clReleaseKernel(k);
}
clReleaseProgram(solveFrictionProg);
}
TEST_F(CompileBullet3PgsContactSolverKernels, solverSetupCL)
{
const char* additionalMacros = "";
cl_int errNum = 0;
cl_program solverSetupProg = b3OpenCLUtils::compileCLProgramFromString(m_clContext, m_clDevice, solverSetupCL, &errNum, additionalMacros, 0, true);
ASSERT_EQ(CL_SUCCESS, errNum);
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, solverSetupCL, "ContactToConstraintKernel", &errNum, solverSetupProg, additionalMacros);
ASSERT_EQ(CL_SUCCESS, errNum);
ASSERT_FALSE(k == 0);
clReleaseKernel(k);
}
clReleaseProgram(solverSetupProg);
}
TEST_F(CompileBullet3PgsContactSolverKernels, solverSetup2CL)
{
const char* additionalMacros = "";
cl_int errNum = 0;
cl_program solverSetup2Prog = b3OpenCLUtils::compileCLProgramFromString(m_clContext, m_clDevice, solverSetup2CL, &errNum, additionalMacros, 0, true);
ASSERT_EQ(CL_SUCCESS, errNum);
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, solverSetup2CL, "SetSortDataKernel", &errNum, solverSetup2Prog, additionalMacros);
ASSERT_EQ(CL_SUCCESS, errNum);
ASSERT_FALSE(k == 0);
clReleaseKernel(k);
}
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, solverSetup2CL, "SetDeterminismSortDataBodyA", &errNum, solverSetup2Prog, additionalMacros);
ASSERT_EQ(CL_SUCCESS, errNum);
ASSERT_FALSE(k == 0);
clReleaseKernel(k);
}
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, solverSetup2CL, "SetDeterminismSortDataBodyB", &errNum, solverSetup2Prog, additionalMacros);
ASSERT_EQ(CL_SUCCESS, errNum);
ASSERT_FALSE(k == 0);
clReleaseKernel(k);
}
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, solverSetup2CL, "SetDeterminismSortDataChildShapeA", &errNum, solverSetup2Prog, additionalMacros);
ASSERT_EQ(CL_SUCCESS, errNum);
ASSERT_FALSE(k == 0);
clReleaseKernel(k);
}
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, solverSetup2CL, "SetDeterminismSortDataChildShapeB", &errNum, solverSetup2Prog, additionalMacros);
ASSERT_EQ(CL_SUCCESS, errNum);
ASSERT_FALSE(k == 0);
clReleaseKernel(k);
}
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, solverSetup2CL, "ReorderContactKernel", &errNum, solverSetup2Prog, additionalMacros);
ASSERT_EQ(CL_SUCCESS, errNum);
ASSERT_FALSE(k == 0);
clReleaseKernel(k);
}
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, solverSetup2CL, "CopyConstraintKernel", &errNum, solverSetup2Prog, additionalMacros);
ASSERT_EQ(CL_SUCCESS, errNum);
ASSERT_FALSE(k == 0);
clReleaseKernel(k);
}
clReleaseProgram(solverSetup2Prog);
}
TEST_F(CompileBullet3PgsContactSolverKernels, solveContactCL)
{
const char* additionalMacros = "";
cl_int errNum = 0;
cl_program solveContactProg = b3OpenCLUtils::compileCLProgramFromString(m_clContext, m_clDevice, solveContactCL, &errNum, additionalMacros, 0, true);
ASSERT_EQ(CL_SUCCESS, errNum);
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, solveContactCL, "BatchSolveKernelContact", &errNum, solveContactProg, additionalMacros);
ASSERT_EQ(CL_SUCCESS, errNum);
ASSERT_FALSE(k == 0);
clReleaseKernel(k);
}
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, solveContactCL, "solveSingleContactKernel", &errNum, solveContactProg, additionalMacros);
ASSERT_EQ(CL_SUCCESS, errNum);
ASSERT_FALSE(k == 0);
clReleaseKernel(k);
}
clReleaseProgram(solveContactProg);
}
TEST_F(CompileBullet3PgsContactSolverKernels, batchingKernelsCL)
{
const char* additionalMacros = "";
cl_int errNum = 0;
cl_program batchingProg = b3OpenCLUtils::compileCLProgramFromString(m_clContext, m_clDevice, batchingKernelsCL, &errNum, additionalMacros, 0, true);
ASSERT_EQ(CL_SUCCESS, errNum);
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, batchingKernelsCL, "CreateBatches", &errNum, batchingProg, additionalMacros);
ASSERT_EQ(CL_SUCCESS, errNum);
ASSERT_FALSE(k == 0);
clReleaseKernel(k);
}
clReleaseProgram(batchingProg);
}
TEST_F(CompileBullet3PgsContactSolverKernels, batchingKernelsNewCL)
{
const char* additionalMacros = "";
cl_int errNum = 0;
cl_program batchingNewProg = b3OpenCLUtils::compileCLProgramFromString(m_clContext, m_clDevice, batchingKernelsNewCL, &errNum, additionalMacros, 0, true);
ASSERT_EQ(CL_SUCCESS, errNum);
{
cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, batchingKernelsNewCL, "CreateBatchesNew", &errNum, batchingNewProg, additionalMacros);
ASSERT_EQ(CL_SUCCESS, errNum);
ASSERT_FALSE(k == 0);
clReleaseKernel(k);
}
clReleaseProgram(batchingNewProg);
}
}; // namespace