Add preliminary PhysX 4.0 backend for PyBullet

Add inverse dynamics / mass matrix code from DeepMimic, thanks to Xue Bin (Jason) Peng
Add example how to use stable PD control for humanoid with spherical joints (see humanoidMotionCapture.py)
Fix related to TinyRenderer object transforms not updating when using collision filtering
This commit is contained in:
erwincoumans
2019-01-22 21:08:37 -08:00
parent 80684f44ea
commit ae8e83988b
366 changed files with 131855 additions and 359 deletions

View File

@@ -0,0 +1,392 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ALIGNEDBOX_H
#define EIGEN_ALIGNEDBOX_H
namespace Eigen {
/** \geometry_module \ingroup Geometry_Module
*
*
* \class AlignedBox
*
* \brief An axis aligned box
*
* \tparam _Scalar the type of the scalar coefficients
* \tparam _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
*
* This class represents an axis aligned box as a pair of the minimal and maximal corners.
* \warning The result of most methods is undefined when applied to an empty box. You can check for empty boxes using isEmpty().
* \sa alignedboxtypedefs
*/
template <typename _Scalar, int _AmbientDim>
class AlignedBox
{
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
enum { AmbientDimAtCompileTime = _AmbientDim };
typedef _Scalar Scalar;
typedef NumTraits<Scalar> ScalarTraits;
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
typedef typename ScalarTraits::Real RealScalar;
typedef typename ScalarTraits::NonInteger NonInteger;
typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
typedef CwiseBinaryOp<internal::scalar_sum_op<Scalar>, const VectorType, const VectorType> VectorTypeSum;
/** Define constants to name the corners of a 1D, 2D or 3D axis aligned bounding box */
enum CornerType
{
/** 1D names @{ */
Min=0, Max=1,
/** @} */
/** Identifier for 2D corner @{ */
BottomLeft=0, BottomRight=1,
TopLeft=2, TopRight=3,
/** @} */
/** Identifier for 3D corner @{ */
BottomLeftFloor=0, BottomRightFloor=1,
TopLeftFloor=2, TopRightFloor=3,
BottomLeftCeil=4, BottomRightCeil=5,
TopLeftCeil=6, TopRightCeil=7
/** @} */
};
/** Default constructor initializing a null box. */
EIGEN_DEVICE_FUNC inline AlignedBox()
{ if (EIGEN_CONST_CONDITIONAL(AmbientDimAtCompileTime!=Dynamic)) setEmpty(); }
/** Constructs a null box with \a _dim the dimension of the ambient space. */
EIGEN_DEVICE_FUNC inline explicit AlignedBox(Index _dim) : m_min(_dim), m_max(_dim)
{ setEmpty(); }
/** Constructs a box with extremities \a _min and \a _max.
* \warning If either component of \a _min is larger than the same component of \a _max, the constructed box is empty. */
template<typename OtherVectorType1, typename OtherVectorType2>
EIGEN_DEVICE_FUNC inline AlignedBox(const OtherVectorType1& _min, const OtherVectorType2& _max) : m_min(_min), m_max(_max) {}
/** Constructs a box containing a single point \a p. */
template<typename Derived>
EIGEN_DEVICE_FUNC inline explicit AlignedBox(const MatrixBase<Derived>& p) : m_min(p), m_max(m_min)
{ }
EIGEN_DEVICE_FUNC ~AlignedBox() {}
/** \returns the dimension in which the box holds */
EIGEN_DEVICE_FUNC inline Index dim() const { return AmbientDimAtCompileTime==Dynamic ? m_min.size() : Index(AmbientDimAtCompileTime); }
/** \deprecated use isEmpty() */
EIGEN_DEVICE_FUNC inline bool isNull() const { return isEmpty(); }
/** \deprecated use setEmpty() */
EIGEN_DEVICE_FUNC inline void setNull() { setEmpty(); }
/** \returns true if the box is empty.
* \sa setEmpty */
EIGEN_DEVICE_FUNC inline bool isEmpty() const { return (m_min.array() > m_max.array()).any(); }
/** Makes \c *this an empty box.
* \sa isEmpty */
EIGEN_DEVICE_FUNC inline void setEmpty()
{
m_min.setConstant( ScalarTraits::highest() );
m_max.setConstant( ScalarTraits::lowest() );
}
/** \returns the minimal corner */
EIGEN_DEVICE_FUNC inline const VectorType& (min)() const { return m_min; }
/** \returns a non const reference to the minimal corner */
EIGEN_DEVICE_FUNC inline VectorType& (min)() { return m_min; }
/** \returns the maximal corner */
EIGEN_DEVICE_FUNC inline const VectorType& (max)() const { return m_max; }
/** \returns a non const reference to the maximal corner */
EIGEN_DEVICE_FUNC inline VectorType& (max)() { return m_max; }
/** \returns the center of the box */
EIGEN_DEVICE_FUNC inline const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(VectorTypeSum, RealScalar, quotient)
center() const
{ return (m_min+m_max)/RealScalar(2); }
/** \returns the lengths of the sides of the bounding box.
* Note that this function does not get the same
* result for integral or floating scalar types: see
*/
EIGEN_DEVICE_FUNC inline const CwiseBinaryOp< internal::scalar_difference_op<Scalar,Scalar>, const VectorType, const VectorType> sizes() const
{ return m_max - m_min; }
/** \returns the volume of the bounding box */
EIGEN_DEVICE_FUNC inline Scalar volume() const
{ return sizes().prod(); }
/** \returns an expression for the bounding box diagonal vector
* if the length of the diagonal is needed: diagonal().norm()
* will provide it.
*/
EIGEN_DEVICE_FUNC inline CwiseBinaryOp< internal::scalar_difference_op<Scalar,Scalar>, const VectorType, const VectorType> diagonal() const
{ return sizes(); }
/** \returns the vertex of the bounding box at the corner defined by
* the corner-id corner. It works only for a 1D, 2D or 3D bounding box.
* For 1D bounding boxes corners are named by 2 enum constants:
* BottomLeft and BottomRight.
* For 2D bounding boxes, corners are named by 4 enum constants:
* BottomLeft, BottomRight, TopLeft, TopRight.
* For 3D bounding boxes, the following names are added:
* BottomLeftCeil, BottomRightCeil, TopLeftCeil, TopRightCeil.
*/
EIGEN_DEVICE_FUNC inline VectorType corner(CornerType corner) const
{
EIGEN_STATIC_ASSERT(_AmbientDim <= 3, THIS_METHOD_IS_ONLY_FOR_VECTORS_OF_A_SPECIFIC_SIZE);
VectorType res;
Index mult = 1;
for(Index d=0; d<dim(); ++d)
{
if( mult & corner ) res[d] = m_max[d];
else res[d] = m_min[d];
mult *= 2;
}
return res;
}
/** \returns a random point inside the bounding box sampled with
* a uniform distribution */
EIGEN_DEVICE_FUNC inline VectorType sample() const
{
VectorType r(dim());
for(Index d=0; d<dim(); ++d)
{
if(!ScalarTraits::IsInteger)
{
r[d] = m_min[d] + (m_max[d]-m_min[d])
* internal::random<Scalar>(Scalar(0), Scalar(1));
}
else
r[d] = internal::random(m_min[d], m_max[d]);
}
return r;
}
/** \returns true if the point \a p is inside the box \c *this. */
template<typename Derived>
EIGEN_DEVICE_FUNC inline bool contains(const MatrixBase<Derived>& p) const
{
typename internal::nested_eval<Derived,2>::type p_n(p.derived());
return (m_min.array()<=p_n.array()).all() && (p_n.array()<=m_max.array()).all();
}
/** \returns true if the box \a b is entirely inside the box \c *this. */
EIGEN_DEVICE_FUNC inline bool contains(const AlignedBox& b) const
{ return (m_min.array()<=(b.min)().array()).all() && ((b.max)().array()<=m_max.array()).all(); }
/** \returns true if the box \a b is intersecting the box \c *this.
* \sa intersection, clamp */
EIGEN_DEVICE_FUNC inline bool intersects(const AlignedBox& b) const
{ return (m_min.array()<=(b.max)().array()).all() && ((b.min)().array()<=m_max.array()).all(); }
/** Extends \c *this such that it contains the point \a p and returns a reference to \c *this.
* \sa extend(const AlignedBox&) */
template<typename Derived>
EIGEN_DEVICE_FUNC inline AlignedBox& extend(const MatrixBase<Derived>& p)
{
typename internal::nested_eval<Derived,2>::type p_n(p.derived());
m_min = m_min.cwiseMin(p_n);
m_max = m_max.cwiseMax(p_n);
return *this;
}
/** Extends \c *this such that it contains the box \a b and returns a reference to \c *this.
* \sa merged, extend(const MatrixBase&) */
EIGEN_DEVICE_FUNC inline AlignedBox& extend(const AlignedBox& b)
{
m_min = m_min.cwiseMin(b.m_min);
m_max = m_max.cwiseMax(b.m_max);
return *this;
}
/** Clamps \c *this by the box \a b and returns a reference to \c *this.
* \note If the boxes don't intersect, the resulting box is empty.
* \sa intersection(), intersects() */
EIGEN_DEVICE_FUNC inline AlignedBox& clamp(const AlignedBox& b)
{
m_min = m_min.cwiseMax(b.m_min);
m_max = m_max.cwiseMin(b.m_max);
return *this;
}
/** Returns an AlignedBox that is the intersection of \a b and \c *this
* \note If the boxes don't intersect, the resulting box is empty.
* \sa intersects(), clamp, contains() */
EIGEN_DEVICE_FUNC inline AlignedBox intersection(const AlignedBox& b) const
{return AlignedBox(m_min.cwiseMax(b.m_min), m_max.cwiseMin(b.m_max)); }
/** Returns an AlignedBox that is the union of \a b and \c *this.
* \note Merging with an empty box may result in a box bigger than \c *this.
* \sa extend(const AlignedBox&) */
EIGEN_DEVICE_FUNC inline AlignedBox merged(const AlignedBox& b) const
{ return AlignedBox(m_min.cwiseMin(b.m_min), m_max.cwiseMax(b.m_max)); }
/** Translate \c *this by the vector \a t and returns a reference to \c *this. */
template<typename Derived>
EIGEN_DEVICE_FUNC inline AlignedBox& translate(const MatrixBase<Derived>& a_t)
{
const typename internal::nested_eval<Derived,2>::type t(a_t.derived());
m_min += t;
m_max += t;
return *this;
}
/** \returns the squared distance between the point \a p and the box \c *this,
* and zero if \a p is inside the box.
* \sa exteriorDistance(const MatrixBase&), squaredExteriorDistance(const AlignedBox&)
*/
template<typename Derived>
EIGEN_DEVICE_FUNC inline Scalar squaredExteriorDistance(const MatrixBase<Derived>& p) const;
/** \returns the squared distance between the boxes \a b and \c *this,
* and zero if the boxes intersect.
* \sa exteriorDistance(const AlignedBox&), squaredExteriorDistance(const MatrixBase&)
*/
EIGEN_DEVICE_FUNC inline Scalar squaredExteriorDistance(const AlignedBox& b) const;
/** \returns the distance between the point \a p and the box \c *this,
* and zero if \a p is inside the box.
* \sa squaredExteriorDistance(const MatrixBase&), exteriorDistance(const AlignedBox&)
*/
template<typename Derived>
EIGEN_DEVICE_FUNC inline NonInteger exteriorDistance(const MatrixBase<Derived>& p) const
{ EIGEN_USING_STD_MATH(sqrt) return sqrt(NonInteger(squaredExteriorDistance(p))); }
/** \returns the distance between the boxes \a b and \c *this,
* and zero if the boxes intersect.
* \sa squaredExteriorDistance(const AlignedBox&), exteriorDistance(const MatrixBase&)
*/
EIGEN_DEVICE_FUNC inline NonInteger exteriorDistance(const AlignedBox& b) const
{ EIGEN_USING_STD_MATH(sqrt) return sqrt(NonInteger(squaredExteriorDistance(b))); }
/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<AlignedBox,
AlignedBox<NewScalarType,AmbientDimAtCompileTime> >::type cast() const
{
return typename internal::cast_return_type<AlignedBox,
AlignedBox<NewScalarType,AmbientDimAtCompileTime> >::type(*this);
}
/** Copy constructor with scalar type conversion */
template<typename OtherScalarType>
EIGEN_DEVICE_FUNC inline explicit AlignedBox(const AlignedBox<OtherScalarType,AmbientDimAtCompileTime>& other)
{
m_min = (other.min)().template cast<Scalar>();
m_max = (other.max)().template cast<Scalar>();
}
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
EIGEN_DEVICE_FUNC bool isApprox(const AlignedBox& other, const RealScalar& prec = ScalarTraits::dummy_precision()) const
{ return m_min.isApprox(other.m_min, prec) && m_max.isApprox(other.m_max, prec); }
protected:
VectorType m_min, m_max;
};
template<typename Scalar,int AmbientDim>
template<typename Derived>
EIGEN_DEVICE_FUNC inline Scalar AlignedBox<Scalar,AmbientDim>::squaredExteriorDistance(const MatrixBase<Derived>& a_p) const
{
typename internal::nested_eval<Derived,2*AmbientDim>::type p(a_p.derived());
Scalar dist2(0);
Scalar aux;
for (Index k=0; k<dim(); ++k)
{
if( m_min[k] > p[k] )
{
aux = m_min[k] - p[k];
dist2 += aux*aux;
}
else if( p[k] > m_max[k] )
{
aux = p[k] - m_max[k];
dist2 += aux*aux;
}
}
return dist2;
}
template<typename Scalar,int AmbientDim>
EIGEN_DEVICE_FUNC inline Scalar AlignedBox<Scalar,AmbientDim>::squaredExteriorDistance(const AlignedBox& b) const
{
Scalar dist2(0);
Scalar aux;
for (Index k=0; k<dim(); ++k)
{
if( m_min[k] > b.m_max[k] )
{
aux = m_min[k] - b.m_max[k];
dist2 += aux*aux;
}
else if( b.m_min[k] > m_max[k] )
{
aux = b.m_min[k] - m_max[k];
dist2 += aux*aux;
}
}
return dist2;
}
/** \defgroup alignedboxtypedefs Global aligned box typedefs
*
* \ingroup Geometry_Module
*
* Eigen defines several typedef shortcuts for most common aligned box types.
*
* The general patterns are the following:
*
* \c AlignedBoxSizeType where \c Size can be \c 1, \c 2,\c 3,\c 4 for fixed size boxes or \c X for dynamic size,
* and where \c Type can be \c i for integer, \c f for float, \c d for double.
*
* For example, \c AlignedBox3d is a fixed-size 3x3 aligned box type of doubles, and \c AlignedBoxXf is a dynamic-size aligned box of floats.
*
* \sa class AlignedBox
*/
#define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \
/** \ingroup alignedboxtypedefs */ \
typedef AlignedBox<Type, Size> AlignedBox##SizeSuffix##TypeSuffix;
#define EIGEN_MAKE_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 1, 1) \
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 2, 2) \
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 3, 3) \
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 4, 4) \
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Dynamic, X)
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(int, i)
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(float, f)
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(double, d)
#undef EIGEN_MAKE_TYPEDEFS_ALL_SIZES
#undef EIGEN_MAKE_TYPEDEFS
} // end namespace Eigen
#endif // EIGEN_ALIGNEDBOX_H

View File

@@ -0,0 +1,247 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ANGLEAXIS_H
#define EIGEN_ANGLEAXIS_H
namespace Eigen {
/** \geometry_module \ingroup Geometry_Module
*
* \class AngleAxis
*
* \brief Represents a 3D rotation as a rotation angle around an arbitrary 3D axis
*
* \param _Scalar the scalar type, i.e., the type of the coefficients.
*
* \warning When setting up an AngleAxis object, the axis vector \b must \b be \b normalized.
*
* The following two typedefs are provided for convenience:
* \li \c AngleAxisf for \c float
* \li \c AngleAxisd for \c double
*
* Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily
* mimic Euler-angles. Here is an example:
* \include AngleAxis_mimic_euler.cpp
* Output: \verbinclude AngleAxis_mimic_euler.out
*
* \note This class is not aimed to be used to store a rotation transformation,
* but rather to make easier the creation of other rotation (Quaternion, rotation Matrix)
* and transformation objects.
*
* \sa class Quaternion, class Transform, MatrixBase::UnitX()
*/
namespace internal {
template<typename _Scalar> struct traits<AngleAxis<_Scalar> >
{
typedef _Scalar Scalar;
};
}
template<typename _Scalar>
class AngleAxis : public RotationBase<AngleAxis<_Scalar>,3>
{
typedef RotationBase<AngleAxis<_Scalar>,3> Base;
public:
using Base::operator*;
enum { Dim = 3 };
/** the scalar type of the coefficients */
typedef _Scalar Scalar;
typedef Matrix<Scalar,3,3> Matrix3;
typedef Matrix<Scalar,3,1> Vector3;
typedef Quaternion<Scalar> QuaternionType;
protected:
Vector3 m_axis;
Scalar m_angle;
public:
/** Default constructor without initialization. */
EIGEN_DEVICE_FUNC AngleAxis() {}
/** Constructs and initialize the angle-axis rotation from an \a angle in radian
* and an \a axis which \b must \b be \b normalized.
*
* \warning If the \a axis vector is not normalized, then the angle-axis object
* represents an invalid rotation. */
template<typename Derived>
EIGEN_DEVICE_FUNC
inline AngleAxis(const Scalar& angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {}
/** Constructs and initialize the angle-axis rotation from a quaternion \a q.
* This function implicitly normalizes the quaternion \a q.
*/
template<typename QuatDerived>
EIGEN_DEVICE_FUNC inline explicit AngleAxis(const QuaternionBase<QuatDerived>& q) { *this = q; }
/** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */
template<typename Derived>
EIGEN_DEVICE_FUNC inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; }
/** \returns the value of the rotation angle in radian */
EIGEN_DEVICE_FUNC Scalar angle() const { return m_angle; }
/** \returns a read-write reference to the stored angle in radian */
EIGEN_DEVICE_FUNC Scalar& angle() { return m_angle; }
/** \returns the rotation axis */
EIGEN_DEVICE_FUNC const Vector3& axis() const { return m_axis; }
/** \returns a read-write reference to the stored rotation axis.
*
* \warning The rotation axis must remain a \b unit vector.
*/
EIGEN_DEVICE_FUNC Vector3& axis() { return m_axis; }
/** Concatenates two rotations */
EIGEN_DEVICE_FUNC inline QuaternionType operator* (const AngleAxis& other) const
{ return QuaternionType(*this) * QuaternionType(other); }
/** Concatenates two rotations */
EIGEN_DEVICE_FUNC inline QuaternionType operator* (const QuaternionType& other) const
{ return QuaternionType(*this) * other; }
/** Concatenates two rotations */
friend EIGEN_DEVICE_FUNC inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b)
{ return a * QuaternionType(b); }
/** \returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */
EIGEN_DEVICE_FUNC AngleAxis inverse() const
{ return AngleAxis(-m_angle, m_axis); }
template<class QuatDerived>
EIGEN_DEVICE_FUNC AngleAxis& operator=(const QuaternionBase<QuatDerived>& q);
template<typename Derived>
EIGEN_DEVICE_FUNC AngleAxis& operator=(const MatrixBase<Derived>& m);
template<typename Derived>
EIGEN_DEVICE_FUNC AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m);
EIGEN_DEVICE_FUNC Matrix3 toRotationMatrix(void) const;
/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const
{ return typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); }
/** Copy constructor with scalar type conversion */
template<typename OtherScalarType>
EIGEN_DEVICE_FUNC inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other)
{
m_axis = other.axis().template cast<Scalar>();
m_angle = Scalar(other.angle());
}
EIGEN_DEVICE_FUNC static inline const AngleAxis Identity() { return AngleAxis(Scalar(0), Vector3::UnitX()); }
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
EIGEN_DEVICE_FUNC bool isApprox(const AngleAxis& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
{ return m_axis.isApprox(other.m_axis, prec) && internal::isApprox(m_angle,other.m_angle, prec); }
};
/** \ingroup Geometry_Module
* single precision angle-axis type */
typedef AngleAxis<float> AngleAxisf;
/** \ingroup Geometry_Module
* double precision angle-axis type */
typedef AngleAxis<double> AngleAxisd;
/** Set \c *this from a \b unit quaternion.
*
* The resulting axis is normalized, and the computed angle is in the [0,pi] range.
*
* This function implicitly normalizes the quaternion \a q.
*/
template<typename Scalar>
template<typename QuatDerived>
EIGEN_DEVICE_FUNC AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionBase<QuatDerived>& q)
{
EIGEN_USING_STD_MATH(atan2)
EIGEN_USING_STD_MATH(abs)
Scalar n = q.vec().norm();
if(n<NumTraits<Scalar>::epsilon())
n = q.vec().stableNorm();
if (n != Scalar(0))
{
m_angle = Scalar(2)*atan2(n, abs(q.w()));
if(q.w() < Scalar(0))
n = -n;
m_axis = q.vec() / n;
}
else
{
m_angle = Scalar(0);
m_axis << Scalar(1), Scalar(0), Scalar(0);
}
return *this;
}
/** Set \c *this from a 3x3 rotation matrix \a mat.
*/
template<typename Scalar>
template<typename Derived>
EIGEN_DEVICE_FUNC AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat)
{
// Since a direct conversion would not be really faster,
// let's use the robust Quaternion implementation:
return *this = QuaternionType(mat);
}
/**
* \brief Sets \c *this from a 3x3 rotation matrix.
**/
template<typename Scalar>
template<typename Derived>
EIGEN_DEVICE_FUNC AngleAxis<Scalar>& AngleAxis<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
{
return *this = QuaternionType(mat);
}
/** Constructs and \returns an equivalent 3x3 rotation matrix.
*/
template<typename Scalar>
typename AngleAxis<Scalar>::Matrix3
EIGEN_DEVICE_FUNC AngleAxis<Scalar>::toRotationMatrix(void) const
{
EIGEN_USING_STD_MATH(sin)
EIGEN_USING_STD_MATH(cos)
Matrix3 res;
Vector3 sin_axis = sin(m_angle) * m_axis;
Scalar c = cos(m_angle);
Vector3 cos1_axis = (Scalar(1)-c) * m_axis;
Scalar tmp;
tmp = cos1_axis.x() * m_axis.y();
res.coeffRef(0,1) = tmp - sin_axis.z();
res.coeffRef(1,0) = tmp + sin_axis.z();
tmp = cos1_axis.x() * m_axis.z();
res.coeffRef(0,2) = tmp + sin_axis.y();
res.coeffRef(2,0) = tmp - sin_axis.y();
tmp = cos1_axis.y() * m_axis.z();
res.coeffRef(1,2) = tmp - sin_axis.x();
res.coeffRef(2,1) = tmp + sin_axis.x();
res.diagonal() = (cos1_axis.cwiseProduct(m_axis)).array() + c;
return res;
}
} // end namespace Eigen
#endif // EIGEN_ANGLEAXIS_H

View File

@@ -0,0 +1,114 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_EULERANGLES_H
#define EIGEN_EULERANGLES_H
namespace Eigen {
/** \geometry_module \ingroup Geometry_Module
*
*
* \returns the Euler-angles of the rotation matrix \c *this using the convention defined by the triplet (\a a0,\a a1,\a a2)
*
* Each of the three parameters \a a0,\a a1,\a a2 represents the respective rotation axis as an integer in {0,1,2}.
* For instance, in:
* \code Vector3f ea = mat.eulerAngles(2, 0, 2); \endcode
* "2" represents the z axis and "0" the x axis, etc. The returned angles are such that
* we have the following equality:
* \code
* mat == AngleAxisf(ea[0], Vector3f::UnitZ())
* * AngleAxisf(ea[1], Vector3f::UnitX())
* * AngleAxisf(ea[2], Vector3f::UnitZ()); \endcode
* This corresponds to the right-multiply conventions (with right hand side frames).
*
* The returned angles are in the ranges [0:pi]x[-pi:pi]x[-pi:pi].
*
* \sa class AngleAxis
*/
template<typename Derived>
EIGEN_DEVICE_FUNC inline Matrix<typename MatrixBase<Derived>::Scalar,3,1>
MatrixBase<Derived>::eulerAngles(Index a0, Index a1, Index a2) const
{
EIGEN_USING_STD_MATH(atan2)
EIGEN_USING_STD_MATH(sin)
EIGEN_USING_STD_MATH(cos)
/* Implemented from Graphics Gems IV */
EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived,3,3)
Matrix<Scalar,3,1> res;
typedef Matrix<typename Derived::Scalar,2,1> Vector2;
const Index odd = ((a0+1)%3 == a1) ? 0 : 1;
const Index i = a0;
const Index j = (a0 + 1 + odd)%3;
const Index k = (a0 + 2 - odd)%3;
if (a0==a2)
{
res[0] = atan2(coeff(j,i), coeff(k,i));
if((odd && res[0]<Scalar(0)) || ((!odd) && res[0]>Scalar(0)))
{
if(res[0] > Scalar(0)) {
res[0] -= Scalar(EIGEN_PI);
}
else {
res[0] += Scalar(EIGEN_PI);
}
Scalar s2 = Vector2(coeff(j,i), coeff(k,i)).norm();
res[1] = -atan2(s2, coeff(i,i));
}
else
{
Scalar s2 = Vector2(coeff(j,i), coeff(k,i)).norm();
res[1] = atan2(s2, coeff(i,i));
}
// With a=(0,1,0), we have i=0; j=1; k=2, and after computing the first two angles,
// we can compute their respective rotation, and apply its inverse to M. Since the result must
// be a rotation around x, we have:
//
// c2 s1.s2 c1.s2 1 0 0
// 0 c1 -s1 * M = 0 c3 s3
// -s2 s1.c2 c1.c2 0 -s3 c3
//
// Thus: m11.c1 - m21.s1 = c3 & m12.c1 - m22.s1 = s3
Scalar s1 = sin(res[0]);
Scalar c1 = cos(res[0]);
res[2] = atan2(c1*coeff(j,k)-s1*coeff(k,k), c1*coeff(j,j) - s1 * coeff(k,j));
}
else
{
res[0] = atan2(coeff(j,k), coeff(k,k));
Scalar c2 = Vector2(coeff(i,i), coeff(i,j)).norm();
if((odd && res[0]<Scalar(0)) || ((!odd) && res[0]>Scalar(0))) {
if(res[0] > Scalar(0)) {
res[0] -= Scalar(EIGEN_PI);
}
else {
res[0] += Scalar(EIGEN_PI);
}
res[1] = atan2(-coeff(i,k), -c2);
}
else
res[1] = atan2(-coeff(i,k), c2);
Scalar s1 = sin(res[0]);
Scalar c1 = cos(res[0]);
res[2] = atan2(s1*coeff(k,i)-c1*coeff(j,i), c1*coeff(j,j) - s1 * coeff(k,j));
}
if (!odd)
res = -res;
return res;
}
} // end namespace Eigen
#endif // EIGEN_EULERANGLES_H

View File

@@ -0,0 +1,497 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_HOMOGENEOUS_H
#define EIGEN_HOMOGENEOUS_H
namespace Eigen {
/** \geometry_module \ingroup Geometry_Module
*
* \class Homogeneous
*
* \brief Expression of one (or a set of) homogeneous vector(s)
*
* \param MatrixType the type of the object in which we are making homogeneous
*
* This class represents an expression of one (or a set of) homogeneous vector(s).
* It is the return type of MatrixBase::homogeneous() and most of the time
* this is the only way it is used.
*
* \sa MatrixBase::homogeneous()
*/
namespace internal {
template<typename MatrixType,int Direction>
struct traits<Homogeneous<MatrixType,Direction> >
: traits<MatrixType>
{
typedef typename traits<MatrixType>::StorageKind StorageKind;
typedef typename ref_selector<MatrixType>::type MatrixTypeNested;
typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
enum {
RowsPlusOne = (MatrixType::RowsAtCompileTime != Dynamic) ?
int(MatrixType::RowsAtCompileTime) + 1 : Dynamic,
ColsPlusOne = (MatrixType::ColsAtCompileTime != Dynamic) ?
int(MatrixType::ColsAtCompileTime) + 1 : Dynamic,
RowsAtCompileTime = Direction==Vertical ? RowsPlusOne : MatrixType::RowsAtCompileTime,
ColsAtCompileTime = Direction==Horizontal ? ColsPlusOne : MatrixType::ColsAtCompileTime,
MaxRowsAtCompileTime = RowsAtCompileTime,
MaxColsAtCompileTime = ColsAtCompileTime,
TmpFlags = _MatrixTypeNested::Flags & HereditaryBits,
Flags = ColsAtCompileTime==1 ? (TmpFlags & ~RowMajorBit)
: RowsAtCompileTime==1 ? (TmpFlags | RowMajorBit)
: TmpFlags
};
};
template<typename MatrixType,typename Lhs> struct homogeneous_left_product_impl;
template<typename MatrixType,typename Rhs> struct homogeneous_right_product_impl;
} // end namespace internal
template<typename MatrixType,int _Direction> class Homogeneous
: public MatrixBase<Homogeneous<MatrixType,_Direction> >, internal::no_assignment_operator
{
public:
typedef MatrixType NestedExpression;
enum { Direction = _Direction };
typedef MatrixBase<Homogeneous> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Homogeneous)
EIGEN_DEVICE_FUNC explicit inline Homogeneous(const MatrixType& matrix)
: m_matrix(matrix)
{}
EIGEN_DEVICE_FUNC inline Index rows() const { return m_matrix.rows() + (int(Direction)==Vertical ? 1 : 0); }
EIGEN_DEVICE_FUNC inline Index cols() const { return m_matrix.cols() + (int(Direction)==Horizontal ? 1 : 0); }
EIGEN_DEVICE_FUNC const NestedExpression& nestedExpression() const { return m_matrix; }
template<typename Rhs>
EIGEN_DEVICE_FUNC inline const Product<Homogeneous,Rhs>
operator* (const MatrixBase<Rhs>& rhs) const
{
eigen_assert(int(Direction)==Horizontal);
return Product<Homogeneous,Rhs>(*this,rhs.derived());
}
template<typename Lhs> friend
EIGEN_DEVICE_FUNC inline const Product<Lhs,Homogeneous>
operator* (const MatrixBase<Lhs>& lhs, const Homogeneous& rhs)
{
eigen_assert(int(Direction)==Vertical);
return Product<Lhs,Homogeneous>(lhs.derived(),rhs);
}
template<typename Scalar, int Dim, int Mode, int Options> friend
EIGEN_DEVICE_FUNC inline const Product<Transform<Scalar,Dim,Mode,Options>, Homogeneous >
operator* (const Transform<Scalar,Dim,Mode,Options>& lhs, const Homogeneous& rhs)
{
eigen_assert(int(Direction)==Vertical);
return Product<Transform<Scalar,Dim,Mode,Options>, Homogeneous>(lhs,rhs);
}
template<typename Func>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::result_of<Func(Scalar,Scalar)>::type
redux(const Func& func) const
{
return func(m_matrix.redux(func), Scalar(1));
}
protected:
typename MatrixType::Nested m_matrix;
};
/** \geometry_module \ingroup Geometry_Module
*
* \returns a vector expression that is one longer than the vector argument, with the value 1 symbolically appended as the last coefficient.
*
* This can be used to convert affine coordinates to homogeneous coordinates.
*
* \only_for_vectors
*
* Example: \include MatrixBase_homogeneous.cpp
* Output: \verbinclude MatrixBase_homogeneous.out
*
* \sa VectorwiseOp::homogeneous(), class Homogeneous
*/
template<typename Derived>
EIGEN_DEVICE_FUNC inline typename MatrixBase<Derived>::HomogeneousReturnType
MatrixBase<Derived>::homogeneous() const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
return HomogeneousReturnType(derived());
}
/** \geometry_module \ingroup Geometry_Module
*
* \returns an expression where the value 1 is symbolically appended as the final coefficient to each column (or row) of the matrix.
*
* This can be used to convert affine coordinates to homogeneous coordinates.
*
* Example: \include VectorwiseOp_homogeneous.cpp
* Output: \verbinclude VectorwiseOp_homogeneous.out
*
* \sa MatrixBase::homogeneous(), class Homogeneous */
template<typename ExpressionType, int Direction>
EIGEN_DEVICE_FUNC inline Homogeneous<ExpressionType,Direction>
VectorwiseOp<ExpressionType,Direction>::homogeneous() const
{
return HomogeneousReturnType(_expression());
}
/** \geometry_module \ingroup Geometry_Module
*
* \brief homogeneous normalization
*
* \returns a vector expression of the N-1 first coefficients of \c *this divided by that last coefficient.
*
* This can be used to convert homogeneous coordinates to affine coordinates.
*
* It is essentially a shortcut for:
* \code
this->head(this->size()-1)/this->coeff(this->size()-1);
\endcode
*
* Example: \include MatrixBase_hnormalized.cpp
* Output: \verbinclude MatrixBase_hnormalized.out
*
* \sa VectorwiseOp::hnormalized() */
template<typename Derived>
EIGEN_DEVICE_FUNC inline const typename MatrixBase<Derived>::HNormalizedReturnType
MatrixBase<Derived>::hnormalized() const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
return ConstStartMinusOne(derived(),0,0,
ColsAtCompileTime==1?size()-1:1,
ColsAtCompileTime==1?1:size()-1) / coeff(size()-1);
}
/** \geometry_module \ingroup Geometry_Module
*
* \brief column or row-wise homogeneous normalization
*
* \returns an expression of the first N-1 coefficients of each column (or row) of \c *this divided by the last coefficient of each column (or row).
*
* This can be used to convert homogeneous coordinates to affine coordinates.
*
* It is conceptually equivalent to calling MatrixBase::hnormalized() to each column (or row) of \c *this.
*
* Example: \include DirectionWise_hnormalized.cpp
* Output: \verbinclude DirectionWise_hnormalized.out
*
* \sa MatrixBase::hnormalized() */
template<typename ExpressionType, int Direction>
EIGEN_DEVICE_FUNC inline const typename VectorwiseOp<ExpressionType,Direction>::HNormalizedReturnType
VectorwiseOp<ExpressionType,Direction>::hnormalized() const
{
return HNormalized_Block(_expression(),0,0,
Direction==Vertical ? _expression().rows()-1 : _expression().rows(),
Direction==Horizontal ? _expression().cols()-1 : _expression().cols()).cwiseQuotient(
Replicate<HNormalized_Factors,
Direction==Vertical ? HNormalized_SizeMinusOne : 1,
Direction==Horizontal ? HNormalized_SizeMinusOne : 1>
(HNormalized_Factors(_expression(),
Direction==Vertical ? _expression().rows()-1:0,
Direction==Horizontal ? _expression().cols()-1:0,
Direction==Vertical ? 1 : _expression().rows(),
Direction==Horizontal ? 1 : _expression().cols()),
Direction==Vertical ? _expression().rows()-1 : 1,
Direction==Horizontal ? _expression().cols()-1 : 1));
}
namespace internal {
template<typename MatrixOrTransformType>
struct take_matrix_for_product
{
typedef MatrixOrTransformType type;
EIGEN_DEVICE_FUNC static const type& run(const type &x) { return x; }
};
template<typename Scalar, int Dim, int Mode,int Options>
struct take_matrix_for_product<Transform<Scalar, Dim, Mode, Options> >
{
typedef Transform<Scalar, Dim, Mode, Options> TransformType;
typedef typename internal::add_const<typename TransformType::ConstAffinePart>::type type;
EIGEN_DEVICE_FUNC static type run (const TransformType& x) { return x.affine(); }
};
template<typename Scalar, int Dim, int Options>
struct take_matrix_for_product<Transform<Scalar, Dim, Projective, Options> >
{
typedef Transform<Scalar, Dim, Projective, Options> TransformType;
typedef typename TransformType::MatrixType type;
EIGEN_DEVICE_FUNC static const type& run (const TransformType& x) { return x.matrix(); }
};
template<typename MatrixType,typename Lhs>
struct traits<homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs> >
{
typedef typename take_matrix_for_product<Lhs>::type LhsMatrixType;
typedef typename remove_all<MatrixType>::type MatrixTypeCleaned;
typedef typename remove_all<LhsMatrixType>::type LhsMatrixTypeCleaned;
typedef typename make_proper_matrix_type<
typename traits<MatrixTypeCleaned>::Scalar,
LhsMatrixTypeCleaned::RowsAtCompileTime,
MatrixTypeCleaned::ColsAtCompileTime,
MatrixTypeCleaned::PlainObject::Options,
LhsMatrixTypeCleaned::MaxRowsAtCompileTime,
MatrixTypeCleaned::MaxColsAtCompileTime>::type ReturnType;
};
template<typename MatrixType,typename Lhs>
struct homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs>
: public ReturnByValue<homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs> >
{
typedef typename traits<homogeneous_left_product_impl>::LhsMatrixType LhsMatrixType;
typedef typename remove_all<LhsMatrixType>::type LhsMatrixTypeCleaned;
typedef typename remove_all<typename LhsMatrixTypeCleaned::Nested>::type LhsMatrixTypeNested;
EIGEN_DEVICE_FUNC homogeneous_left_product_impl(const Lhs& lhs, const MatrixType& rhs)
: m_lhs(take_matrix_for_product<Lhs>::run(lhs)),
m_rhs(rhs)
{}
EIGEN_DEVICE_FUNC inline Index rows() const { return m_lhs.rows(); }
EIGEN_DEVICE_FUNC inline Index cols() const { return m_rhs.cols(); }
template<typename Dest> EIGEN_DEVICE_FUNC void evalTo(Dest& dst) const
{
// FIXME investigate how to allow lazy evaluation of this product when possible
dst = Block<const LhsMatrixTypeNested,
LhsMatrixTypeNested::RowsAtCompileTime,
LhsMatrixTypeNested::ColsAtCompileTime==Dynamic?Dynamic:LhsMatrixTypeNested::ColsAtCompileTime-1>
(m_lhs,0,0,m_lhs.rows(),m_lhs.cols()-1) * m_rhs;
dst += m_lhs.col(m_lhs.cols()-1).rowwise()
.template replicate<MatrixType::ColsAtCompileTime>(m_rhs.cols());
}
typename LhsMatrixTypeCleaned::Nested m_lhs;
typename MatrixType::Nested m_rhs;
};
template<typename MatrixType,typename Rhs>
struct traits<homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs> >
{
typedef typename make_proper_matrix_type<typename traits<MatrixType>::Scalar,
MatrixType::RowsAtCompileTime,
Rhs::ColsAtCompileTime,
MatrixType::PlainObject::Options,
MatrixType::MaxRowsAtCompileTime,
Rhs::MaxColsAtCompileTime>::type ReturnType;
};
template<typename MatrixType,typename Rhs>
struct homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs>
: public ReturnByValue<homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs> >
{
typedef typename remove_all<typename Rhs::Nested>::type RhsNested;
EIGEN_DEVICE_FUNC homogeneous_right_product_impl(const MatrixType& lhs, const Rhs& rhs)
: m_lhs(lhs), m_rhs(rhs)
{}
EIGEN_DEVICE_FUNC inline Index rows() const { return m_lhs.rows(); }
EIGEN_DEVICE_FUNC inline Index cols() const { return m_rhs.cols(); }
template<typename Dest> EIGEN_DEVICE_FUNC void evalTo(Dest& dst) const
{
// FIXME investigate how to allow lazy evaluation of this product when possible
dst = m_lhs * Block<const RhsNested,
RhsNested::RowsAtCompileTime==Dynamic?Dynamic:RhsNested::RowsAtCompileTime-1,
RhsNested::ColsAtCompileTime>
(m_rhs,0,0,m_rhs.rows()-1,m_rhs.cols());
dst += m_rhs.row(m_rhs.rows()-1).colwise()
.template replicate<MatrixType::RowsAtCompileTime>(m_lhs.rows());
}
typename MatrixType::Nested m_lhs;
typename Rhs::Nested m_rhs;
};
template<typename ArgType,int Direction>
struct evaluator_traits<Homogeneous<ArgType,Direction> >
{
typedef typename storage_kind_to_evaluator_kind<typename ArgType::StorageKind>::Kind Kind;
typedef HomogeneousShape Shape;
};
template<> struct AssignmentKind<DenseShape,HomogeneousShape> { typedef Dense2Dense Kind; };
template<typename ArgType,int Direction>
struct unary_evaluator<Homogeneous<ArgType,Direction>, IndexBased>
: evaluator<typename Homogeneous<ArgType,Direction>::PlainObject >
{
typedef Homogeneous<ArgType,Direction> XprType;
typedef typename XprType::PlainObject PlainObject;
typedef evaluator<PlainObject> Base;
EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& op)
: Base(), m_temp(op)
{
::new (static_cast<Base*>(this)) Base(m_temp);
}
protected:
PlainObject m_temp;
};
// dense = homogeneous
template< typename DstXprType, typename ArgType, typename Scalar>
struct Assignment<DstXprType, Homogeneous<ArgType,Vertical>, internal::assign_op<Scalar,typename ArgType::Scalar>, Dense2Dense>
{
typedef Homogeneous<ArgType,Vertical> SrcXprType;
EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,typename ArgType::Scalar> &)
{
Index dstRows = src.rows();
Index dstCols = src.cols();
if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
dst.resize(dstRows, dstCols);
dst.template topRows<ArgType::RowsAtCompileTime>(src.nestedExpression().rows()) = src.nestedExpression();
dst.row(dst.rows()-1).setOnes();
}
};
// dense = homogeneous
template< typename DstXprType, typename ArgType, typename Scalar>
struct Assignment<DstXprType, Homogeneous<ArgType,Horizontal>, internal::assign_op<Scalar,typename ArgType::Scalar>, Dense2Dense>
{
typedef Homogeneous<ArgType,Horizontal> SrcXprType;
EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,typename ArgType::Scalar> &)
{
Index dstRows = src.rows();
Index dstCols = src.cols();
if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
dst.resize(dstRows, dstCols);
dst.template leftCols<ArgType::ColsAtCompileTime>(src.nestedExpression().cols()) = src.nestedExpression();
dst.col(dst.cols()-1).setOnes();
}
};
template<typename LhsArg, typename Rhs, int ProductTag>
struct generic_product_impl<Homogeneous<LhsArg,Horizontal>, Rhs, HomogeneousShape, DenseShape, ProductTag>
{
template<typename Dest>
EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const Homogeneous<LhsArg,Horizontal>& lhs, const Rhs& rhs)
{
homogeneous_right_product_impl<Homogeneous<LhsArg,Horizontal>, Rhs>(lhs.nestedExpression(), rhs).evalTo(dst);
}
};
template<typename Lhs,typename Rhs>
struct homogeneous_right_product_refactoring_helper
{
enum {
Dim = Lhs::ColsAtCompileTime,
Rows = Lhs::RowsAtCompileTime
};
typedef typename Rhs::template ConstNRowsBlockXpr<Dim>::Type LinearBlockConst;
typedef typename remove_const<LinearBlockConst>::type LinearBlock;
typedef typename Rhs::ConstRowXpr ConstantColumn;
typedef Replicate<const ConstantColumn,Rows,1> ConstantBlock;
typedef Product<Lhs,LinearBlock,LazyProduct> LinearProduct;
typedef CwiseBinaryOp<internal::scalar_sum_op<typename Lhs::Scalar,typename Rhs::Scalar>, const LinearProduct, const ConstantBlock> Xpr;
};
template<typename Lhs, typename Rhs, int ProductTag>
struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, HomogeneousShape, DenseShape>
: public evaluator<typename homogeneous_right_product_refactoring_helper<typename Lhs::NestedExpression,Rhs>::Xpr>
{
typedef Product<Lhs, Rhs, LazyProduct> XprType;
typedef homogeneous_right_product_refactoring_helper<typename Lhs::NestedExpression,Rhs> helper;
typedef typename helper::ConstantBlock ConstantBlock;
typedef typename helper::Xpr RefactoredXpr;
typedef evaluator<RefactoredXpr> Base;
EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
: Base( xpr.lhs().nestedExpression() .lazyProduct( xpr.rhs().template topRows<helper::Dim>(xpr.lhs().nestedExpression().cols()) )
+ ConstantBlock(xpr.rhs().row(xpr.rhs().rows()-1),xpr.lhs().rows(), 1) )
{}
};
template<typename Lhs, typename RhsArg, int ProductTag>
struct generic_product_impl<Lhs, Homogeneous<RhsArg,Vertical>, DenseShape, HomogeneousShape, ProductTag>
{
template<typename Dest>
EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const Lhs& lhs, const Homogeneous<RhsArg,Vertical>& rhs)
{
homogeneous_left_product_impl<Homogeneous<RhsArg,Vertical>, Lhs>(lhs, rhs.nestedExpression()).evalTo(dst);
}
};
// TODO: the following specialization is to address a regression from 3.2 to 3.3
// In the future, this path should be optimized.
template<typename Lhs, typename RhsArg, int ProductTag>
struct generic_product_impl<Lhs, Homogeneous<RhsArg,Vertical>, TriangularShape, HomogeneousShape, ProductTag>
{
template<typename Dest>
static void evalTo(Dest& dst, const Lhs& lhs, const Homogeneous<RhsArg,Vertical>& rhs)
{
dst.noalias() = lhs * rhs.eval();
}
};
template<typename Lhs,typename Rhs>
struct homogeneous_left_product_refactoring_helper
{
enum {
Dim = Rhs::RowsAtCompileTime,
Cols = Rhs::ColsAtCompileTime
};
typedef typename Lhs::template ConstNColsBlockXpr<Dim>::Type LinearBlockConst;
typedef typename remove_const<LinearBlockConst>::type LinearBlock;
typedef typename Lhs::ConstColXpr ConstantColumn;
typedef Replicate<const ConstantColumn,1,Cols> ConstantBlock;
typedef Product<LinearBlock,Rhs,LazyProduct> LinearProduct;
typedef CwiseBinaryOp<internal::scalar_sum_op<typename Lhs::Scalar,typename Rhs::Scalar>, const LinearProduct, const ConstantBlock> Xpr;
};
template<typename Lhs, typename Rhs, int ProductTag>
struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, DenseShape, HomogeneousShape>
: public evaluator<typename homogeneous_left_product_refactoring_helper<Lhs,typename Rhs::NestedExpression>::Xpr>
{
typedef Product<Lhs, Rhs, LazyProduct> XprType;
typedef homogeneous_left_product_refactoring_helper<Lhs,typename Rhs::NestedExpression> helper;
typedef typename helper::ConstantBlock ConstantBlock;
typedef typename helper::Xpr RefactoredXpr;
typedef evaluator<RefactoredXpr> Base;
EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
: Base( xpr.lhs().template leftCols<helper::Dim>(xpr.rhs().nestedExpression().rows()) .lazyProduct( xpr.rhs().nestedExpression() )
+ ConstantBlock(xpr.lhs().col(xpr.lhs().cols()-1),1,xpr.rhs().cols()) )
{}
};
template<typename Scalar, int Dim, int Mode,int Options, typename RhsArg, int ProductTag>
struct generic_product_impl<Transform<Scalar,Dim,Mode,Options>, Homogeneous<RhsArg,Vertical>, DenseShape, HomogeneousShape, ProductTag>
{
typedef Transform<Scalar,Dim,Mode,Options> TransformType;
template<typename Dest>
EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const TransformType& lhs, const Homogeneous<RhsArg,Vertical>& rhs)
{
homogeneous_left_product_impl<Homogeneous<RhsArg,Vertical>, TransformType>(lhs, rhs.nestedExpression()).evalTo(dst);
}
};
template<typename ExpressionType, int Side, bool Transposed>
struct permutation_matrix_product<ExpressionType, Side, Transposed, HomogeneousShape>
: public permutation_matrix_product<ExpressionType, Side, Transposed, DenseShape>
{};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_HOMOGENEOUS_H

View File

@@ -0,0 +1,282 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_HYPERPLANE_H
#define EIGEN_HYPERPLANE_H
namespace Eigen {
/** \geometry_module \ingroup Geometry_Module
*
* \class Hyperplane
*
* \brief A hyperplane
*
* A hyperplane is an affine subspace of dimension n-1 in a space of dimension n.
* For example, a hyperplane in a plane is a line; a hyperplane in 3-space is a plane.
*
* \tparam _Scalar the scalar type, i.e., the type of the coefficients
* \tparam _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
* Notice that the dimension of the hyperplane is _AmbientDim-1.
*
* This class represents an hyperplane as the zero set of the implicit equation
* \f$ n \cdot x + d = 0 \f$ where \f$ n \f$ is a unit normal vector of the plane (linear part)
* and \f$ d \f$ is the distance (offset) to the origin.
*/
template <typename _Scalar, int _AmbientDim, int _Options>
class Hyperplane
{
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1)
enum {
AmbientDimAtCompileTime = _AmbientDim,
Options = _Options
};
typedef _Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
typedef Matrix<Scalar,Index(AmbientDimAtCompileTime)==Dynamic
? Dynamic
: Index(AmbientDimAtCompileTime)+1,1,Options> Coefficients;
typedef Block<Coefficients,AmbientDimAtCompileTime,1> NormalReturnType;
typedef const Block<const Coefficients,AmbientDimAtCompileTime,1> ConstNormalReturnType;
/** Default constructor without initialization */
EIGEN_DEVICE_FUNC inline Hyperplane() {}
template<int OtherOptions>
EIGEN_DEVICE_FUNC Hyperplane(const Hyperplane<Scalar,AmbientDimAtCompileTime,OtherOptions>& other)
: m_coeffs(other.coeffs())
{}
/** Constructs a dynamic-size hyperplane with \a _dim the dimension
* of the ambient space */
EIGEN_DEVICE_FUNC inline explicit Hyperplane(Index _dim) : m_coeffs(_dim+1) {}
/** Construct a plane from its normal \a n and a point \a e onto the plane.
* \warning the vector normal is assumed to be normalized.
*/
EIGEN_DEVICE_FUNC inline Hyperplane(const VectorType& n, const VectorType& e)
: m_coeffs(n.size()+1)
{
normal() = n;
offset() = -n.dot(e);
}
/** Constructs a plane from its normal \a n and distance to the origin \a d
* such that the algebraic equation of the plane is \f$ n \cdot x + d = 0 \f$.
* \warning the vector normal is assumed to be normalized.
*/
EIGEN_DEVICE_FUNC inline Hyperplane(const VectorType& n, const Scalar& d)
: m_coeffs(n.size()+1)
{
normal() = n;
offset() = d;
}
/** Constructs a hyperplane passing through the two points. If the dimension of the ambient space
* is greater than 2, then there isn't uniqueness, so an arbitrary choice is made.
*/
EIGEN_DEVICE_FUNC static inline Hyperplane Through(const VectorType& p0, const VectorType& p1)
{
Hyperplane result(p0.size());
result.normal() = (p1 - p0).unitOrthogonal();
result.offset() = -p0.dot(result.normal());
return result;
}
/** Constructs a hyperplane passing through the three points. The dimension of the ambient space
* is required to be exactly 3.
*/
EIGEN_DEVICE_FUNC static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3)
Hyperplane result(p0.size());
VectorType v0(p2 - p0), v1(p1 - p0);
result.normal() = v0.cross(v1);
RealScalar norm = result.normal().norm();
if(norm <= v0.norm() * v1.norm() * NumTraits<RealScalar>::epsilon())
{
Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV);
result.normal() = svd.matrixV().col(2);
}
else
result.normal() /= norm;
result.offset() = -p0.dot(result.normal());
return result;
}
/** Constructs a hyperplane passing through the parametrized line \a parametrized.
* If the dimension of the ambient space is greater than 2, then there isn't uniqueness,
* so an arbitrary choice is made.
*/
// FIXME to be consitent with the rest this could be implemented as a static Through function ??
EIGEN_DEVICE_FUNC explicit Hyperplane(const ParametrizedLine<Scalar, AmbientDimAtCompileTime>& parametrized)
{
normal() = parametrized.direction().unitOrthogonal();
offset() = -parametrized.origin().dot(normal());
}
EIGEN_DEVICE_FUNC ~Hyperplane() {}
/** \returns the dimension in which the plane holds */
EIGEN_DEVICE_FUNC inline Index dim() const { return AmbientDimAtCompileTime==Dynamic ? m_coeffs.size()-1 : Index(AmbientDimAtCompileTime); }
/** normalizes \c *this */
EIGEN_DEVICE_FUNC void normalize(void)
{
m_coeffs /= normal().norm();
}
/** \returns the signed distance between the plane \c *this and a point \a p.
* \sa absDistance()
*/
EIGEN_DEVICE_FUNC inline Scalar signedDistance(const VectorType& p) const { return normal().dot(p) + offset(); }
/** \returns the absolute distance between the plane \c *this and a point \a p.
* \sa signedDistance()
*/
EIGEN_DEVICE_FUNC inline Scalar absDistance(const VectorType& p) const { return numext::abs(signedDistance(p)); }
/** \returns the projection of a point \a p onto the plane \c *this.
*/
EIGEN_DEVICE_FUNC inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); }
/** \returns a constant reference to the unit normal vector of the plane, which corresponds
* to the linear part of the implicit equation.
*/
EIGEN_DEVICE_FUNC inline ConstNormalReturnType normal() const { return ConstNormalReturnType(m_coeffs,0,0,dim(),1); }
/** \returns a non-constant reference to the unit normal vector of the plane, which corresponds
* to the linear part of the implicit equation.
*/
EIGEN_DEVICE_FUNC inline NormalReturnType normal() { return NormalReturnType(m_coeffs,0,0,dim(),1); }
/** \returns the distance to the origin, which is also the "constant term" of the implicit equation
* \warning the vector normal is assumed to be normalized.
*/
EIGEN_DEVICE_FUNC inline const Scalar& offset() const { return m_coeffs.coeff(dim()); }
/** \returns a non-constant reference to the distance to the origin, which is also the constant part
* of the implicit equation */
EIGEN_DEVICE_FUNC inline Scalar& offset() { return m_coeffs(dim()); }
/** \returns a constant reference to the coefficients c_i of the plane equation:
* \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
*/
EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs; }
/** \returns a non-constant reference to the coefficients c_i of the plane equation:
* \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
*/
EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs; }
/** \returns the intersection of *this with \a other.
*
* \warning The ambient space must be a plane, i.e. have dimension 2, so that \c *this and \a other are lines.
*
* \note If \a other is approximately parallel to *this, this method will return any point on *this.
*/
EIGEN_DEVICE_FUNC VectorType intersection(const Hyperplane& other) const
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2)
Scalar det = coeffs().coeff(0) * other.coeffs().coeff(1) - coeffs().coeff(1) * other.coeffs().coeff(0);
// since the line equations ax+by=c are normalized with a^2+b^2=1, the following tests
// whether the two lines are approximately parallel.
if(internal::isMuchSmallerThan(det, Scalar(1)))
{ // special case where the two lines are approximately parallel. Pick any point on the first line.
if(numext::abs(coeffs().coeff(1))>numext::abs(coeffs().coeff(0)))
return VectorType(coeffs().coeff(1), -coeffs().coeff(2)/coeffs().coeff(1)-coeffs().coeff(0));
else
return VectorType(-coeffs().coeff(2)/coeffs().coeff(0)-coeffs().coeff(1), coeffs().coeff(0));
}
else
{ // general case
Scalar invdet = Scalar(1) / det;
return VectorType(invdet*(coeffs().coeff(1)*other.coeffs().coeff(2)-other.coeffs().coeff(1)*coeffs().coeff(2)),
invdet*(other.coeffs().coeff(0)*coeffs().coeff(2)-coeffs().coeff(0)*other.coeffs().coeff(2)));
}
}
/** Applies the transformation matrix \a mat to \c *this and returns a reference to \c *this.
*
* \param mat the Dim x Dim transformation matrix
* \param traits specifies whether the matrix \a mat represents an #Isometry
* or a more generic #Affine transformation. The default is #Affine.
*/
template<typename XprType>
EIGEN_DEVICE_FUNC inline Hyperplane& transform(const MatrixBase<XprType>& mat, TransformTraits traits = Affine)
{
if (traits==Affine)
{
normal() = mat.inverse().transpose() * normal();
m_coeffs /= normal().norm();
}
else if (traits==Isometry)
normal() = mat * normal();
else
{
eigen_assert(0 && "invalid traits value in Hyperplane::transform()");
}
return *this;
}
/** Applies the transformation \a t to \c *this and returns a reference to \c *this.
*
* \param t the transformation of dimension Dim
* \param traits specifies whether the transformation \a t represents an #Isometry
* or a more generic #Affine transformation. The default is #Affine.
* Other kind of transformations are not supported.
*/
template<int TrOptions>
EIGEN_DEVICE_FUNC inline Hyperplane& transform(const Transform<Scalar,AmbientDimAtCompileTime,Affine,TrOptions>& t,
TransformTraits traits = Affine)
{
transform(t.linear(), traits);
offset() -= normal().dot(t.translation());
return *this;
}
/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Hyperplane,
Hyperplane<NewScalarType,AmbientDimAtCompileTime,Options> >::type cast() const
{
return typename internal::cast_return_type<Hyperplane,
Hyperplane<NewScalarType,AmbientDimAtCompileTime,Options> >::type(*this);
}
/** Copy constructor with scalar type conversion */
template<typename OtherScalarType,int OtherOptions>
EIGEN_DEVICE_FUNC inline explicit Hyperplane(const Hyperplane<OtherScalarType,AmbientDimAtCompileTime,OtherOptions>& other)
{ m_coeffs = other.coeffs().template cast<Scalar>(); }
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
template<int OtherOptions>
EIGEN_DEVICE_FUNC bool isApprox(const Hyperplane<Scalar,AmbientDimAtCompileTime,OtherOptions>& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
{ return m_coeffs.isApprox(other.m_coeffs, prec); }
protected:
Coefficients m_coeffs;
};
} // end namespace Eigen
#endif // EIGEN_HYPERPLANE_H

View File

@@ -0,0 +1,234 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ORTHOMETHODS_H
#define EIGEN_ORTHOMETHODS_H
namespace Eigen {
/** \geometry_module \ingroup Geometry_Module
*
* \returns the cross product of \c *this and \a other
*
* Here is a very good explanation of cross-product: http://xkcd.com/199/
*
* With complex numbers, the cross product is implemented as
* \f$ (\mathbf{a}+i\mathbf{b}) \times (\mathbf{c}+i\mathbf{d}) = (\mathbf{a} \times \mathbf{c} - \mathbf{b} \times \mathbf{d}) - i(\mathbf{a} \times \mathbf{d} - \mathbf{b} \times \mathbf{c})\f$
*
* \sa MatrixBase::cross3()
*/
template<typename Derived>
template<typename OtherDerived>
#ifndef EIGEN_PARSED_BY_DOXYGEN
EIGEN_DEVICE_FUNC inline typename MatrixBase<Derived>::template cross_product_return_type<OtherDerived>::type
#else
inline typename MatrixBase<Derived>::PlainObject
#endif
MatrixBase<Derived>::cross(const MatrixBase<OtherDerived>& other) const
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,3)
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,3)
// Note that there is no need for an expression here since the compiler
// optimize such a small temporary very well (even within a complex expression)
typename internal::nested_eval<Derived,2>::type lhs(derived());
typename internal::nested_eval<OtherDerived,2>::type rhs(other.derived());
return typename cross_product_return_type<OtherDerived>::type(
numext::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)),
numext::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)),
numext::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0))
);
}
namespace internal {
template< int Arch,typename VectorLhs,typename VectorRhs,
typename Scalar = typename VectorLhs::Scalar,
bool Vectorizable = bool((VectorLhs::Flags&VectorRhs::Flags)&PacketAccessBit)>
struct cross3_impl {
EIGEN_DEVICE_FUNC static inline typename internal::plain_matrix_type<VectorLhs>::type
run(const VectorLhs& lhs, const VectorRhs& rhs)
{
return typename internal::plain_matrix_type<VectorLhs>::type(
numext::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)),
numext::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)),
numext::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0)),
0
);
}
};
}
/** \geometry_module \ingroup Geometry_Module
*
* \returns the cross product of \c *this and \a other using only the x, y, and z coefficients
*
* The size of \c *this and \a other must be four. This function is especially useful
* when using 4D vectors instead of 3D ones to get advantage of SSE/AltiVec vectorization.
*
* \sa MatrixBase::cross()
*/
template<typename Derived>
template<typename OtherDerived>
EIGEN_DEVICE_FUNC inline typename MatrixBase<Derived>::PlainObject
MatrixBase<Derived>::cross3(const MatrixBase<OtherDerived>& other) const
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,4)
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,4)
typedef typename internal::nested_eval<Derived,2>::type DerivedNested;
typedef typename internal::nested_eval<OtherDerived,2>::type OtherDerivedNested;
DerivedNested lhs(derived());
OtherDerivedNested rhs(other.derived());
return internal::cross3_impl<Architecture::Target,
typename internal::remove_all<DerivedNested>::type,
typename internal::remove_all<OtherDerivedNested>::type>::run(lhs,rhs);
}
/** \geometry_module \ingroup Geometry_Module
*
* \returns a matrix expression of the cross product of each column or row
* of the referenced expression with the \a other vector.
*
* The referenced matrix must have one dimension equal to 3.
* The result matrix has the same dimensions than the referenced one.
*
* \sa MatrixBase::cross() */
template<typename ExpressionType, int Direction>
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
const typename VectorwiseOp<ExpressionType,Direction>::CrossReturnType
VectorwiseOp<ExpressionType,Direction>::cross(const MatrixBase<OtherDerived>& other) const
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,3)
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
typename internal::nested_eval<ExpressionType,2>::type mat(_expression());
typename internal::nested_eval<OtherDerived,2>::type vec(other.derived());
CrossReturnType res(_expression().rows(),_expression().cols());
if(Direction==Vertical)
{
eigen_assert(CrossReturnType::RowsAtCompileTime==3 && "the matrix must have exactly 3 rows");
res.row(0) = (mat.row(1) * vec.coeff(2) - mat.row(2) * vec.coeff(1)).conjugate();
res.row(1) = (mat.row(2) * vec.coeff(0) - mat.row(0) * vec.coeff(2)).conjugate();
res.row(2) = (mat.row(0) * vec.coeff(1) - mat.row(1) * vec.coeff(0)).conjugate();
}
else
{
eigen_assert(CrossReturnType::ColsAtCompileTime==3 && "the matrix must have exactly 3 columns");
res.col(0) = (mat.col(1) * vec.coeff(2) - mat.col(2) * vec.coeff(1)).conjugate();
res.col(1) = (mat.col(2) * vec.coeff(0) - mat.col(0) * vec.coeff(2)).conjugate();
res.col(2) = (mat.col(0) * vec.coeff(1) - mat.col(1) * vec.coeff(0)).conjugate();
}
return res;
}
namespace internal {
template<typename Derived, int Size = Derived::SizeAtCompileTime>
struct unitOrthogonal_selector
{
typedef typename plain_matrix_type<Derived>::type VectorType;
typedef typename traits<Derived>::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar,2,1> Vector2;
EIGEN_DEVICE_FUNC
static inline VectorType run(const Derived& src)
{
VectorType perp = VectorType::Zero(src.size());
Index maxi = 0;
Index sndi = 0;
src.cwiseAbs().maxCoeff(&maxi);
if (maxi==0)
sndi = 1;
RealScalar invnm = RealScalar(1)/(Vector2() << src.coeff(sndi),src.coeff(maxi)).finished().norm();
perp.coeffRef(maxi) = -numext::conj(src.coeff(sndi)) * invnm;
perp.coeffRef(sndi) = numext::conj(src.coeff(maxi)) * invnm;
return perp;
}
};
template<typename Derived>
struct unitOrthogonal_selector<Derived,3>
{
typedef typename plain_matrix_type<Derived>::type VectorType;
typedef typename traits<Derived>::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
EIGEN_DEVICE_FUNC
static inline VectorType run(const Derived& src)
{
VectorType perp;
/* Let us compute the crossed product of *this with a vector
* that is not too close to being colinear to *this.
*/
/* unless the x and y coords are both close to zero, we can
* simply take ( -y, x, 0 ) and normalize it.
*/
if((!isMuchSmallerThan(src.x(), src.z()))
|| (!isMuchSmallerThan(src.y(), src.z())))
{
RealScalar invnm = RealScalar(1)/src.template head<2>().norm();
perp.coeffRef(0) = -numext::conj(src.y())*invnm;
perp.coeffRef(1) = numext::conj(src.x())*invnm;
perp.coeffRef(2) = 0;
}
/* if both x and y are close to zero, then the vector is close
* to the z-axis, so it's far from colinear to the x-axis for instance.
* So we take the crossed product with (1,0,0) and normalize it.
*/
else
{
RealScalar invnm = RealScalar(1)/src.template tail<2>().norm();
perp.coeffRef(0) = 0;
perp.coeffRef(1) = -numext::conj(src.z())*invnm;
perp.coeffRef(2) = numext::conj(src.y())*invnm;
}
return perp;
}
};
template<typename Derived>
struct unitOrthogonal_selector<Derived,2>
{
typedef typename plain_matrix_type<Derived>::type VectorType;
EIGEN_DEVICE_FUNC
static inline VectorType run(const Derived& src)
{ return VectorType(-numext::conj(src.y()), numext::conj(src.x())).normalized(); }
};
} // end namespace internal
/** \geometry_module \ingroup Geometry_Module
*
* \returns a unit vector which is orthogonal to \c *this
*
* The size of \c *this must be at least 2. If the size is exactly 2,
* then the returned vector is a counter clock wise rotation of \c *this, i.e., (-y,x).normalized().
*
* \sa cross()
*/
template<typename Derived>
EIGEN_DEVICE_FUNC typename MatrixBase<Derived>::PlainObject
MatrixBase<Derived>::unitOrthogonal() const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return internal::unitOrthogonal_selector<Derived>::run(derived());
}
} // end namespace Eigen
#endif // EIGEN_ORTHOMETHODS_H

View File

@@ -0,0 +1,232 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_PARAMETRIZEDLINE_H
#define EIGEN_PARAMETRIZEDLINE_H
namespace Eigen {
/** \geometry_module \ingroup Geometry_Module
*
* \class ParametrizedLine
*
* \brief A parametrized line
*
* A parametrized line is defined by an origin point \f$ \mathbf{o} \f$ and a unit
* direction vector \f$ \mathbf{d} \f$ such that the line corresponds to
* the set \f$ l(t) = \mathbf{o} + t \mathbf{d} \f$, \f$ t \in \mathbf{R} \f$.
*
* \tparam _Scalar the scalar type, i.e., the type of the coefficients
* \tparam _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
*/
template <typename _Scalar, int _AmbientDim, int _Options>
class ParametrizedLine
{
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
enum {
AmbientDimAtCompileTime = _AmbientDim,
Options = _Options
};
typedef _Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
typedef Matrix<Scalar,AmbientDimAtCompileTime,1,Options> VectorType;
/** Default constructor without initialization */
EIGEN_DEVICE_FUNC inline ParametrizedLine() {}
template<int OtherOptions>
EIGEN_DEVICE_FUNC ParametrizedLine(const ParametrizedLine<Scalar,AmbientDimAtCompileTime,OtherOptions>& other)
: m_origin(other.origin()), m_direction(other.direction())
{}
/** Constructs a dynamic-size line with \a _dim the dimension
* of the ambient space */
EIGEN_DEVICE_FUNC inline explicit ParametrizedLine(Index _dim) : m_origin(_dim), m_direction(_dim) {}
/** Initializes a parametrized line of direction \a direction and origin \a origin.
* \warning the vector direction is assumed to be normalized.
*/
EIGEN_DEVICE_FUNC ParametrizedLine(const VectorType& origin, const VectorType& direction)
: m_origin(origin), m_direction(direction) {}
template <int OtherOptions>
EIGEN_DEVICE_FUNC explicit ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane);
/** Constructs a parametrized line going from \a p0 to \a p1. */
EIGEN_DEVICE_FUNC static inline ParametrizedLine Through(const VectorType& p0, const VectorType& p1)
{ return ParametrizedLine(p0, (p1-p0).normalized()); }
EIGEN_DEVICE_FUNC ~ParametrizedLine() {}
/** \returns the dimension in which the line holds */
EIGEN_DEVICE_FUNC inline Index dim() const { return m_direction.size(); }
EIGEN_DEVICE_FUNC const VectorType& origin() const { return m_origin; }
EIGEN_DEVICE_FUNC VectorType& origin() { return m_origin; }
EIGEN_DEVICE_FUNC const VectorType& direction() const { return m_direction; }
EIGEN_DEVICE_FUNC VectorType& direction() { return m_direction; }
/** \returns the squared distance of a point \a p to its projection onto the line \c *this.
* \sa distance()
*/
EIGEN_DEVICE_FUNC RealScalar squaredDistance(const VectorType& p) const
{
VectorType diff = p - origin();
return (diff - direction().dot(diff) * direction()).squaredNorm();
}
/** \returns the distance of a point \a p to its projection onto the line \c *this.
* \sa squaredDistance()
*/
EIGEN_DEVICE_FUNC RealScalar distance(const VectorType& p) const { EIGEN_USING_STD_MATH(sqrt) return sqrt(squaredDistance(p)); }
/** \returns the projection of a point \a p onto the line \c *this. */
EIGEN_DEVICE_FUNC VectorType projection(const VectorType& p) const
{ return origin() + direction().dot(p-origin()) * direction(); }
EIGEN_DEVICE_FUNC VectorType pointAt(const Scalar& t) const;
template <int OtherOptions>
EIGEN_DEVICE_FUNC Scalar intersectionParameter(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const;
template <int OtherOptions>
EIGEN_DEVICE_FUNC Scalar intersection(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const;
template <int OtherOptions>
EIGEN_DEVICE_FUNC VectorType intersectionPoint(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const;
/** Applies the transformation matrix \a mat to \c *this and returns a reference to \c *this.
*
* \param mat the Dim x Dim transformation matrix
* \param traits specifies whether the matrix \a mat represents an #Isometry
* or a more generic #Affine transformation. The default is #Affine.
*/
template<typename XprType>
EIGEN_DEVICE_FUNC inline ParametrizedLine& transform(const MatrixBase<XprType>& mat, TransformTraits traits = Affine)
{
if (traits==Affine)
direction() = (mat * direction()).normalized();
else if (traits==Isometry)
direction() = mat * direction();
else
{
eigen_assert(0 && "invalid traits value in ParametrizedLine::transform()");
}
origin() = mat * origin();
return *this;
}
/** Applies the transformation \a t to \c *this and returns a reference to \c *this.
*
* \param t the transformation of dimension Dim
* \param traits specifies whether the transformation \a t represents an #Isometry
* or a more generic #Affine transformation. The default is #Affine.
* Other kind of transformations are not supported.
*/
template<int TrOptions>
EIGEN_DEVICE_FUNC inline ParametrizedLine& transform(const Transform<Scalar,AmbientDimAtCompileTime,Affine,TrOptions>& t,
TransformTraits traits = Affine)
{
transform(t.linear(), traits);
origin() += t.translation();
return *this;
}
/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<ParametrizedLine,
ParametrizedLine<NewScalarType,AmbientDimAtCompileTime,Options> >::type cast() const
{
return typename internal::cast_return_type<ParametrizedLine,
ParametrizedLine<NewScalarType,AmbientDimAtCompileTime,Options> >::type(*this);
}
/** Copy constructor with scalar type conversion */
template<typename OtherScalarType,int OtherOptions>
EIGEN_DEVICE_FUNC inline explicit ParametrizedLine(const ParametrizedLine<OtherScalarType,AmbientDimAtCompileTime,OtherOptions>& other)
{
m_origin = other.origin().template cast<Scalar>();
m_direction = other.direction().template cast<Scalar>();
}
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
EIGEN_DEVICE_FUNC bool isApprox(const ParametrizedLine& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
{ return m_origin.isApprox(other.m_origin, prec) && m_direction.isApprox(other.m_direction, prec); }
protected:
VectorType m_origin, m_direction;
};
/** Constructs a parametrized line from a 2D hyperplane
*
* \warning the ambient space must have dimension 2 such that the hyperplane actually describes a line
*/
template <typename _Scalar, int _AmbientDim, int _Options>
template <int OtherOptions>
EIGEN_DEVICE_FUNC inline ParametrizedLine<_Scalar, _AmbientDim,_Options>::ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim,OtherOptions>& hyperplane)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2)
direction() = hyperplane.normal().unitOrthogonal();
origin() = -hyperplane.normal()*hyperplane.offset();
}
/** \returns the point at \a t along this line
*/
template <typename _Scalar, int _AmbientDim, int _Options>
EIGEN_DEVICE_FUNC inline typename ParametrizedLine<_Scalar, _AmbientDim,_Options>::VectorType
ParametrizedLine<_Scalar, _AmbientDim,_Options>::pointAt(const _Scalar& t) const
{
return origin() + (direction()*t);
}
/** \returns the parameter value of the intersection between \c *this and the given \a hyperplane
*/
template <typename _Scalar, int _AmbientDim, int _Options>
template <int OtherOptions>
EIGEN_DEVICE_FUNC inline _Scalar ParametrizedLine<_Scalar, _AmbientDim,_Options>::intersectionParameter(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const
{
return -(hyperplane.offset()+hyperplane.normal().dot(origin()))
/ hyperplane.normal().dot(direction());
}
/** \deprecated use intersectionParameter()
* \returns the parameter value of the intersection between \c *this and the given \a hyperplane
*/
template <typename _Scalar, int _AmbientDim, int _Options>
template <int OtherOptions>
EIGEN_DEVICE_FUNC inline _Scalar ParametrizedLine<_Scalar, _AmbientDim,_Options>::intersection(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const
{
return intersectionParameter(hyperplane);
}
/** \returns the point of the intersection between \c *this and the given hyperplane
*/
template <typename _Scalar, int _AmbientDim, int _Options>
template <int OtherOptions>
EIGEN_DEVICE_FUNC inline typename ParametrizedLine<_Scalar, _AmbientDim,_Options>::VectorType
ParametrizedLine<_Scalar, _AmbientDim,_Options>::intersectionPoint(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const
{
return pointAt(intersectionParameter(hyperplane));
}
} // end namespace Eigen
#endif // EIGEN_PARAMETRIZEDLINE_H

View File

@@ -0,0 +1,814 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_QUATERNION_H
#define EIGEN_QUATERNION_H
namespace Eigen {
/***************************************************************************
* Definition of QuaternionBase<Derived>
* The implementation is at the end of the file
***************************************************************************/
namespace internal {
template<typename Other,
int OtherRows=Other::RowsAtCompileTime,
int OtherCols=Other::ColsAtCompileTime>
struct quaternionbase_assign_impl;
}
/** \geometry_module \ingroup Geometry_Module
* \class QuaternionBase
* \brief Base class for quaternion expressions
* \tparam Derived derived type (CRTP)
* \sa class Quaternion
*/
template<class Derived>
class QuaternionBase : public RotationBase<Derived, 3>
{
public:
typedef RotationBase<Derived, 3> Base;
using Base::operator*;
using Base::derived;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef typename internal::traits<Derived>::Coefficients Coefficients;
typedef typename Coefficients::CoeffReturnType CoeffReturnType;
typedef typename internal::conditional<bool(internal::traits<Derived>::Flags&LvalueBit),
Scalar&, CoeffReturnType>::type NonConstCoeffReturnType;
enum {
Flags = Eigen::internal::traits<Derived>::Flags
};
// typedef typename Matrix<Scalar,4,1> Coefficients;
/** the type of a 3D vector */
typedef Matrix<Scalar,3,1> Vector3;
/** the equivalent rotation matrix type */
typedef Matrix<Scalar,3,3> Matrix3;
/** the equivalent angle-axis type */
typedef AngleAxis<Scalar> AngleAxisType;
/** \returns the \c x coefficient */
EIGEN_DEVICE_FUNC inline CoeffReturnType x() const { return this->derived().coeffs().coeff(0); }
/** \returns the \c y coefficient */
EIGEN_DEVICE_FUNC inline CoeffReturnType y() const { return this->derived().coeffs().coeff(1); }
/** \returns the \c z coefficient */
EIGEN_DEVICE_FUNC inline CoeffReturnType z() const { return this->derived().coeffs().coeff(2); }
/** \returns the \c w coefficient */
EIGEN_DEVICE_FUNC inline CoeffReturnType w() const { return this->derived().coeffs().coeff(3); }
/** \returns a reference to the \c x coefficient (if Derived is a non-const lvalue) */
EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType x() { return this->derived().coeffs().x(); }
/** \returns a reference to the \c y coefficient (if Derived is a non-const lvalue) */
EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType y() { return this->derived().coeffs().y(); }
/** \returns a reference to the \c z coefficient (if Derived is a non-const lvalue) */
EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType z() { return this->derived().coeffs().z(); }
/** \returns a reference to the \c w coefficient (if Derived is a non-const lvalue) */
EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType w() { return this->derived().coeffs().w(); }
/** \returns a read-only vector expression of the imaginary part (x,y,z) */
EIGEN_DEVICE_FUNC inline const VectorBlock<const Coefficients,3> vec() const { return coeffs().template head<3>(); }
/** \returns a vector expression of the imaginary part (x,y,z) */
EIGEN_DEVICE_FUNC inline VectorBlock<Coefficients,3> vec() { return coeffs().template head<3>(); }
/** \returns a read-only vector expression of the coefficients (x,y,z,w) */
EIGEN_DEVICE_FUNC inline const typename internal::traits<Derived>::Coefficients& coeffs() const { return derived().coeffs(); }
/** \returns a vector expression of the coefficients (x,y,z,w) */
EIGEN_DEVICE_FUNC inline typename internal::traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE QuaternionBase<Derived>& operator=(const QuaternionBase<Derived>& other);
template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase<OtherDerived>& other);
// disabled this copy operator as it is giving very strange compilation errors when compiling
// test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's
// useful; however notice that we already have the templated operator= above and e.g. in MatrixBase
// we didn't have to add, in addition to templated operator=, such a non-templated copy operator.
// Derived& operator=(const QuaternionBase& other)
// { return operator=<Derived>(other); }
EIGEN_DEVICE_FUNC Derived& operator=(const AngleAxisType& aa);
template<class OtherDerived> EIGEN_DEVICE_FUNC Derived& operator=(const MatrixBase<OtherDerived>& m);
/** \returns a quaternion representing an identity rotation
* \sa MatrixBase::Identity()
*/
EIGEN_DEVICE_FUNC static inline Quaternion<Scalar> Identity() { return Quaternion<Scalar>(Scalar(1), Scalar(0), Scalar(0), Scalar(0)); }
/** \sa QuaternionBase::Identity(), MatrixBase::setIdentity()
*/
EIGEN_DEVICE_FUNC inline QuaternionBase& setIdentity() { coeffs() << Scalar(0), Scalar(0), Scalar(0), Scalar(1); return *this; }
/** \returns the squared norm of the quaternion's coefficients
* \sa QuaternionBase::norm(), MatrixBase::squaredNorm()
*/
EIGEN_DEVICE_FUNC inline Scalar squaredNorm() const { return coeffs().squaredNorm(); }
/** \returns the norm of the quaternion's coefficients
* \sa QuaternionBase::squaredNorm(), MatrixBase::norm()
*/
EIGEN_DEVICE_FUNC inline Scalar norm() const { return coeffs().norm(); }
/** Normalizes the quaternion \c *this
* \sa normalized(), MatrixBase::normalize() */
EIGEN_DEVICE_FUNC inline void normalize() { coeffs().normalize(); }
/** \returns a normalized copy of \c *this
* \sa normalize(), MatrixBase::normalized() */
EIGEN_DEVICE_FUNC inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); }
/** \returns the dot product of \c *this and \a other
* Geometrically speaking, the dot product of two unit quaternions
* corresponds to the cosine of half the angle between the two rotations.
* \sa angularDistance()
*/
template<class OtherDerived> EIGEN_DEVICE_FUNC inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); }
template<class OtherDerived> EIGEN_DEVICE_FUNC Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const;
/** \returns an equivalent 3x3 rotation matrix */
EIGEN_DEVICE_FUNC Matrix3 toRotationMatrix() const;
/** \returns the quaternion which transform \a a into \a b through a rotation */
template<typename Derived1, typename Derived2>
EIGEN_DEVICE_FUNC Derived& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const;
template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator*= (const QuaternionBase<OtherDerived>& q);
/** \returns the quaternion describing the inverse rotation */
EIGEN_DEVICE_FUNC Quaternion<Scalar> inverse() const;
/** \returns the conjugated quaternion */
EIGEN_DEVICE_FUNC Quaternion<Scalar> conjugate() const;
template<class OtherDerived> EIGEN_DEVICE_FUNC Quaternion<Scalar> slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const;
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
template<class OtherDerived>
EIGEN_DEVICE_FUNC bool isApprox(const QuaternionBase<OtherDerived>& other, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const
{ return coeffs().isApprox(other.coeffs(), prec); }
/** return the result vector of \a v through the rotation*/
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Vector3 _transformVector(const Vector3& v) const;
/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const
{
return typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type(derived());
}
#ifdef EIGEN_QUATERNIONBASE_PLUGIN
# include EIGEN_QUATERNIONBASE_PLUGIN
#endif
};
/***************************************************************************
* Definition/implementation of Quaternion<Scalar>
***************************************************************************/
/** \geometry_module \ingroup Geometry_Module
*
* \class Quaternion
*
* \brief The quaternion class used to represent 3D orientations and rotations
*
* \tparam _Scalar the scalar type, i.e., the type of the coefficients
* \tparam _Options controls the memory alignment of the coefficients. Can be \# AutoAlign or \# DontAlign. Default is AutoAlign.
*
* This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of
* orientations and rotations of objects in three dimensions. Compared to other representations
* like Euler angles or 3x3 matrices, quaternions offer the following advantages:
* \li \b compact storage (4 scalars)
* \li \b efficient to compose (28 flops),
* \li \b stable spherical interpolation
*
* The following two typedefs are provided for convenience:
* \li \c Quaternionf for \c float
* \li \c Quaterniond for \c double
*
* \warning Operations interpreting the quaternion as rotation have undefined behavior if the quaternion is not normalized.
*
* \sa class AngleAxis, class Transform
*/
namespace internal {
template<typename _Scalar,int _Options>
struct traits<Quaternion<_Scalar,_Options> >
{
typedef Quaternion<_Scalar,_Options> PlainObject;
typedef _Scalar Scalar;
typedef Matrix<_Scalar,4,1,_Options> Coefficients;
enum{
Alignment = internal::traits<Coefficients>::Alignment,
Flags = LvalueBit
};
};
}
template<typename _Scalar, int _Options>
class Quaternion : public QuaternionBase<Quaternion<_Scalar,_Options> >
{
public:
typedef QuaternionBase<Quaternion<_Scalar,_Options> > Base;
enum { NeedsAlignment = internal::traits<Quaternion>::Alignment>0 };
typedef _Scalar Scalar;
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Quaternion)
using Base::operator*=;
typedef typename internal::traits<Quaternion>::Coefficients Coefficients;
typedef typename Base::AngleAxisType AngleAxisType;
/** Default constructor leaving the quaternion uninitialized. */
EIGEN_DEVICE_FUNC inline Quaternion() {}
/** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from
* its four coefficients \a w, \a x, \a y and \a z.
*
* \warning Note the order of the arguments: the real \a w coefficient first,
* while internally the coefficients are stored in the following order:
* [\c x, \c y, \c z, \c w]
*/
EIGEN_DEVICE_FUNC inline Quaternion(const Scalar& w, const Scalar& x, const Scalar& y, const Scalar& z) : m_coeffs(x, y, z, w){}
/** Constructs and initialize a quaternion from the array data */
EIGEN_DEVICE_FUNC explicit inline Quaternion(const Scalar* data) : m_coeffs(data) {}
/** Copy constructor */
template<class Derived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion(const QuaternionBase<Derived>& other) { this->Base::operator=(other); }
/** Constructs and initializes a quaternion from the angle-axis \a aa */
EIGEN_DEVICE_FUNC explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }
/** Constructs and initializes a quaternion from either:
* - a rotation matrix expression,
* - a 4D vector expression representing quaternion coefficients.
*/
template<typename Derived>
EIGEN_DEVICE_FUNC explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }
/** Explicit copy constructor with scalar conversion */
template<typename OtherScalar, int OtherOptions>
EIGEN_DEVICE_FUNC explicit inline Quaternion(const Quaternion<OtherScalar, OtherOptions>& other)
{ m_coeffs = other.coeffs().template cast<Scalar>(); }
EIGEN_DEVICE_FUNC static Quaternion UnitRandom();
template<typename Derived1, typename Derived2>
EIGEN_DEVICE_FUNC static Quaternion FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs;}
EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs;}
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(NeedsAlignment))
#ifdef EIGEN_QUATERNION_PLUGIN
# include EIGEN_QUATERNION_PLUGIN
#endif
protected:
Coefficients m_coeffs;
#ifndef EIGEN_PARSED_BY_DOXYGEN
static EIGEN_STRONG_INLINE void _check_template_params()
{
EIGEN_STATIC_ASSERT( (_Options & DontAlign) == _Options,
INVALID_MATRIX_TEMPLATE_PARAMETERS)
}
#endif
};
/** \ingroup Geometry_Module
* single precision quaternion type */
typedef Quaternion<float> Quaternionf;
/** \ingroup Geometry_Module
* double precision quaternion type */
typedef Quaternion<double> Quaterniond;
/***************************************************************************
* Specialization of Map<Quaternion<Scalar>>
***************************************************************************/
namespace internal {
template<typename _Scalar, int _Options>
struct traits<Map<Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> >
{
typedef Map<Matrix<_Scalar,4,1>, _Options> Coefficients;
};
}
namespace internal {
template<typename _Scalar, int _Options>
struct traits<Map<const Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> >
{
typedef Map<const Matrix<_Scalar,4,1>, _Options> Coefficients;
typedef traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> > TraitsBase;
enum {
Flags = TraitsBase::Flags & ~LvalueBit
};
};
}
/** \ingroup Geometry_Module
* \brief Quaternion expression mapping a constant memory buffer
*
* \tparam _Scalar the type of the Quaternion coefficients
* \tparam _Options see class Map
*
* This is a specialization of class Map for Quaternion. This class allows to view
* a 4 scalar memory buffer as an Eigen's Quaternion object.
*
* \sa class Map, class Quaternion, class QuaternionBase
*/
template<typename _Scalar, int _Options>
class Map<const Quaternion<_Scalar>, _Options >
: public QuaternionBase<Map<const Quaternion<_Scalar>, _Options> >
{
public:
typedef QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > Base;
typedef _Scalar Scalar;
typedef typename internal::traits<Map>::Coefficients Coefficients;
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
using Base::operator*=;
/** Constructs a Mapped Quaternion object from the pointer \a coeffs
*
* The pointer \a coeffs must reference the four coefficients of Quaternion in the following order:
* \code *coeffs == {x, y, z, w} \endcode
*
* If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {}
EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs;}
protected:
const Coefficients m_coeffs;
};
/** \ingroup Geometry_Module
* \brief Expression of a quaternion from a memory buffer
*
* \tparam _Scalar the type of the Quaternion coefficients
* \tparam _Options see class Map
*
* This is a specialization of class Map for Quaternion. This class allows to view
* a 4 scalar memory buffer as an Eigen's Quaternion object.
*
* \sa class Map, class Quaternion, class QuaternionBase
*/
template<typename _Scalar, int _Options>
class Map<Quaternion<_Scalar>, _Options >
: public QuaternionBase<Map<Quaternion<_Scalar>, _Options> >
{
public:
typedef QuaternionBase<Map<Quaternion<_Scalar>, _Options> > Base;
typedef _Scalar Scalar;
typedef typename internal::traits<Map>::Coefficients Coefficients;
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
using Base::operator*=;
/** Constructs a Mapped Quaternion object from the pointer \a coeffs
*
* The pointer \a coeffs must reference the four coefficients of Quaternion in the following order:
* \code *coeffs == {x, y, z, w} \endcode
*
* If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {}
EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs; }
EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs; }
protected:
Coefficients m_coeffs;
};
/** \ingroup Geometry_Module
* Map an unaligned array of single precision scalars as a quaternion */
typedef Map<Quaternion<float>, 0> QuaternionMapf;
/** \ingroup Geometry_Module
* Map an unaligned array of double precision scalars as a quaternion */
typedef Map<Quaternion<double>, 0> QuaternionMapd;
/** \ingroup Geometry_Module
* Map a 16-byte aligned array of single precision scalars as a quaternion */
typedef Map<Quaternion<float>, Aligned> QuaternionMapAlignedf;
/** \ingroup Geometry_Module
* Map a 16-byte aligned array of double precision scalars as a quaternion */
typedef Map<Quaternion<double>, Aligned> QuaternionMapAlignedd;
/***************************************************************************
* Implementation of QuaternionBase methods
***************************************************************************/
// Generic Quaternion * Quaternion product
// This product can be specialized for a given architecture via the Arch template argument.
namespace internal {
template<int Arch, class Derived1, class Derived2, typename Scalar> struct quat_product
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, const QuaternionBase<Derived2>& b){
return Quaternion<Scalar>
(
a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()
);
}
};
}
/** \returns the concatenation of two rotations as a quaternion-quaternion product */
template <class Derived>
template <class OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion<typename internal::traits<Derived>::Scalar>
QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) const
{
EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename OtherDerived::Scalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
return internal::quat_product<Architecture::Target, Derived, OtherDerived,
typename internal::traits<Derived>::Scalar>::run(*this, other);
}
/** \sa operator*(Quaternion) */
template <class Derived>
template <class OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other)
{
derived() = derived() * other.derived();
return derived();
}
/** Rotation of a vector by a quaternion.
* \remarks If the quaternion is used to rotate several points (>1)
* then it is much more efficient to first convert it to a 3x3 Matrix.
* Comparison of the operation cost for n transformations:
* - Quaternion2: 30n
* - Via a Matrix3: 24 + 15n
*/
template <class Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename QuaternionBase<Derived>::Vector3
QuaternionBase<Derived>::_transformVector(const Vector3& v) const
{
// Note that this algorithm comes from the optimization by hand
// of the conversion to a Matrix followed by a Matrix/Vector product.
// It appears to be much faster than the common algorithm found
// in the literature (30 versus 39 flops). It also requires two
// Vector3 as temporaries.
Vector3 uv = this->vec().cross(v);
uv += uv;
return v + this->w() * uv + this->vec().cross(uv);
}
template<class Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const QuaternionBase<Derived>& other)
{
coeffs() = other.coeffs();
return derived();
}
template<class Derived>
template<class OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other)
{
coeffs() = other.coeffs();
return derived();
}
/** Set \c *this from an angle-axis \a aa and returns a reference to \c *this
*/
template<class Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa)
{
EIGEN_USING_STD_MATH(cos)
EIGEN_USING_STD_MATH(sin)
Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings
this->w() = cos(ha);
this->vec() = sin(ha) * aa.axis();
return derived();
}
/** Set \c *this from the expression \a xpr:
* - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion
* - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix
* and \a xpr is converted to a quaternion
*/
template<class Derived>
template<class MatrixDerived>
EIGEN_DEVICE_FUNC inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr)
{
EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename MatrixDerived::Scalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
internal::quaternionbase_assign_impl<MatrixDerived>::run(*this, xpr.derived());
return derived();
}
/** Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to
* be normalized, otherwise the result is undefined.
*/
template<class Derived>
EIGEN_DEVICE_FUNC inline typename QuaternionBase<Derived>::Matrix3
QuaternionBase<Derived>::toRotationMatrix(void) const
{
// NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!)
// if not inlined then the cost of the return by value is huge ~ +35%,
// however, not inlining this function is an order of magnitude slower, so
// it has to be inlined, and so the return by value is not an issue
Matrix3 res;
const Scalar tx = Scalar(2)*this->x();
const Scalar ty = Scalar(2)*this->y();
const Scalar tz = Scalar(2)*this->z();
const Scalar twx = tx*this->w();
const Scalar twy = ty*this->w();
const Scalar twz = tz*this->w();
const Scalar txx = tx*this->x();
const Scalar txy = ty*this->x();
const Scalar txz = tz*this->x();
const Scalar tyy = ty*this->y();
const Scalar tyz = tz*this->y();
const Scalar tzz = tz*this->z();
res.coeffRef(0,0) = Scalar(1)-(tyy+tzz);
res.coeffRef(0,1) = txy-twz;
res.coeffRef(0,2) = txz+twy;
res.coeffRef(1,0) = txy+twz;
res.coeffRef(1,1) = Scalar(1)-(txx+tzz);
res.coeffRef(1,2) = tyz-twx;
res.coeffRef(2,0) = txz-twy;
res.coeffRef(2,1) = tyz+twx;
res.coeffRef(2,2) = Scalar(1)-(txx+tyy);
return res;
}
/** Sets \c *this to be a quaternion representing a rotation between
* the two arbitrary vectors \a a and \a b. In other words, the built
* rotation represent a rotation sending the line of direction \a a
* to the line of direction \a b, both lines passing through the origin.
*
* \returns a reference to \c *this.
*
* Note that the two input vectors do \b not have to be normalized, and
* do not need to have the same norm.
*/
template<class Derived>
template<typename Derived1, typename Derived2>
EIGEN_DEVICE_FUNC inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
{
EIGEN_USING_STD_MATH(sqrt)
Vector3 v0 = a.normalized();
Vector3 v1 = b.normalized();
Scalar c = v1.dot(v0);
// if dot == -1, vectors are nearly opposites
// => accurately compute the rotation axis by computing the
// intersection of the two planes. This is done by solving:
// x^T v0 = 0
// x^T v1 = 0
// under the constraint:
// ||x|| = 1
// which yields a singular value problem
if (c < Scalar(-1)+NumTraits<Scalar>::dummy_precision())
{
c = numext::maxi(c,Scalar(-1));
Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV);
Vector3 axis = svd.matrixV().col(2);
Scalar w2 = (Scalar(1)+c)*Scalar(0.5);
this->w() = sqrt(w2);
this->vec() = axis * sqrt(Scalar(1) - w2);
return derived();
}
Vector3 axis = v0.cross(v1);
Scalar s = sqrt((Scalar(1)+c)*Scalar(2));
Scalar invs = Scalar(1)/s;
this->vec() = axis * invs;
this->w() = s * Scalar(0.5);
return derived();
}
/** \returns a random unit quaternion following a uniform distribution law on SO(3)
*
* \note The implementation is based on http://planning.cs.uiuc.edu/node198.html
*/
template<typename Scalar, int Options>
EIGEN_DEVICE_FUNC Quaternion<Scalar,Options> Quaternion<Scalar,Options>::UnitRandom()
{
EIGEN_USING_STD_MATH(sqrt)
EIGEN_USING_STD_MATH(sin)
EIGEN_USING_STD_MATH(cos)
const Scalar u1 = internal::random<Scalar>(0, 1),
u2 = internal::random<Scalar>(0, 2*EIGEN_PI),
u3 = internal::random<Scalar>(0, 2*EIGEN_PI);
const Scalar a = sqrt(1 - u1),
b = sqrt(u1);
return Quaternion (a * sin(u2), a * cos(u2), b * sin(u3), b * cos(u3));
}
/** Returns a quaternion representing a rotation between
* the two arbitrary vectors \a a and \a b. In other words, the built
* rotation represent a rotation sending the line of direction \a a
* to the line of direction \a b, both lines passing through the origin.
*
* \returns resulting quaternion
*
* Note that the two input vectors do \b not have to be normalized, and
* do not need to have the same norm.
*/
template<typename Scalar, int Options>
template<typename Derived1, typename Derived2>
EIGEN_DEVICE_FUNC Quaternion<Scalar,Options> Quaternion<Scalar,Options>::FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
{
Quaternion quat;
quat.setFromTwoVectors(a, b);
return quat;
}
/** \returns the multiplicative inverse of \c *this
* Note that in most cases, i.e., if you simply want the opposite rotation,
* and/or the quaternion is normalized, then it is enough to use the conjugate.
*
* \sa QuaternionBase::conjugate()
*/
template <class Derived>
EIGEN_DEVICE_FUNC inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::inverse() const
{
// FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ??
Scalar n2 = this->squaredNorm();
if (n2 > Scalar(0))
return Quaternion<Scalar>(conjugate().coeffs() / n2);
else
{
// return an invalid result to flag the error
return Quaternion<Scalar>(Coefficients::Zero());
}
}
// Generic conjugate of a Quaternion
namespace internal {
template<int Arch, class Derived, typename Scalar> struct quat_conj
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived>& q){
return Quaternion<Scalar>(q.w(),-q.x(),-q.y(),-q.z());
}
};
}
/** \returns the conjugate of the \c *this which is equal to the multiplicative inverse
* if the quaternion is normalized.
* The conjugate of a quaternion represents the opposite rotation.
*
* \sa Quaternion2::inverse()
*/
template <class Derived>
EIGEN_DEVICE_FUNC inline Quaternion<typename internal::traits<Derived>::Scalar>
QuaternionBase<Derived>::conjugate() const
{
return internal::quat_conj<Architecture::Target, Derived,
typename internal::traits<Derived>::Scalar>::run(*this);
}
/** \returns the angle (in radian) between two rotations
* \sa dot()
*/
template <class Derived>
template <class OtherDerived>
EIGEN_DEVICE_FUNC inline typename internal::traits<Derived>::Scalar
QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const
{
EIGEN_USING_STD_MATH(atan2)
Quaternion<Scalar> d = (*this) * other.conjugate();
return Scalar(2) * atan2( d.vec().norm(), numext::abs(d.w()) );
}
/** \returns the spherical linear interpolation between the two quaternions
* \c *this and \a other at the parameter \a t in [0;1].
*
* This represents an interpolation for a constant motion between \c *this and \a other,
* see also http://en.wikipedia.org/wiki/Slerp.
*/
template <class Derived>
template <class OtherDerived>
EIGEN_DEVICE_FUNC Quaternion<typename internal::traits<Derived>::Scalar>
QuaternionBase<Derived>::slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const
{
EIGEN_USING_STD_MATH(acos)
EIGEN_USING_STD_MATH(sin)
const Scalar one = Scalar(1) - NumTraits<Scalar>::epsilon();
Scalar d = this->dot(other);
Scalar absD = numext::abs(d);
Scalar scale0;
Scalar scale1;
if(absD>=one)
{
scale0 = Scalar(1) - t;
scale1 = t;
}
else
{
// theta is the angle between the 2 quaternions
Scalar theta = acos(absD);
Scalar sinTheta = sin(theta);
scale0 = sin( ( Scalar(1) - t ) * theta) / sinTheta;
scale1 = sin( ( t * theta) ) / sinTheta;
}
if(d<Scalar(0)) scale1 = -scale1;
return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs());
}
namespace internal {
// set from a rotation matrix
template<typename Other>
struct quaternionbase_assign_impl<Other,3,3>
{
typedef typename Other::Scalar Scalar;
template<class Derived> EIGEN_DEVICE_FUNC static inline void run(QuaternionBase<Derived>& q, const Other& a_mat)
{
const typename internal::nested_eval<Other,2>::type mat(a_mat);
EIGEN_USING_STD_MATH(sqrt)
// This algorithm comes from "Quaternion Calculus and Fast Animation",
// Ken Shoemake, 1987 SIGGRAPH course notes
Scalar t = mat.trace();
if (t > Scalar(0))
{
t = sqrt(t + Scalar(1.0));
q.w() = Scalar(0.5)*t;
t = Scalar(0.5)/t;
q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t;
q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t;
q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t;
}
else
{
Index i = 0;
if (mat.coeff(1,1) > mat.coeff(0,0))
i = 1;
if (mat.coeff(2,2) > mat.coeff(i,i))
i = 2;
Index j = (i+1)%3;
Index k = (j+1)%3;
t = sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0));
q.coeffs().coeffRef(i) = Scalar(0.5) * t;
t = Scalar(0.5)/t;
q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t;
q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t;
q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t;
}
}
};
// set from a vector of coefficients assumed to be a quaternion
template<typename Other>
struct quaternionbase_assign_impl<Other,4,1>
{
typedef typename Other::Scalar Scalar;
template<class Derived> EIGEN_DEVICE_FUNC static inline void run(QuaternionBase<Derived>& q, const Other& vec)
{
q.coeffs() = vec;
}
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_QUATERNION_H

View File

@@ -0,0 +1,199 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ROTATION2D_H
#define EIGEN_ROTATION2D_H
namespace Eigen {
/** \geometry_module \ingroup Geometry_Module
*
* \class Rotation2D
*
* \brief Represents a rotation/orientation in a 2 dimensional space.
*
* \tparam _Scalar the scalar type, i.e., the type of the coefficients
*
* This class is equivalent to a single scalar representing a counter clock wise rotation
* as a single angle in radian. It provides some additional features such as the automatic
* conversion from/to a 2x2 rotation matrix. Moreover this class aims to provide a similar
* interface to Quaternion in order to facilitate the writing of generic algorithms
* dealing with rotations.
*
* \sa class Quaternion, class Transform
*/
namespace internal {
template<typename _Scalar> struct traits<Rotation2D<_Scalar> >
{
typedef _Scalar Scalar;
};
} // end namespace internal
template<typename _Scalar>
class Rotation2D : public RotationBase<Rotation2D<_Scalar>,2>
{
typedef RotationBase<Rotation2D<_Scalar>,2> Base;
public:
using Base::operator*;
enum { Dim = 2 };
/** the scalar type of the coefficients */
typedef _Scalar Scalar;
typedef Matrix<Scalar,2,1> Vector2;
typedef Matrix<Scalar,2,2> Matrix2;
protected:
Scalar m_angle;
public:
/** Construct a 2D counter clock wise rotation from the angle \a a in radian. */
EIGEN_DEVICE_FUNC explicit inline Rotation2D(const Scalar& a) : m_angle(a) {}
/** Default constructor wihtout initialization. The represented rotation is undefined. */
EIGEN_DEVICE_FUNC Rotation2D() {}
/** Construct a 2D rotation from a 2x2 rotation matrix \a mat.
*
* \sa fromRotationMatrix()
*/
template<typename Derived>
EIGEN_DEVICE_FUNC explicit Rotation2D(const MatrixBase<Derived>& m)
{
fromRotationMatrix(m.derived());
}
/** \returns the rotation angle */
EIGEN_DEVICE_FUNC inline Scalar angle() const { return m_angle; }
/** \returns a read-write reference to the rotation angle */
EIGEN_DEVICE_FUNC inline Scalar& angle() { return m_angle; }
/** \returns the rotation angle in [0,2pi] */
EIGEN_DEVICE_FUNC inline Scalar smallestPositiveAngle() const {
Scalar tmp = numext::fmod(m_angle,Scalar(2*EIGEN_PI));
return tmp<Scalar(0) ? tmp + Scalar(2*EIGEN_PI) : tmp;
}
/** \returns the rotation angle in [-pi,pi] */
EIGEN_DEVICE_FUNC inline Scalar smallestAngle() const {
Scalar tmp = numext::fmod(m_angle,Scalar(2*EIGEN_PI));
if(tmp>Scalar(EIGEN_PI)) tmp -= Scalar(2*EIGEN_PI);
else if(tmp<-Scalar(EIGEN_PI)) tmp += Scalar(2*EIGEN_PI);
return tmp;
}
/** \returns the inverse rotation */
EIGEN_DEVICE_FUNC inline Rotation2D inverse() const { return Rotation2D(-m_angle); }
/** Concatenates two rotations */
EIGEN_DEVICE_FUNC inline Rotation2D operator*(const Rotation2D& other) const
{ return Rotation2D(m_angle + other.m_angle); }
/** Concatenates two rotations */
EIGEN_DEVICE_FUNC inline Rotation2D& operator*=(const Rotation2D& other)
{ m_angle += other.m_angle; return *this; }
/** Applies the rotation to a 2D vector */
EIGEN_DEVICE_FUNC Vector2 operator* (const Vector2& vec) const
{ return toRotationMatrix() * vec; }
template<typename Derived>
EIGEN_DEVICE_FUNC Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m);
EIGEN_DEVICE_FUNC Matrix2 toRotationMatrix() const;
/** Set \c *this from a 2x2 rotation matrix \a mat.
* In other words, this function extract the rotation angle from the rotation matrix.
*
* This method is an alias for fromRotationMatrix()
*
* \sa fromRotationMatrix()
*/
template<typename Derived>
EIGEN_DEVICE_FUNC Rotation2D& operator=(const MatrixBase<Derived>& m)
{ return fromRotationMatrix(m.derived()); }
/** \returns the spherical interpolation between \c *this and \a other using
* parameter \a t. It is in fact equivalent to a linear interpolation.
*/
EIGEN_DEVICE_FUNC inline Rotation2D slerp(const Scalar& t, const Rotation2D& other) const
{
Scalar dist = Rotation2D(other.m_angle-m_angle).smallestAngle();
return Rotation2D(m_angle + dist*t);
}
/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type cast() const
{ return typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type(*this); }
/** Copy constructor with scalar type conversion */
template<typename OtherScalarType>
EIGEN_DEVICE_FUNC inline explicit Rotation2D(const Rotation2D<OtherScalarType>& other)
{
m_angle = Scalar(other.angle());
}
EIGEN_DEVICE_FUNC static inline Rotation2D Identity() { return Rotation2D(0); }
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
EIGEN_DEVICE_FUNC bool isApprox(const Rotation2D& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
{ return internal::isApprox(m_angle,other.m_angle, prec); }
};
/** \ingroup Geometry_Module
* single precision 2D rotation type */
typedef Rotation2D<float> Rotation2Df;
/** \ingroup Geometry_Module
* double precision 2D rotation type */
typedef Rotation2D<double> Rotation2Dd;
/** Set \c *this from a 2x2 rotation matrix \a mat.
* In other words, this function extract the rotation angle
* from the rotation matrix.
*/
template<typename Scalar>
template<typename Derived>
EIGEN_DEVICE_FUNC Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
{
EIGEN_USING_STD_MATH(atan2)
EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,YOU_MADE_A_PROGRAMMING_MISTAKE)
m_angle = atan2(mat.coeff(1,0), mat.coeff(0,0));
return *this;
}
/** Constructs and \returns an equivalent 2x2 rotation matrix.
*/
template<typename Scalar>
typename Rotation2D<Scalar>::Matrix2
EIGEN_DEVICE_FUNC Rotation2D<Scalar>::toRotationMatrix(void) const
{
EIGEN_USING_STD_MATH(sin)
EIGEN_USING_STD_MATH(cos)
Scalar sinA = sin(m_angle);
Scalar cosA = cos(m_angle);
return (Matrix2() << cosA, -sinA, sinA, cosA).finished();
}
} // end namespace Eigen
#endif // EIGEN_ROTATION2D_H

View File

@@ -0,0 +1,206 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ROTATIONBASE_H
#define EIGEN_ROTATIONBASE_H
namespace Eigen {
// forward declaration
namespace internal {
template<typename RotationDerived, typename MatrixType, bool IsVector=MatrixType::IsVectorAtCompileTime>
struct rotation_base_generic_product_selector;
}
/** \class RotationBase
*
* \brief Common base class for compact rotation representations
*
* \tparam Derived is the derived type, i.e., a rotation type
* \tparam _Dim the dimension of the space
*/
template<typename Derived, int _Dim>
class RotationBase
{
public:
enum { Dim = _Dim };
/** the scalar type of the coefficients */
typedef typename internal::traits<Derived>::Scalar Scalar;
/** corresponding linear transformation matrix type */
typedef Matrix<Scalar,Dim,Dim> RotationMatrixType;
typedef Matrix<Scalar,Dim,1> VectorType;
public:
EIGEN_DEVICE_FUNC inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
EIGEN_DEVICE_FUNC inline Derived& derived() { return *static_cast<Derived*>(this); }
/** \returns an equivalent rotation matrix */
EIGEN_DEVICE_FUNC inline RotationMatrixType toRotationMatrix() const { return derived().toRotationMatrix(); }
/** \returns an equivalent rotation matrix
* This function is added to be conform with the Transform class' naming scheme.
*/
EIGEN_DEVICE_FUNC inline RotationMatrixType matrix() const { return derived().toRotationMatrix(); }
/** \returns the inverse rotation */
EIGEN_DEVICE_FUNC inline Derived inverse() const { return derived().inverse(); }
/** \returns the concatenation of the rotation \c *this with a translation \a t */
EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Isometry> operator*(const Translation<Scalar,Dim>& t) const
{ return Transform<Scalar,Dim,Isometry>(*this) * t; }
/** \returns the concatenation of the rotation \c *this with a uniform scaling \a s */
EIGEN_DEVICE_FUNC inline RotationMatrixType operator*(const UniformScaling<Scalar>& s) const
{ return toRotationMatrix() * s.factor(); }
/** \returns the concatenation of the rotation \c *this with a generic expression \a e
* \a e can be:
* - a DimxDim linear transformation matrix
* - a DimxDim diagonal matrix (axis aligned scaling)
* - a vector of size Dim
*/
template<typename OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::rotation_base_generic_product_selector<Derived,OtherDerived,OtherDerived::IsVectorAtCompileTime>::ReturnType
operator*(const EigenBase<OtherDerived>& e) const
{ return internal::rotation_base_generic_product_selector<Derived,OtherDerived>::run(derived(), e.derived()); }
/** \returns the concatenation of a linear transformation \a l with the rotation \a r */
template<typename OtherDerived> friend
EIGEN_DEVICE_FUNC inline RotationMatrixType operator*(const EigenBase<OtherDerived>& l, const Derived& r)
{ return l.derived() * r.toRotationMatrix(); }
/** \returns the concatenation of a scaling \a l with the rotation \a r */
EIGEN_DEVICE_FUNC friend inline Transform<Scalar,Dim,Affine> operator*(const DiagonalMatrix<Scalar,Dim>& l, const Derived& r)
{
Transform<Scalar,Dim,Affine> res(r);
res.linear().applyOnTheLeft(l);
return res;
}
/** \returns the concatenation of the rotation \c *this with a transformation \a t */
template<int Mode, int Options>
EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode> operator*(const Transform<Scalar,Dim,Mode,Options>& t) const
{ return toRotationMatrix() * t; }
template<typename OtherVectorType>
EIGEN_DEVICE_FUNC inline VectorType _transformVector(const OtherVectorType& v) const
{ return toRotationMatrix() * v; }
};
namespace internal {
// implementation of the generic product rotation * matrix
template<typename RotationDerived, typename MatrixType>
struct rotation_base_generic_product_selector<RotationDerived,MatrixType,false>
{
enum { Dim = RotationDerived::Dim };
typedef Matrix<typename RotationDerived::Scalar,Dim,Dim> ReturnType;
EIGEN_DEVICE_FUNC static inline ReturnType run(const RotationDerived& r, const MatrixType& m)
{ return r.toRotationMatrix() * m; }
};
template<typename RotationDerived, typename Scalar, int Dim, int MaxDim>
struct rotation_base_generic_product_selector< RotationDerived, DiagonalMatrix<Scalar,Dim,MaxDim>, false >
{
typedef Transform<Scalar,Dim,Affine> ReturnType;
EIGEN_DEVICE_FUNC static inline ReturnType run(const RotationDerived& r, const DiagonalMatrix<Scalar,Dim,MaxDim>& m)
{
ReturnType res(r);
res.linear() *= m;
return res;
}
};
template<typename RotationDerived,typename OtherVectorType>
struct rotation_base_generic_product_selector<RotationDerived,OtherVectorType,true>
{
enum { Dim = RotationDerived::Dim };
typedef Matrix<typename RotationDerived::Scalar,Dim,1> ReturnType;
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE ReturnType run(const RotationDerived& r, const OtherVectorType& v)
{
return r._transformVector(v);
}
};
} // end namespace internal
/** \geometry_module
*
* \brief Constructs a Dim x Dim rotation matrix from the rotation \a r
*/
template<typename _Scalar, int _Rows, int _Cols, int _Storage, int _MaxRows, int _MaxCols>
template<typename OtherDerived>
EIGEN_DEVICE_FUNC Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>
::Matrix(const RotationBase<OtherDerived,ColsAtCompileTime>& r)
{
EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,int(OtherDerived::Dim),int(OtherDerived::Dim))
*this = r.toRotationMatrix();
}
/** \geometry_module
*
* \brief Set a Dim x Dim rotation matrix from the rotation \a r
*/
template<typename _Scalar, int _Rows, int _Cols, int _Storage, int _MaxRows, int _MaxCols>
template<typename OtherDerived>
EIGEN_DEVICE_FUNC Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>&
Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>
::operator=(const RotationBase<OtherDerived,ColsAtCompileTime>& r)
{
EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,int(OtherDerived::Dim),int(OtherDerived::Dim))
return *this = r.toRotationMatrix();
}
namespace internal {
/** \internal
*
* Helper function to return an arbitrary rotation object to a rotation matrix.
*
* \tparam Scalar the numeric type of the matrix coefficients
* \tparam Dim the dimension of the current space
*
* It returns a Dim x Dim fixed size matrix.
*
* Default specializations are provided for:
* - any scalar type (2D),
* - any matrix expression,
* - any type based on RotationBase (e.g., Quaternion, AngleAxis, Rotation2D)
*
* Currently toRotationMatrix is only used by Transform.
*
* \sa class Transform, class Rotation2D, class Quaternion, class AngleAxis
*/
template<typename Scalar, int Dim>
EIGEN_DEVICE_FUNC static inline Matrix<Scalar,2,2> toRotationMatrix(const Scalar& s)
{
EIGEN_STATIC_ASSERT(Dim==2,YOU_MADE_A_PROGRAMMING_MISTAKE)
return Rotation2D<Scalar>(s).toRotationMatrix();
}
template<typename Scalar, int Dim, typename OtherDerived>
EIGEN_DEVICE_FUNC static inline Matrix<Scalar,Dim,Dim> toRotationMatrix(const RotationBase<OtherDerived,Dim>& r)
{
return r.toRotationMatrix();
}
template<typename Scalar, int Dim, typename OtherDerived>
EIGEN_DEVICE_FUNC static inline const MatrixBase<OtherDerived>& toRotationMatrix(const MatrixBase<OtherDerived>& mat)
{
EIGEN_STATIC_ASSERT(OtherDerived::RowsAtCompileTime==Dim && OtherDerived::ColsAtCompileTime==Dim,
YOU_MADE_A_PROGRAMMING_MISTAKE)
return mat;
}
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_ROTATIONBASE_H

View File

@@ -0,0 +1,170 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SCALING_H
#define EIGEN_SCALING_H
namespace Eigen {
/** \geometry_module \ingroup Geometry_Module
*
* \class Scaling
*
* \brief Represents a generic uniform scaling transformation
*
* \tparam _Scalar the scalar type, i.e., the type of the coefficients.
*
* This class represent a uniform scaling transformation. It is the return
* type of Scaling(Scalar), and most of the time this is the only way it
* is used. In particular, this class is not aimed to be used to store a scaling transformation,
* but rather to make easier the constructions and updates of Transform objects.
*
* To represent an axis aligned scaling, use the DiagonalMatrix class.
*
* \sa Scaling(), class DiagonalMatrix, MatrixBase::asDiagonal(), class Translation, class Transform
*/
template<typename _Scalar>
class UniformScaling
{
public:
/** the scalar type of the coefficients */
typedef _Scalar Scalar;
protected:
Scalar m_factor;
public:
/** Default constructor without initialization. */
UniformScaling() {}
/** Constructs and initialize a uniform scaling transformation */
explicit inline UniformScaling(const Scalar& s) : m_factor(s) {}
inline const Scalar& factor() const { return m_factor; }
inline Scalar& factor() { return m_factor; }
/** Concatenates two uniform scaling */
inline UniformScaling operator* (const UniformScaling& other) const
{ return UniformScaling(m_factor * other.factor()); }
/** Concatenates a uniform scaling and a translation */
template<int Dim>
inline Transform<Scalar,Dim,Affine> operator* (const Translation<Scalar,Dim>& t) const;
/** Concatenates a uniform scaling and an affine transformation */
template<int Dim, int Mode, int Options>
inline Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Mode)> operator* (const Transform<Scalar,Dim, Mode, Options>& t) const
{
Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Mode)> res = t;
res.prescale(factor());
return res;
}
/** Concatenates a uniform scaling and a linear transformation matrix */
// TODO returns an expression
template<typename Derived>
inline typename internal::plain_matrix_type<Derived>::type operator* (const MatrixBase<Derived>& other) const
{ return other * m_factor; }
template<typename Derived,int Dim>
inline Matrix<Scalar,Dim,Dim> operator*(const RotationBase<Derived,Dim>& r) const
{ return r.toRotationMatrix() * m_factor; }
/** \returns the inverse scaling */
inline UniformScaling inverse() const
{ return UniformScaling(Scalar(1)/m_factor); }
/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
inline UniformScaling<NewScalarType> cast() const
{ return UniformScaling<NewScalarType>(NewScalarType(m_factor)); }
/** Copy constructor with scalar type conversion */
template<typename OtherScalarType>
inline explicit UniformScaling(const UniformScaling<OtherScalarType>& other)
{ m_factor = Scalar(other.factor()); }
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
bool isApprox(const UniformScaling& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
{ return internal::isApprox(m_factor, other.factor(), prec); }
};
/** \addtogroup Geometry_Module */
//@{
/** Concatenates a linear transformation matrix and a uniform scaling
* \relates UniformScaling
*/
// NOTE this operator is defiend in MatrixBase and not as a friend function
// of UniformScaling to fix an internal crash of Intel's ICC
template<typename Derived,typename Scalar>
EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Derived,Scalar,product)
operator*(const MatrixBase<Derived>& matrix, const UniformScaling<Scalar>& s)
{ return matrix.derived() * s.factor(); }
/** Constructs a uniform scaling from scale factor \a s */
inline UniformScaling<float> Scaling(float s) { return UniformScaling<float>(s); }
/** Constructs a uniform scaling from scale factor \a s */
inline UniformScaling<double> Scaling(double s) { return UniformScaling<double>(s); }
/** Constructs a uniform scaling from scale factor \a s */
template<typename RealScalar>
inline UniformScaling<std::complex<RealScalar> > Scaling(const std::complex<RealScalar>& s)
{ return UniformScaling<std::complex<RealScalar> >(s); }
/** Constructs a 2D axis aligned scaling */
template<typename Scalar>
inline DiagonalMatrix<Scalar,2> Scaling(const Scalar& sx, const Scalar& sy)
{ return DiagonalMatrix<Scalar,2>(sx, sy); }
/** Constructs a 3D axis aligned scaling */
template<typename Scalar>
inline DiagonalMatrix<Scalar,3> Scaling(const Scalar& sx, const Scalar& sy, const Scalar& sz)
{ return DiagonalMatrix<Scalar,3>(sx, sy, sz); }
/** Constructs an axis aligned scaling expression from vector expression \a coeffs
* This is an alias for coeffs.asDiagonal()
*/
template<typename Derived>
inline const DiagonalWrapper<const Derived> Scaling(const MatrixBase<Derived>& coeffs)
{ return coeffs.asDiagonal(); }
/** \deprecated */
typedef DiagonalMatrix<float, 2> AlignedScaling2f;
/** \deprecated */
typedef DiagonalMatrix<double,2> AlignedScaling2d;
/** \deprecated */
typedef DiagonalMatrix<float, 3> AlignedScaling3f;
/** \deprecated */
typedef DiagonalMatrix<double,3> AlignedScaling3d;
//@}
template<typename Scalar>
template<int Dim>
inline Transform<Scalar,Dim,Affine>
UniformScaling<Scalar>::operator* (const Translation<Scalar,Dim>& t) const
{
Transform<Scalar,Dim,Affine> res;
res.matrix().setZero();
res.linear().diagonal().fill(factor());
res.translation() = factor() * t.vector();
res(Dim,Dim) = Scalar(1);
return res;
}
} // end namespace Eigen
#endif // EIGEN_SCALING_H

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,208 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_TRANSLATION_H
#define EIGEN_TRANSLATION_H
namespace Eigen {
/** \geometry_module \ingroup Geometry_Module
*
* \class Translation
*
* \brief Represents a translation transformation
*
* \tparam _Scalar the scalar type, i.e., the type of the coefficients.
* \tparam _Dim the dimension of the space, can be a compile time value or Dynamic
*
* \note This class is not aimed to be used to store a translation transformation,
* but rather to make easier the constructions and updates of Transform objects.
*
* \sa class Scaling, class Transform
*/
template<typename _Scalar, int _Dim>
class Translation
{
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim)
/** dimension of the space */
enum { Dim = _Dim };
/** the scalar type of the coefficients */
typedef _Scalar Scalar;
/** corresponding vector type */
typedef Matrix<Scalar,Dim,1> VectorType;
/** corresponding linear transformation matrix type */
typedef Matrix<Scalar,Dim,Dim> LinearMatrixType;
/** corresponding affine transformation type */
typedef Transform<Scalar,Dim,Affine> AffineTransformType;
/** corresponding isometric transformation type */
typedef Transform<Scalar,Dim,Isometry> IsometryTransformType;
protected:
VectorType m_coeffs;
public:
/** Default constructor without initialization. */
EIGEN_DEVICE_FUNC Translation() {}
/** */
EIGEN_DEVICE_FUNC inline Translation(const Scalar& sx, const Scalar& sy)
{
eigen_assert(Dim==2);
m_coeffs.x() = sx;
m_coeffs.y() = sy;
}
/** */
EIGEN_DEVICE_FUNC inline Translation(const Scalar& sx, const Scalar& sy, const Scalar& sz)
{
eigen_assert(Dim==3);
m_coeffs.x() = sx;
m_coeffs.y() = sy;
m_coeffs.z() = sz;
}
/** Constructs and initialize the translation transformation from a vector of translation coefficients */
EIGEN_DEVICE_FUNC explicit inline Translation(const VectorType& vector) : m_coeffs(vector) {}
/** \brief Retruns the x-translation by value. **/
EIGEN_DEVICE_FUNC inline Scalar x() const { return m_coeffs.x(); }
/** \brief Retruns the y-translation by value. **/
EIGEN_DEVICE_FUNC inline Scalar y() const { return m_coeffs.y(); }
/** \brief Retruns the z-translation by value. **/
EIGEN_DEVICE_FUNC inline Scalar z() const { return m_coeffs.z(); }
/** \brief Retruns the x-translation as a reference. **/
EIGEN_DEVICE_FUNC inline Scalar& x() { return m_coeffs.x(); }
/** \brief Retruns the y-translation as a reference. **/
EIGEN_DEVICE_FUNC inline Scalar& y() { return m_coeffs.y(); }
/** \brief Retruns the z-translation as a reference. **/
EIGEN_DEVICE_FUNC inline Scalar& z() { return m_coeffs.z(); }
EIGEN_DEVICE_FUNC const VectorType& vector() const { return m_coeffs; }
EIGEN_DEVICE_FUNC VectorType& vector() { return m_coeffs; }
EIGEN_DEVICE_FUNC const VectorType& translation() const { return m_coeffs; }
EIGEN_DEVICE_FUNC VectorType& translation() { return m_coeffs; }
/** Concatenates two translation */
EIGEN_DEVICE_FUNC inline Translation operator* (const Translation& other) const
{ return Translation(m_coeffs + other.m_coeffs); }
/** Concatenates a translation and a uniform scaling */
EIGEN_DEVICE_FUNC inline AffineTransformType operator* (const UniformScaling<Scalar>& other) const;
/** Concatenates a translation and a linear transformation */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC inline AffineTransformType operator* (const EigenBase<OtherDerived>& linear) const;
/** Concatenates a translation and a rotation */
template<typename Derived>
EIGEN_DEVICE_FUNC inline IsometryTransformType operator*(const RotationBase<Derived,Dim>& r) const
{ return *this * IsometryTransformType(r); }
/** \returns the concatenation of a linear transformation \a l with the translation \a t */
// its a nightmare to define a templated friend function outside its declaration
template<typename OtherDerived> friend
EIGEN_DEVICE_FUNC inline AffineTransformType operator*(const EigenBase<OtherDerived>& linear, const Translation& t)
{
AffineTransformType res;
res.matrix().setZero();
res.linear() = linear.derived();
res.translation() = linear.derived() * t.m_coeffs;
res.matrix().row(Dim).setZero();
res(Dim,Dim) = Scalar(1);
return res;
}
/** Concatenates a translation and a transformation */
template<int Mode, int Options>
EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode> operator* (const Transform<Scalar,Dim,Mode,Options>& t) const
{
Transform<Scalar,Dim,Mode> res = t;
res.pretranslate(m_coeffs);
return res;
}
/** Applies translation to vector */
template<typename Derived>
inline typename internal::enable_if<Derived::IsVectorAtCompileTime,VectorType>::type
operator* (const MatrixBase<Derived>& vec) const
{ return m_coeffs + vec.derived(); }
/** \returns the inverse translation (opposite) */
Translation inverse() const { return Translation(-m_coeffs); }
Translation& operator=(const Translation& other)
{
m_coeffs = other.m_coeffs;
return *this;
}
static const Translation Identity() { return Translation(VectorType::Zero()); }
/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Translation,Translation<NewScalarType,Dim> >::type cast() const
{ return typename internal::cast_return_type<Translation,Translation<NewScalarType,Dim> >::type(*this); }
/** Copy constructor with scalar type conversion */
template<typename OtherScalarType>
EIGEN_DEVICE_FUNC inline explicit Translation(const Translation<OtherScalarType,Dim>& other)
{ m_coeffs = other.vector().template cast<Scalar>(); }
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
EIGEN_DEVICE_FUNC bool isApprox(const Translation& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
{ return m_coeffs.isApprox(other.m_coeffs, prec); }
};
/** \addtogroup Geometry_Module */
//@{
typedef Translation<float, 2> Translation2f;
typedef Translation<double,2> Translation2d;
typedef Translation<float, 3> Translation3f;
typedef Translation<double,3> Translation3d;
//@}
template<typename Scalar, int Dim>
EIGEN_DEVICE_FUNC inline typename Translation<Scalar,Dim>::AffineTransformType
Translation<Scalar,Dim>::operator* (const UniformScaling<Scalar>& other) const
{
AffineTransformType res;
res.matrix().setZero();
res.linear().diagonal().fill(other.factor());
res.translation() = m_coeffs;
res(Dim,Dim) = Scalar(1);
return res;
}
template<typename Scalar, int Dim>
template<typename OtherDerived>
EIGEN_DEVICE_FUNC inline typename Translation<Scalar,Dim>::AffineTransformType
Translation<Scalar,Dim>::operator* (const EigenBase<OtherDerived>& linear) const
{
AffineTransformType res;
res.matrix().setZero();
res.linear() = linear.derived();
res.translation() = m_coeffs;
res.matrix().row(Dim).setZero();
res(Dim,Dim) = Scalar(1);
return res;
}
} // end namespace Eigen
#endif // EIGEN_TRANSLATION_H

View File

@@ -0,0 +1,166 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Hauke Heibel <hauke.heibel@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_UMEYAMA_H
#define EIGEN_UMEYAMA_H
// This file requires the user to include
// * Eigen/Core
// * Eigen/LU
// * Eigen/SVD
// * Eigen/Array
namespace Eigen {
#ifndef EIGEN_PARSED_BY_DOXYGEN
// These helpers are required since it allows to use mixed types as parameters
// for the Umeyama. The problem with mixed parameters is that the return type
// cannot trivially be deduced when float and double types are mixed.
namespace internal {
// Compile time return type deduction for different MatrixBase types.
// Different means here different alignment and parameters but the same underlying
// real scalar type.
template<typename MatrixType, typename OtherMatrixType>
struct umeyama_transform_matrix_type
{
enum {
MinRowsAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(MatrixType::RowsAtCompileTime, OtherMatrixType::RowsAtCompileTime),
// When possible we want to choose some small fixed size value since the result
// is likely to fit on the stack. So here, EIGEN_SIZE_MIN_PREFER_DYNAMIC is not what we want.
HomogeneousDimension = int(MinRowsAtCompileTime) == Dynamic ? Dynamic : int(MinRowsAtCompileTime)+1
};
typedef Matrix<typename traits<MatrixType>::Scalar,
HomogeneousDimension,
HomogeneousDimension,
AutoAlign | (traits<MatrixType>::Flags & RowMajorBit ? RowMajor : ColMajor),
HomogeneousDimension,
HomogeneousDimension
> type;
};
}
#endif
/**
* \geometry_module \ingroup Geometry_Module
*
* \brief Returns the transformation between two point sets.
*
* The algorithm is based on:
* "Least-squares estimation of transformation parameters between two point patterns",
* Shinji Umeyama, PAMI 1991, DOI: 10.1109/34.88573
*
* It estimates parameters \f$ c, \mathbf{R}, \f$ and \f$ \mathbf{t} \f$ such that
* \f{align*}
* \frac{1}{n} \sum_{i=1}^n \vert\vert y_i - (c\mathbf{R}x_i + \mathbf{t}) \vert\vert_2^2
* \f}
* is minimized.
*
* The algorithm is based on the analysis of the covariance matrix
* \f$ \Sigma_{\mathbf{x}\mathbf{y}} \in \mathbb{R}^{d \times d} \f$
* of the input point sets \f$ \mathbf{x} \f$ and \f$ \mathbf{y} \f$ where
* \f$d\f$ is corresponding to the dimension (which is typically small).
* The analysis is involving the SVD having a complexity of \f$O(d^3)\f$
* though the actual computational effort lies in the covariance
* matrix computation which has an asymptotic lower bound of \f$O(dm)\f$ when
* the input point sets have dimension \f$d \times m\f$.
*
* Currently the method is working only for floating point matrices.
*
* \todo Should the return type of umeyama() become a Transform?
*
* \param src Source points \f$ \mathbf{x} = \left( x_1, \hdots, x_n \right) \f$.
* \param dst Destination points \f$ \mathbf{y} = \left( y_1, \hdots, y_n \right) \f$.
* \param with_scaling Sets \f$ c=1 \f$ when <code>false</code> is passed.
* \return The homogeneous transformation
* \f{align*}
* T = \begin{bmatrix} c\mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix}
* \f}
* minimizing the resudiual above. This transformation is always returned as an
* Eigen::Matrix.
*/
template <typename Derived, typename OtherDerived>
typename internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type
umeyama(const MatrixBase<Derived>& src, const MatrixBase<OtherDerived>& dst, bool with_scaling = true)
{
typedef typename internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type TransformationMatrixType;
typedef typename internal::traits<TransformationMatrixType>::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL)
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename internal::traits<OtherDerived>::Scalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
enum { Dimension = EIGEN_SIZE_MIN_PREFER_DYNAMIC(Derived::RowsAtCompileTime, OtherDerived::RowsAtCompileTime) };
typedef Matrix<Scalar, Dimension, 1> VectorType;
typedef Matrix<Scalar, Dimension, Dimension> MatrixType;
typedef typename internal::plain_matrix_type_row_major<Derived>::type RowMajorMatrixType;
const Index m = src.rows(); // dimension
const Index n = src.cols(); // number of measurements
// required for demeaning ...
const RealScalar one_over_n = RealScalar(1) / static_cast<RealScalar>(n);
// computation of mean
const VectorType src_mean = src.rowwise().sum() * one_over_n;
const VectorType dst_mean = dst.rowwise().sum() * one_over_n;
// demeaning of src and dst points
const RowMajorMatrixType src_demean = src.colwise() - src_mean;
const RowMajorMatrixType dst_demean = dst.colwise() - dst_mean;
// Eq. (36)-(37)
const Scalar src_var = src_demean.rowwise().squaredNorm().sum() * one_over_n;
// Eq. (38)
const MatrixType sigma = one_over_n * dst_demean * src_demean.transpose();
JacobiSVD<MatrixType> svd(sigma, ComputeFullU | ComputeFullV);
// Initialize the resulting transformation with an identity matrix...
TransformationMatrixType Rt = TransformationMatrixType::Identity(m+1,m+1);
// Eq. (39)
VectorType S = VectorType::Ones(m);
if ( svd.matrixU().determinant() * svd.matrixV().determinant() < 0 )
S(m-1) = -1;
// Eq. (40) and (43)
Rt.block(0,0,m,m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose();
if (with_scaling)
{
// Eq. (42)
const Scalar c = Scalar(1)/src_var * svd.singularValues().dot(S);
// Eq. (41)
Rt.col(m).head(m) = dst_mean;
Rt.col(m).head(m).noalias() -= c*Rt.topLeftCorner(m,m)*src_mean;
Rt.block(0,0,m,m) *= c;
}
else
{
Rt.col(m).head(m) = dst_mean;
Rt.col(m).head(m).noalias() -= Rt.topLeftCorner(m,m)*src_mean;
}
return Rt;
}
} // end namespace Eigen
#endif // EIGEN_UMEYAMA_H

View File

@@ -0,0 +1,161 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Rohit Garg <rpg.314@gmail.com>
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_GEOMETRY_SSE_H
#define EIGEN_GEOMETRY_SSE_H
namespace Eigen {
namespace internal {
template<class Derived, class OtherDerived>
struct quat_product<Architecture::SSE, Derived, OtherDerived, float>
{
enum {
AAlignment = traits<Derived>::Alignment,
BAlignment = traits<OtherDerived>::Alignment,
ResAlignment = traits<Quaternion<float> >::Alignment
};
static inline Quaternion<float> run(const QuaternionBase<Derived>& _a, const QuaternionBase<OtherDerived>& _b)
{
Quaternion<float> res;
const __m128 mask = _mm_setr_ps(0.f,0.f,0.f,-0.f);
__m128 a = _a.coeffs().template packet<AAlignment>(0);
__m128 b = _b.coeffs().template packet<BAlignment>(0);
__m128 s1 = _mm_mul_ps(vec4f_swizzle1(a,1,2,0,2),vec4f_swizzle1(b,2,0,1,2));
__m128 s2 = _mm_mul_ps(vec4f_swizzle1(a,3,3,3,1),vec4f_swizzle1(b,0,1,2,1));
pstoret<float,Packet4f,ResAlignment>(
&res.x(),
_mm_add_ps(_mm_sub_ps(_mm_mul_ps(a,vec4f_swizzle1(b,3,3,3,3)),
_mm_mul_ps(vec4f_swizzle1(a,2,0,1,0),
vec4f_swizzle1(b,1,2,0,0))),
_mm_xor_ps(mask,_mm_add_ps(s1,s2))));
return res;
}
};
template<class Derived>
struct quat_conj<Architecture::SSE, Derived, float>
{
enum {
ResAlignment = traits<Quaternion<float> >::Alignment
};
static inline Quaternion<float> run(const QuaternionBase<Derived>& q)
{
Quaternion<float> res;
const __m128 mask = _mm_setr_ps(-0.f,-0.f,-0.f,0.f);
pstoret<float,Packet4f,ResAlignment>(&res.x(), _mm_xor_ps(mask, q.coeffs().template packet<traits<Derived>::Alignment>(0)));
return res;
}
};
template<typename VectorLhs,typename VectorRhs>
struct cross3_impl<Architecture::SSE,VectorLhs,VectorRhs,float,true>
{
enum {
ResAlignment = traits<typename plain_matrix_type<VectorLhs>::type>::Alignment
};
static inline typename plain_matrix_type<VectorLhs>::type
run(const VectorLhs& lhs, const VectorRhs& rhs)
{
__m128 a = lhs.template packet<traits<VectorLhs>::Alignment>(0);
__m128 b = rhs.template packet<traits<VectorRhs>::Alignment>(0);
__m128 mul1=_mm_mul_ps(vec4f_swizzle1(a,1,2,0,3),vec4f_swizzle1(b,2,0,1,3));
__m128 mul2=_mm_mul_ps(vec4f_swizzle1(a,2,0,1,3),vec4f_swizzle1(b,1,2,0,3));
typename plain_matrix_type<VectorLhs>::type res;
pstoret<float,Packet4f,ResAlignment>(&res.x(),_mm_sub_ps(mul1,mul2));
return res;
}
};
template<class Derived, class OtherDerived>
struct quat_product<Architecture::SSE, Derived, OtherDerived, double>
{
enum {
BAlignment = traits<OtherDerived>::Alignment,
ResAlignment = traits<Quaternion<double> >::Alignment
};
static inline Quaternion<double> run(const QuaternionBase<Derived>& _a, const QuaternionBase<OtherDerived>& _b)
{
const Packet2d mask = _mm_castsi128_pd(_mm_set_epi32(0x0,0x0,0x80000000,0x0));
Quaternion<double> res;
const double* a = _a.coeffs().data();
Packet2d b_xy = _b.coeffs().template packet<BAlignment>(0);
Packet2d b_zw = _b.coeffs().template packet<BAlignment>(2);
Packet2d a_xx = pset1<Packet2d>(a[0]);
Packet2d a_yy = pset1<Packet2d>(a[1]);
Packet2d a_zz = pset1<Packet2d>(a[2]);
Packet2d a_ww = pset1<Packet2d>(a[3]);
// two temporaries:
Packet2d t1, t2;
/*
* t1 = ww*xy + yy*zw
* t2 = zz*xy - xx*zw
* res.xy = t1 +/- swap(t2)
*/
t1 = padd(pmul(a_ww, b_xy), pmul(a_yy, b_zw));
t2 = psub(pmul(a_zz, b_xy), pmul(a_xx, b_zw));
#ifdef EIGEN_VECTORIZE_SSE3
EIGEN_UNUSED_VARIABLE(mask)
pstoret<double,Packet2d,ResAlignment>(&res.x(), _mm_addsub_pd(t1, preverse(t2)));
#else
pstoret<double,Packet2d,ResAlignment>(&res.x(), padd(t1, pxor(mask,preverse(t2))));
#endif
/*
* t1 = ww*zw - yy*xy
* t2 = zz*zw + xx*xy
* res.zw = t1 -/+ swap(t2) = swap( swap(t1) +/- t2)
*/
t1 = psub(pmul(a_ww, b_zw), pmul(a_yy, b_xy));
t2 = padd(pmul(a_zz, b_zw), pmul(a_xx, b_xy));
#ifdef EIGEN_VECTORIZE_SSE3
EIGEN_UNUSED_VARIABLE(mask)
pstoret<double,Packet2d,ResAlignment>(&res.z(), preverse(_mm_addsub_pd(preverse(t1), t2)));
#else
pstoret<double,Packet2d,ResAlignment>(&res.z(), psub(t1, pxor(mask,preverse(t2))));
#endif
return res;
}
};
template<class Derived>
struct quat_conj<Architecture::SSE, Derived, double>
{
enum {
ResAlignment = traits<Quaternion<double> >::Alignment
};
static inline Quaternion<double> run(const QuaternionBase<Derived>& q)
{
Quaternion<double> res;
const __m128d mask0 = _mm_setr_pd(-0.,-0.);
const __m128d mask2 = _mm_setr_pd(-0.,0.);
pstoret<double,Packet2d,ResAlignment>(&res.x(), _mm_xor_pd(mask0, q.coeffs().template packet<traits<Derived>::Alignment>(0)));
pstoret<double,Packet2d,ResAlignment>(&res.z(), _mm_xor_pd(mask2, q.coeffs().template packet<traits<Derived>::Alignment>(2)));
return res;
}
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_GEOMETRY_SSE_H