Add preliminary PhysX 4.0 backend for PyBullet
Add inverse dynamics / mass matrix code from DeepMimic, thanks to Xue Bin (Jason) Peng Add example how to use stable PD control for humanoid with spherical joints (see humanoidMotionCapture.py) Fix related to TinyRenderer object transforms not updating when using collision filtering
This commit is contained in:
103
examples/ThirdPartyLibs/Eigen/src/Householder/BlockHouseholder.h
Normal file
103
examples/ThirdPartyLibs/Eigen/src/Householder/BlockHouseholder.h
Normal file
@@ -0,0 +1,103 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2010 Vincent Lejeune
|
||||
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_BLOCK_HOUSEHOLDER_H
|
||||
#define EIGEN_BLOCK_HOUSEHOLDER_H
|
||||
|
||||
// This file contains some helper function to deal with block householder reflectors
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
/** \internal */
|
||||
// template<typename TriangularFactorType,typename VectorsType,typename CoeffsType>
|
||||
// void make_block_householder_triangular_factor(TriangularFactorType& triFactor, const VectorsType& vectors, const CoeffsType& hCoeffs)
|
||||
// {
|
||||
// typedef typename VectorsType::Scalar Scalar;
|
||||
// const Index nbVecs = vectors.cols();
|
||||
// eigen_assert(triFactor.rows() == nbVecs && triFactor.cols() == nbVecs && vectors.rows()>=nbVecs);
|
||||
//
|
||||
// for(Index i = 0; i < nbVecs; i++)
|
||||
// {
|
||||
// Index rs = vectors.rows() - i;
|
||||
// // Warning, note that hCoeffs may alias with vectors.
|
||||
// // It is then necessary to copy it before modifying vectors(i,i).
|
||||
// typename CoeffsType::Scalar h = hCoeffs(i);
|
||||
// // This hack permits to pass trough nested Block<> and Transpose<> expressions.
|
||||
// Scalar *Vii_ptr = const_cast<Scalar*>(vectors.data() + vectors.outerStride()*i + vectors.innerStride()*i);
|
||||
// Scalar Vii = *Vii_ptr;
|
||||
// *Vii_ptr = Scalar(1);
|
||||
// triFactor.col(i).head(i).noalias() = -h * vectors.block(i, 0, rs, i).adjoint()
|
||||
// * vectors.col(i).tail(rs);
|
||||
// *Vii_ptr = Vii;
|
||||
// // FIXME add .noalias() once the triangular product can work inplace
|
||||
// triFactor.col(i).head(i) = triFactor.block(0,0,i,i).template triangularView<Upper>()
|
||||
// * triFactor.col(i).head(i);
|
||||
// triFactor(i,i) = hCoeffs(i);
|
||||
// }
|
||||
// }
|
||||
|
||||
/** \internal */
|
||||
// This variant avoid modifications in vectors
|
||||
template<typename TriangularFactorType,typename VectorsType,typename CoeffsType>
|
||||
void make_block_householder_triangular_factor(TriangularFactorType& triFactor, const VectorsType& vectors, const CoeffsType& hCoeffs)
|
||||
{
|
||||
const Index nbVecs = vectors.cols();
|
||||
eigen_assert(triFactor.rows() == nbVecs && triFactor.cols() == nbVecs && vectors.rows()>=nbVecs);
|
||||
|
||||
for(Index i = nbVecs-1; i >=0 ; --i)
|
||||
{
|
||||
Index rs = vectors.rows() - i - 1;
|
||||
Index rt = nbVecs-i-1;
|
||||
|
||||
if(rt>0)
|
||||
{
|
||||
triFactor.row(i).tail(rt).noalias() = -hCoeffs(i) * vectors.col(i).tail(rs).adjoint()
|
||||
* vectors.bottomRightCorner(rs, rt).template triangularView<UnitLower>();
|
||||
|
||||
// FIXME add .noalias() once the triangular product can work inplace
|
||||
triFactor.row(i).tail(rt) = triFactor.row(i).tail(rt) * triFactor.bottomRightCorner(rt,rt).template triangularView<Upper>();
|
||||
|
||||
}
|
||||
triFactor(i,i) = hCoeffs(i);
|
||||
}
|
||||
}
|
||||
|
||||
/** \internal
|
||||
* if forward then perform mat = H0 * H1 * H2 * mat
|
||||
* otherwise perform mat = H2 * H1 * H0 * mat
|
||||
*/
|
||||
template<typename MatrixType,typename VectorsType,typename CoeffsType>
|
||||
void apply_block_householder_on_the_left(MatrixType& mat, const VectorsType& vectors, const CoeffsType& hCoeffs, bool forward)
|
||||
{
|
||||
enum { TFactorSize = MatrixType::ColsAtCompileTime };
|
||||
Index nbVecs = vectors.cols();
|
||||
Matrix<typename MatrixType::Scalar, TFactorSize, TFactorSize, RowMajor> T(nbVecs,nbVecs);
|
||||
|
||||
if(forward) make_block_householder_triangular_factor(T, vectors, hCoeffs);
|
||||
else make_block_householder_triangular_factor(T, vectors, hCoeffs.conjugate());
|
||||
const TriangularView<const VectorsType, UnitLower> V(vectors);
|
||||
|
||||
// A -= V T V^* A
|
||||
Matrix<typename MatrixType::Scalar,VectorsType::ColsAtCompileTime,MatrixType::ColsAtCompileTime,
|
||||
(VectorsType::MaxColsAtCompileTime==1 && MatrixType::MaxColsAtCompileTime!=1)?RowMajor:ColMajor,
|
||||
VectorsType::MaxColsAtCompileTime,MatrixType::MaxColsAtCompileTime> tmp = V.adjoint() * mat;
|
||||
// FIXME add .noalias() once the triangular product can work inplace
|
||||
if(forward) tmp = T.template triangularView<Upper>() * tmp;
|
||||
else tmp = T.template triangularView<Upper>().adjoint() * tmp;
|
||||
mat.noalias() -= V * tmp;
|
||||
}
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_BLOCK_HOUSEHOLDER_H
|
||||
172
examples/ThirdPartyLibs/Eigen/src/Householder/Householder.h
Normal file
172
examples/ThirdPartyLibs/Eigen/src/Householder/Householder.h
Normal file
@@ -0,0 +1,172 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_HOUSEHOLDER_H
|
||||
#define EIGEN_HOUSEHOLDER_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
template<int n> struct decrement_size
|
||||
{
|
||||
enum {
|
||||
ret = n==Dynamic ? n : n-1
|
||||
};
|
||||
};
|
||||
}
|
||||
|
||||
/** Computes the elementary reflector H such that:
|
||||
* \f$ H *this = [ beta 0 ... 0]^T \f$
|
||||
* where the transformation H is:
|
||||
* \f$ H = I - tau v v^*\f$
|
||||
* and the vector v is:
|
||||
* \f$ v^T = [1 essential^T] \f$
|
||||
*
|
||||
* The essential part of the vector \c v is stored in *this.
|
||||
*
|
||||
* On output:
|
||||
* \param tau the scaling factor of the Householder transformation
|
||||
* \param beta the result of H * \c *this
|
||||
*
|
||||
* \sa MatrixBase::makeHouseholder(), MatrixBase::applyHouseholderOnTheLeft(),
|
||||
* MatrixBase::applyHouseholderOnTheRight()
|
||||
*/
|
||||
template<typename Derived>
|
||||
void MatrixBase<Derived>::makeHouseholderInPlace(Scalar& tau, RealScalar& beta)
|
||||
{
|
||||
VectorBlock<Derived, internal::decrement_size<Base::SizeAtCompileTime>::ret> essentialPart(derived(), 1, size()-1);
|
||||
makeHouseholder(essentialPart, tau, beta);
|
||||
}
|
||||
|
||||
/** Computes the elementary reflector H such that:
|
||||
* \f$ H *this = [ beta 0 ... 0]^T \f$
|
||||
* where the transformation H is:
|
||||
* \f$ H = I - tau v v^*\f$
|
||||
* and the vector v is:
|
||||
* \f$ v^T = [1 essential^T] \f$
|
||||
*
|
||||
* On output:
|
||||
* \param essential the essential part of the vector \c v
|
||||
* \param tau the scaling factor of the Householder transformation
|
||||
* \param beta the result of H * \c *this
|
||||
*
|
||||
* \sa MatrixBase::makeHouseholderInPlace(), MatrixBase::applyHouseholderOnTheLeft(),
|
||||
* MatrixBase::applyHouseholderOnTheRight()
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename EssentialPart>
|
||||
void MatrixBase<Derived>::makeHouseholder(
|
||||
EssentialPart& essential,
|
||||
Scalar& tau,
|
||||
RealScalar& beta) const
|
||||
{
|
||||
using std::sqrt;
|
||||
using numext::conj;
|
||||
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(EssentialPart)
|
||||
VectorBlock<const Derived, EssentialPart::SizeAtCompileTime> tail(derived(), 1, size()-1);
|
||||
|
||||
RealScalar tailSqNorm = size()==1 ? RealScalar(0) : tail.squaredNorm();
|
||||
Scalar c0 = coeff(0);
|
||||
const RealScalar tol = (std::numeric_limits<RealScalar>::min)();
|
||||
|
||||
if(tailSqNorm <= tol && numext::abs2(numext::imag(c0))<=tol)
|
||||
{
|
||||
tau = RealScalar(0);
|
||||
beta = numext::real(c0);
|
||||
essential.setZero();
|
||||
}
|
||||
else
|
||||
{
|
||||
beta = sqrt(numext::abs2(c0) + tailSqNorm);
|
||||
if (numext::real(c0)>=RealScalar(0))
|
||||
beta = -beta;
|
||||
essential = tail / (c0 - beta);
|
||||
tau = conj((beta - c0) / beta);
|
||||
}
|
||||
}
|
||||
|
||||
/** Apply the elementary reflector H given by
|
||||
* \f$ H = I - tau v v^*\f$
|
||||
* with
|
||||
* \f$ v^T = [1 essential^T] \f$
|
||||
* from the left to a vector or matrix.
|
||||
*
|
||||
* On input:
|
||||
* \param essential the essential part of the vector \c v
|
||||
* \param tau the scaling factor of the Householder transformation
|
||||
* \param workspace a pointer to working space with at least
|
||||
* this->cols() * essential.size() entries
|
||||
*
|
||||
* \sa MatrixBase::makeHouseholder(), MatrixBase::makeHouseholderInPlace(),
|
||||
* MatrixBase::applyHouseholderOnTheRight()
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename EssentialPart>
|
||||
void MatrixBase<Derived>::applyHouseholderOnTheLeft(
|
||||
const EssentialPart& essential,
|
||||
const Scalar& tau,
|
||||
Scalar* workspace)
|
||||
{
|
||||
if(rows() == 1)
|
||||
{
|
||||
*this *= Scalar(1)-tau;
|
||||
}
|
||||
else if(tau!=Scalar(0))
|
||||
{
|
||||
Map<typename internal::plain_row_type<PlainObject>::type> tmp(workspace,cols());
|
||||
Block<Derived, EssentialPart::SizeAtCompileTime, Derived::ColsAtCompileTime> bottom(derived(), 1, 0, rows()-1, cols());
|
||||
tmp.noalias() = essential.adjoint() * bottom;
|
||||
tmp += this->row(0);
|
||||
this->row(0) -= tau * tmp;
|
||||
bottom.noalias() -= tau * essential * tmp;
|
||||
}
|
||||
}
|
||||
|
||||
/** Apply the elementary reflector H given by
|
||||
* \f$ H = I - tau v v^*\f$
|
||||
* with
|
||||
* \f$ v^T = [1 essential^T] \f$
|
||||
* from the right to a vector or matrix.
|
||||
*
|
||||
* On input:
|
||||
* \param essential the essential part of the vector \c v
|
||||
* \param tau the scaling factor of the Householder transformation
|
||||
* \param workspace a pointer to working space with at least
|
||||
* this->cols() * essential.size() entries
|
||||
*
|
||||
* \sa MatrixBase::makeHouseholder(), MatrixBase::makeHouseholderInPlace(),
|
||||
* MatrixBase::applyHouseholderOnTheLeft()
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename EssentialPart>
|
||||
void MatrixBase<Derived>::applyHouseholderOnTheRight(
|
||||
const EssentialPart& essential,
|
||||
const Scalar& tau,
|
||||
Scalar* workspace)
|
||||
{
|
||||
if(cols() == 1)
|
||||
{
|
||||
*this *= Scalar(1)-tau;
|
||||
}
|
||||
else if(tau!=Scalar(0))
|
||||
{
|
||||
Map<typename internal::plain_col_type<PlainObject>::type> tmp(workspace,rows());
|
||||
Block<Derived, Derived::RowsAtCompileTime, EssentialPart::SizeAtCompileTime> right(derived(), 0, 1, rows(), cols()-1);
|
||||
tmp.noalias() = right * essential.conjugate();
|
||||
tmp += this->col(0);
|
||||
this->col(0) -= tau * tmp;
|
||||
right.noalias() -= tau * tmp * essential.transpose();
|
||||
}
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_HOUSEHOLDER_H
|
||||
@@ -0,0 +1,470 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_HOUSEHOLDER_SEQUENCE_H
|
||||
#define EIGEN_HOUSEHOLDER_SEQUENCE_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \ingroup Householder_Module
|
||||
* \householder_module
|
||||
* \class HouseholderSequence
|
||||
* \brief Sequence of Householder reflections acting on subspaces with decreasing size
|
||||
* \tparam VectorsType type of matrix containing the Householder vectors
|
||||
* \tparam CoeffsType type of vector containing the Householder coefficients
|
||||
* \tparam Side either OnTheLeft (the default) or OnTheRight
|
||||
*
|
||||
* This class represents a product sequence of Householder reflections where the first Householder reflection
|
||||
* acts on the whole space, the second Householder reflection leaves the one-dimensional subspace spanned by
|
||||
* the first unit vector invariant, the third Householder reflection leaves the two-dimensional subspace
|
||||
* spanned by the first two unit vectors invariant, and so on up to the last reflection which leaves all but
|
||||
* one dimensions invariant and acts only on the last dimension. Such sequences of Householder reflections
|
||||
* are used in several algorithms to zero out certain parts of a matrix. Indeed, the methods
|
||||
* HessenbergDecomposition::matrixQ(), Tridiagonalization::matrixQ(), HouseholderQR::householderQ(),
|
||||
* and ColPivHouseholderQR::householderQ() all return a %HouseholderSequence.
|
||||
*
|
||||
* More precisely, the class %HouseholderSequence represents an \f$ n \times n \f$ matrix \f$ H \f$ of the
|
||||
* form \f$ H = \prod_{i=0}^{n-1} H_i \f$ where the i-th Householder reflection is \f$ H_i = I - h_i v_i
|
||||
* v_i^* \f$. The i-th Householder coefficient \f$ h_i \f$ is a scalar and the i-th Householder vector \f$
|
||||
* v_i \f$ is a vector of the form
|
||||
* \f[
|
||||
* v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ].
|
||||
* \f]
|
||||
* The last \f$ n-i \f$ entries of \f$ v_i \f$ are called the essential part of the Householder vector.
|
||||
*
|
||||
* Typical usages are listed below, where H is a HouseholderSequence:
|
||||
* \code
|
||||
* A.applyOnTheRight(H); // A = A * H
|
||||
* A.applyOnTheLeft(H); // A = H * A
|
||||
* A.applyOnTheRight(H.adjoint()); // A = A * H^*
|
||||
* A.applyOnTheLeft(H.adjoint()); // A = H^* * A
|
||||
* MatrixXd Q = H; // conversion to a dense matrix
|
||||
* \endcode
|
||||
* In addition to the adjoint, you can also apply the inverse (=adjoint), the transpose, and the conjugate operators.
|
||||
*
|
||||
* See the documentation for HouseholderSequence(const VectorsType&, const CoeffsType&) for an example.
|
||||
*
|
||||
* \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename VectorsType, typename CoeffsType, int Side>
|
||||
struct traits<HouseholderSequence<VectorsType,CoeffsType,Side> >
|
||||
{
|
||||
typedef typename VectorsType::Scalar Scalar;
|
||||
typedef typename VectorsType::StorageIndex StorageIndex;
|
||||
typedef typename VectorsType::StorageKind StorageKind;
|
||||
enum {
|
||||
RowsAtCompileTime = Side==OnTheLeft ? traits<VectorsType>::RowsAtCompileTime
|
||||
: traits<VectorsType>::ColsAtCompileTime,
|
||||
ColsAtCompileTime = RowsAtCompileTime,
|
||||
MaxRowsAtCompileTime = Side==OnTheLeft ? traits<VectorsType>::MaxRowsAtCompileTime
|
||||
: traits<VectorsType>::MaxColsAtCompileTime,
|
||||
MaxColsAtCompileTime = MaxRowsAtCompileTime,
|
||||
Flags = 0
|
||||
};
|
||||
};
|
||||
|
||||
struct HouseholderSequenceShape {};
|
||||
|
||||
template<typename VectorsType, typename CoeffsType, int Side>
|
||||
struct evaluator_traits<HouseholderSequence<VectorsType,CoeffsType,Side> >
|
||||
: public evaluator_traits_base<HouseholderSequence<VectorsType,CoeffsType,Side> >
|
||||
{
|
||||
typedef HouseholderSequenceShape Shape;
|
||||
};
|
||||
|
||||
template<typename VectorsType, typename CoeffsType, int Side>
|
||||
struct hseq_side_dependent_impl
|
||||
{
|
||||
typedef Block<const VectorsType, Dynamic, 1> EssentialVectorType;
|
||||
typedef HouseholderSequence<VectorsType, CoeffsType, OnTheLeft> HouseholderSequenceType;
|
||||
static inline const EssentialVectorType essentialVector(const HouseholderSequenceType& h, Index k)
|
||||
{
|
||||
Index start = k+1+h.m_shift;
|
||||
return Block<const VectorsType,Dynamic,1>(h.m_vectors, start, k, h.rows()-start, 1);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename VectorsType, typename CoeffsType>
|
||||
struct hseq_side_dependent_impl<VectorsType, CoeffsType, OnTheRight>
|
||||
{
|
||||
typedef Transpose<Block<const VectorsType, 1, Dynamic> > EssentialVectorType;
|
||||
typedef HouseholderSequence<VectorsType, CoeffsType, OnTheRight> HouseholderSequenceType;
|
||||
static inline const EssentialVectorType essentialVector(const HouseholderSequenceType& h, Index k)
|
||||
{
|
||||
Index start = k+1+h.m_shift;
|
||||
return Block<const VectorsType,1,Dynamic>(h.m_vectors, k, start, 1, h.rows()-start).transpose();
|
||||
}
|
||||
};
|
||||
|
||||
template<typename OtherScalarType, typename MatrixType> struct matrix_type_times_scalar_type
|
||||
{
|
||||
typedef typename ScalarBinaryOpTraits<OtherScalarType, typename MatrixType::Scalar>::ReturnType
|
||||
ResultScalar;
|
||||
typedef Matrix<ResultScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime,
|
||||
0, MatrixType::MaxRowsAtCompileTime, MatrixType::MaxColsAtCompileTime> Type;
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
template<typename VectorsType, typename CoeffsType, int Side> class HouseholderSequence
|
||||
: public EigenBase<HouseholderSequence<VectorsType,CoeffsType,Side> >
|
||||
{
|
||||
typedef typename internal::hseq_side_dependent_impl<VectorsType,CoeffsType,Side>::EssentialVectorType EssentialVectorType;
|
||||
|
||||
public:
|
||||
enum {
|
||||
RowsAtCompileTime = internal::traits<HouseholderSequence>::RowsAtCompileTime,
|
||||
ColsAtCompileTime = internal::traits<HouseholderSequence>::ColsAtCompileTime,
|
||||
MaxRowsAtCompileTime = internal::traits<HouseholderSequence>::MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime = internal::traits<HouseholderSequence>::MaxColsAtCompileTime
|
||||
};
|
||||
typedef typename internal::traits<HouseholderSequence>::Scalar Scalar;
|
||||
|
||||
typedef HouseholderSequence<
|
||||
typename internal::conditional<NumTraits<Scalar>::IsComplex,
|
||||
typename internal::remove_all<typename VectorsType::ConjugateReturnType>::type,
|
||||
VectorsType>::type,
|
||||
typename internal::conditional<NumTraits<Scalar>::IsComplex,
|
||||
typename internal::remove_all<typename CoeffsType::ConjugateReturnType>::type,
|
||||
CoeffsType>::type,
|
||||
Side
|
||||
> ConjugateReturnType;
|
||||
|
||||
/** \brief Constructor.
|
||||
* \param[in] v %Matrix containing the essential parts of the Householder vectors
|
||||
* \param[in] h Vector containing the Householder coefficients
|
||||
*
|
||||
* Constructs the Householder sequence with coefficients given by \p h and vectors given by \p v. The
|
||||
* i-th Householder coefficient \f$ h_i \f$ is given by \p h(i) and the essential part of the i-th
|
||||
* Householder vector \f$ v_i \f$ is given by \p v(k,i) with \p k > \p i (the subdiagonal part of the
|
||||
* i-th column). If \p v has fewer columns than rows, then the Householder sequence contains as many
|
||||
* Householder reflections as there are columns.
|
||||
*
|
||||
* \note The %HouseholderSequence object stores \p v and \p h by reference.
|
||||
*
|
||||
* Example: \include HouseholderSequence_HouseholderSequence.cpp
|
||||
* Output: \verbinclude HouseholderSequence_HouseholderSequence.out
|
||||
*
|
||||
* \sa setLength(), setShift()
|
||||
*/
|
||||
HouseholderSequence(const VectorsType& v, const CoeffsType& h)
|
||||
: m_vectors(v), m_coeffs(h), m_trans(false), m_length(v.diagonalSize()),
|
||||
m_shift(0)
|
||||
{
|
||||
}
|
||||
|
||||
/** \brief Copy constructor. */
|
||||
HouseholderSequence(const HouseholderSequence& other)
|
||||
: m_vectors(other.m_vectors),
|
||||
m_coeffs(other.m_coeffs),
|
||||
m_trans(other.m_trans),
|
||||
m_length(other.m_length),
|
||||
m_shift(other.m_shift)
|
||||
{
|
||||
}
|
||||
|
||||
/** \brief Number of rows of transformation viewed as a matrix.
|
||||
* \returns Number of rows
|
||||
* \details This equals the dimension of the space that the transformation acts on.
|
||||
*/
|
||||
Index rows() const { return Side==OnTheLeft ? m_vectors.rows() : m_vectors.cols(); }
|
||||
|
||||
/** \brief Number of columns of transformation viewed as a matrix.
|
||||
* \returns Number of columns
|
||||
* \details This equals the dimension of the space that the transformation acts on.
|
||||
*/
|
||||
Index cols() const { return rows(); }
|
||||
|
||||
/** \brief Essential part of a Householder vector.
|
||||
* \param[in] k Index of Householder reflection
|
||||
* \returns Vector containing non-trivial entries of k-th Householder vector
|
||||
*
|
||||
* This function returns the essential part of the Householder vector \f$ v_i \f$. This is a vector of
|
||||
* length \f$ n-i \f$ containing the last \f$ n-i \f$ entries of the vector
|
||||
* \f[
|
||||
* v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ].
|
||||
* \f]
|
||||
* The index \f$ i \f$ equals \p k + shift(), corresponding to the k-th column of the matrix \p v
|
||||
* passed to the constructor.
|
||||
*
|
||||
* \sa setShift(), shift()
|
||||
*/
|
||||
const EssentialVectorType essentialVector(Index k) const
|
||||
{
|
||||
eigen_assert(k >= 0 && k < m_length);
|
||||
return internal::hseq_side_dependent_impl<VectorsType,CoeffsType,Side>::essentialVector(*this, k);
|
||||
}
|
||||
|
||||
/** \brief %Transpose of the Householder sequence. */
|
||||
HouseholderSequence transpose() const
|
||||
{
|
||||
return HouseholderSequence(*this).setTrans(!m_trans);
|
||||
}
|
||||
|
||||
/** \brief Complex conjugate of the Householder sequence. */
|
||||
ConjugateReturnType conjugate() const
|
||||
{
|
||||
return ConjugateReturnType(m_vectors.conjugate(), m_coeffs.conjugate())
|
||||
.setTrans(m_trans)
|
||||
.setLength(m_length)
|
||||
.setShift(m_shift);
|
||||
}
|
||||
|
||||
/** \brief Adjoint (conjugate transpose) of the Householder sequence. */
|
||||
ConjugateReturnType adjoint() const
|
||||
{
|
||||
return conjugate().setTrans(!m_trans);
|
||||
}
|
||||
|
||||
/** \brief Inverse of the Householder sequence (equals the adjoint). */
|
||||
ConjugateReturnType inverse() const { return adjoint(); }
|
||||
|
||||
/** \internal */
|
||||
template<typename DestType> inline void evalTo(DestType& dst) const
|
||||
{
|
||||
Matrix<Scalar, DestType::RowsAtCompileTime, 1,
|
||||
AutoAlign|ColMajor, DestType::MaxRowsAtCompileTime, 1> workspace(rows());
|
||||
evalTo(dst, workspace);
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
template<typename Dest, typename Workspace>
|
||||
void evalTo(Dest& dst, Workspace& workspace) const
|
||||
{
|
||||
workspace.resize(rows());
|
||||
Index vecs = m_length;
|
||||
if(internal::is_same_dense(dst,m_vectors))
|
||||
{
|
||||
// in-place
|
||||
dst.diagonal().setOnes();
|
||||
dst.template triangularView<StrictlyUpper>().setZero();
|
||||
for(Index k = vecs-1; k >= 0; --k)
|
||||
{
|
||||
Index cornerSize = rows() - k - m_shift;
|
||||
if(m_trans)
|
||||
dst.bottomRightCorner(cornerSize, cornerSize)
|
||||
.applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), workspace.data());
|
||||
else
|
||||
dst.bottomRightCorner(cornerSize, cornerSize)
|
||||
.applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), workspace.data());
|
||||
|
||||
// clear the off diagonal vector
|
||||
dst.col(k).tail(rows()-k-1).setZero();
|
||||
}
|
||||
// clear the remaining columns if needed
|
||||
for(Index k = 0; k<cols()-vecs ; ++k)
|
||||
dst.col(k).tail(rows()-k-1).setZero();
|
||||
}
|
||||
else
|
||||
{
|
||||
dst.setIdentity(rows(), rows());
|
||||
for(Index k = vecs-1; k >= 0; --k)
|
||||
{
|
||||
Index cornerSize = rows() - k - m_shift;
|
||||
if(m_trans)
|
||||
dst.bottomRightCorner(cornerSize, cornerSize)
|
||||
.applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), &workspace.coeffRef(0));
|
||||
else
|
||||
dst.bottomRightCorner(cornerSize, cornerSize)
|
||||
.applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), &workspace.coeffRef(0));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
template<typename Dest> inline void applyThisOnTheRight(Dest& dst) const
|
||||
{
|
||||
Matrix<Scalar,1,Dest::RowsAtCompileTime,RowMajor,1,Dest::MaxRowsAtCompileTime> workspace(dst.rows());
|
||||
applyThisOnTheRight(dst, workspace);
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
template<typename Dest, typename Workspace>
|
||||
inline void applyThisOnTheRight(Dest& dst, Workspace& workspace) const
|
||||
{
|
||||
workspace.resize(dst.rows());
|
||||
for(Index k = 0; k < m_length; ++k)
|
||||
{
|
||||
Index actual_k = m_trans ? m_length-k-1 : k;
|
||||
dst.rightCols(rows()-m_shift-actual_k)
|
||||
.applyHouseholderOnTheRight(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data());
|
||||
}
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
template<typename Dest> inline void applyThisOnTheLeft(Dest& dst) const
|
||||
{
|
||||
Matrix<Scalar,1,Dest::ColsAtCompileTime,RowMajor,1,Dest::MaxColsAtCompileTime> workspace;
|
||||
applyThisOnTheLeft(dst, workspace);
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
template<typename Dest, typename Workspace>
|
||||
inline void applyThisOnTheLeft(Dest& dst, Workspace& workspace) const
|
||||
{
|
||||
const Index BlockSize = 48;
|
||||
// if the entries are large enough, then apply the reflectors by block
|
||||
if(m_length>=BlockSize && dst.cols()>1)
|
||||
{
|
||||
for(Index i = 0; i < m_length; i+=BlockSize)
|
||||
{
|
||||
Index end = m_trans ? (std::min)(m_length,i+BlockSize) : m_length-i;
|
||||
Index k = m_trans ? i : (std::max)(Index(0),end-BlockSize);
|
||||
Index bs = end-k;
|
||||
Index start = k + m_shift;
|
||||
|
||||
typedef Block<typename internal::remove_all<VectorsType>::type,Dynamic,Dynamic> SubVectorsType;
|
||||
SubVectorsType sub_vecs1(m_vectors.const_cast_derived(), Side==OnTheRight ? k : start,
|
||||
Side==OnTheRight ? start : k,
|
||||
Side==OnTheRight ? bs : m_vectors.rows()-start,
|
||||
Side==OnTheRight ? m_vectors.cols()-start : bs);
|
||||
typename internal::conditional<Side==OnTheRight, Transpose<SubVectorsType>, SubVectorsType&>::type sub_vecs(sub_vecs1);
|
||||
Block<Dest,Dynamic,Dynamic> sub_dst(dst,dst.rows()-rows()+m_shift+k,0, rows()-m_shift-k,dst.cols());
|
||||
apply_block_householder_on_the_left(sub_dst, sub_vecs, m_coeffs.segment(k, bs), !m_trans);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
workspace.resize(dst.cols());
|
||||
for(Index k = 0; k < m_length; ++k)
|
||||
{
|
||||
Index actual_k = m_trans ? k : m_length-k-1;
|
||||
dst.bottomRows(rows()-m_shift-actual_k)
|
||||
.applyHouseholderOnTheLeft(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/** \brief Computes the product of a Householder sequence with a matrix.
|
||||
* \param[in] other %Matrix being multiplied.
|
||||
* \returns Expression object representing the product.
|
||||
*
|
||||
* This function computes \f$ HM \f$ where \f$ H \f$ is the Householder sequence represented by \p *this
|
||||
* and \f$ M \f$ is the matrix \p other.
|
||||
*/
|
||||
template<typename OtherDerived>
|
||||
typename internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::Type operator*(const MatrixBase<OtherDerived>& other) const
|
||||
{
|
||||
typename internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::Type
|
||||
res(other.template cast<typename internal::matrix_type_times_scalar_type<Scalar,OtherDerived>::ResultScalar>());
|
||||
applyThisOnTheLeft(res);
|
||||
return res;
|
||||
}
|
||||
|
||||
template<typename _VectorsType, typename _CoeffsType, int _Side> friend struct internal::hseq_side_dependent_impl;
|
||||
|
||||
/** \brief Sets the length of the Householder sequence.
|
||||
* \param [in] length New value for the length.
|
||||
*
|
||||
* By default, the length \f$ n \f$ of the Householder sequence \f$ H = H_0 H_1 \ldots H_{n-1} \f$ is set
|
||||
* to the number of columns of the matrix \p v passed to the constructor, or the number of rows if that
|
||||
* is smaller. After this function is called, the length equals \p length.
|
||||
*
|
||||
* \sa length()
|
||||
*/
|
||||
HouseholderSequence& setLength(Index length)
|
||||
{
|
||||
m_length = length;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** \brief Sets the shift of the Householder sequence.
|
||||
* \param [in] shift New value for the shift.
|
||||
*
|
||||
* By default, a %HouseholderSequence object represents \f$ H = H_0 H_1 \ldots H_{n-1} \f$ and the i-th
|
||||
* column of the matrix \p v passed to the constructor corresponds to the i-th Householder
|
||||
* reflection. After this function is called, the object represents \f$ H = H_{\mathrm{shift}}
|
||||
* H_{\mathrm{shift}+1} \ldots H_{n-1} \f$ and the i-th column of \p v corresponds to the (shift+i)-th
|
||||
* Householder reflection.
|
||||
*
|
||||
* \sa shift()
|
||||
*/
|
||||
HouseholderSequence& setShift(Index shift)
|
||||
{
|
||||
m_shift = shift;
|
||||
return *this;
|
||||
}
|
||||
|
||||
Index length() const { return m_length; } /**< \brief Returns the length of the Householder sequence. */
|
||||
Index shift() const { return m_shift; } /**< \brief Returns the shift of the Householder sequence. */
|
||||
|
||||
/* Necessary for .adjoint() and .conjugate() */
|
||||
template <typename VectorsType2, typename CoeffsType2, int Side2> friend class HouseholderSequence;
|
||||
|
||||
protected:
|
||||
|
||||
/** \brief Sets the transpose flag.
|
||||
* \param [in] trans New value of the transpose flag.
|
||||
*
|
||||
* By default, the transpose flag is not set. If the transpose flag is set, then this object represents
|
||||
* \f$ H^T = H_{n-1}^T \ldots H_1^T H_0^T \f$ instead of \f$ H = H_0 H_1 \ldots H_{n-1} \f$.
|
||||
*
|
||||
* \sa trans()
|
||||
*/
|
||||
HouseholderSequence& setTrans(bool trans)
|
||||
{
|
||||
m_trans = trans;
|
||||
return *this;
|
||||
}
|
||||
|
||||
bool trans() const { return m_trans; } /**< \brief Returns the transpose flag. */
|
||||
|
||||
typename VectorsType::Nested m_vectors;
|
||||
typename CoeffsType::Nested m_coeffs;
|
||||
bool m_trans;
|
||||
Index m_length;
|
||||
Index m_shift;
|
||||
};
|
||||
|
||||
/** \brief Computes the product of a matrix with a Householder sequence.
|
||||
* \param[in] other %Matrix being multiplied.
|
||||
* \param[in] h %HouseholderSequence being multiplied.
|
||||
* \returns Expression object representing the product.
|
||||
*
|
||||
* This function computes \f$ MH \f$ where \f$ M \f$ is the matrix \p other and \f$ H \f$ is the
|
||||
* Householder sequence represented by \p h.
|
||||
*/
|
||||
template<typename OtherDerived, typename VectorsType, typename CoeffsType, int Side>
|
||||
typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::Type operator*(const MatrixBase<OtherDerived>& other, const HouseholderSequence<VectorsType,CoeffsType,Side>& h)
|
||||
{
|
||||
typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::Type
|
||||
res(other.template cast<typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::ResultScalar>());
|
||||
h.applyThisOnTheRight(res);
|
||||
return res;
|
||||
}
|
||||
|
||||
/** \ingroup Householder_Module \householder_module
|
||||
* \brief Convenience function for constructing a Householder sequence.
|
||||
* \returns A HouseholderSequence constructed from the specified arguments.
|
||||
*/
|
||||
template<typename VectorsType, typename CoeffsType>
|
||||
HouseholderSequence<VectorsType,CoeffsType> householderSequence(const VectorsType& v, const CoeffsType& h)
|
||||
{
|
||||
return HouseholderSequence<VectorsType,CoeffsType,OnTheLeft>(v, h);
|
||||
}
|
||||
|
||||
/** \ingroup Householder_Module \householder_module
|
||||
* \brief Convenience function for constructing a Householder sequence.
|
||||
* \returns A HouseholderSequence constructed from the specified arguments.
|
||||
* \details This function differs from householderSequence() in that the template argument \p OnTheSide of
|
||||
* the constructed HouseholderSequence is set to OnTheRight, instead of the default OnTheLeft.
|
||||
*/
|
||||
template<typename VectorsType, typename CoeffsType>
|
||||
HouseholderSequence<VectorsType,CoeffsType,OnTheRight> rightHouseholderSequence(const VectorsType& v, const CoeffsType& h)
|
||||
{
|
||||
return HouseholderSequence<VectorsType,CoeffsType,OnTheRight>(v, h);
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_HOUSEHOLDER_SEQUENCE_H
|
||||
Reference in New Issue
Block a user