Add preliminary PhysX 4.0 backend for PyBullet
Add inverse dynamics / mass matrix code from DeepMimic, thanks to Xue Bin (Jason) Peng Add example how to use stable PD control for humanoid with spherical joints (see humanoidMotionCapture.py) Fix related to TinyRenderer object transforms not updating when using collision filtering
This commit is contained in:
@@ -0,0 +1,689 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2012 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SIMPLICIAL_CHOLESKY_H
|
||||
#define EIGEN_SIMPLICIAL_CHOLESKY_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
enum SimplicialCholeskyMode {
|
||||
SimplicialCholeskyLLT,
|
||||
SimplicialCholeskyLDLT
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
template<typename CholMatrixType, typename InputMatrixType>
|
||||
struct simplicial_cholesky_grab_input {
|
||||
typedef CholMatrixType const * ConstCholMatrixPtr;
|
||||
static void run(const InputMatrixType& input, ConstCholMatrixPtr &pmat, CholMatrixType &tmp)
|
||||
{
|
||||
tmp = input;
|
||||
pmat = &tmp;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename MatrixType>
|
||||
struct simplicial_cholesky_grab_input<MatrixType,MatrixType> {
|
||||
typedef MatrixType const * ConstMatrixPtr;
|
||||
static void run(const MatrixType& input, ConstMatrixPtr &pmat, MatrixType &/*tmp*/)
|
||||
{
|
||||
pmat = &input;
|
||||
}
|
||||
};
|
||||
} // end namespace internal
|
||||
|
||||
/** \ingroup SparseCholesky_Module
|
||||
* \brief A base class for direct sparse Cholesky factorizations
|
||||
*
|
||||
* This is a base class for LL^T and LDL^T Cholesky factorizations of sparse matrices that are
|
||||
* selfadjoint and positive definite. These factorizations allow for solving A.X = B where
|
||||
* X and B can be either dense or sparse.
|
||||
*
|
||||
* In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization
|
||||
* such that the factorized matrix is P A P^-1.
|
||||
*
|
||||
* \tparam Derived the type of the derived class, that is the actual factorization type.
|
||||
*
|
||||
*/
|
||||
template<typename Derived>
|
||||
class SimplicialCholeskyBase : public SparseSolverBase<Derived>
|
||||
{
|
||||
typedef SparseSolverBase<Derived> Base;
|
||||
using Base::m_isInitialized;
|
||||
|
||||
public:
|
||||
typedef typename internal::traits<Derived>::MatrixType MatrixType;
|
||||
typedef typename internal::traits<Derived>::OrderingType OrderingType;
|
||||
enum { UpLo = internal::traits<Derived>::UpLo };
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef typename MatrixType::StorageIndex StorageIndex;
|
||||
typedef SparseMatrix<Scalar,ColMajor,StorageIndex> CholMatrixType;
|
||||
typedef CholMatrixType const * ConstCholMatrixPtr;
|
||||
typedef Matrix<Scalar,Dynamic,1> VectorType;
|
||||
typedef Matrix<StorageIndex,Dynamic,1> VectorI;
|
||||
|
||||
enum {
|
||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
||||
};
|
||||
|
||||
public:
|
||||
|
||||
using Base::derived;
|
||||
|
||||
/** Default constructor */
|
||||
SimplicialCholeskyBase()
|
||||
: m_info(Success), m_shiftOffset(0), m_shiftScale(1)
|
||||
{}
|
||||
|
||||
explicit SimplicialCholeskyBase(const MatrixType& matrix)
|
||||
: m_info(Success), m_shiftOffset(0), m_shiftScale(1)
|
||||
{
|
||||
derived().compute(matrix);
|
||||
}
|
||||
|
||||
~SimplicialCholeskyBase()
|
||||
{
|
||||
}
|
||||
|
||||
Derived& derived() { return *static_cast<Derived*>(this); }
|
||||
const Derived& derived() const { return *static_cast<const Derived*>(this); }
|
||||
|
||||
inline Index cols() const { return m_matrix.cols(); }
|
||||
inline Index rows() const { return m_matrix.rows(); }
|
||||
|
||||
/** \brief Reports whether previous computation was successful.
|
||||
*
|
||||
* \returns \c Success if computation was succesful,
|
||||
* \c NumericalIssue if the matrix.appears to be negative.
|
||||
*/
|
||||
ComputationInfo info() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
|
||||
return m_info;
|
||||
}
|
||||
|
||||
/** \returns the permutation P
|
||||
* \sa permutationPinv() */
|
||||
const PermutationMatrix<Dynamic,Dynamic,StorageIndex>& permutationP() const
|
||||
{ return m_P; }
|
||||
|
||||
/** \returns the inverse P^-1 of the permutation P
|
||||
* \sa permutationP() */
|
||||
const PermutationMatrix<Dynamic,Dynamic,StorageIndex>& permutationPinv() const
|
||||
{ return m_Pinv; }
|
||||
|
||||
/** Sets the shift parameters that will be used to adjust the diagonal coefficients during the numerical factorization.
|
||||
*
|
||||
* During the numerical factorization, the diagonal coefficients are transformed by the following linear model:\n
|
||||
* \c d_ii = \a offset + \a scale * \c d_ii
|
||||
*
|
||||
* The default is the identity transformation with \a offset=0, and \a scale=1.
|
||||
*
|
||||
* \returns a reference to \c *this.
|
||||
*/
|
||||
Derived& setShift(const RealScalar& offset, const RealScalar& scale = 1)
|
||||
{
|
||||
m_shiftOffset = offset;
|
||||
m_shiftScale = scale;
|
||||
return derived();
|
||||
}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
/** \internal */
|
||||
template<typename Stream>
|
||||
void dumpMemory(Stream& s)
|
||||
{
|
||||
int total = 0;
|
||||
s << " L: " << ((total+=(m_matrix.cols()+1) * sizeof(int) + m_matrix.nonZeros()*(sizeof(int)+sizeof(Scalar))) >> 20) << "Mb" << "\n";
|
||||
s << " diag: " << ((total+=m_diag.size() * sizeof(Scalar)) >> 20) << "Mb" << "\n";
|
||||
s << " tree: " << ((total+=m_parent.size() * sizeof(int)) >> 20) << "Mb" << "\n";
|
||||
s << " nonzeros: " << ((total+=m_nonZerosPerCol.size() * sizeof(int)) >> 20) << "Mb" << "\n";
|
||||
s << " perm: " << ((total+=m_P.size() * sizeof(int)) >> 20) << "Mb" << "\n";
|
||||
s << " perm^-1: " << ((total+=m_Pinv.size() * sizeof(int)) >> 20) << "Mb" << "\n";
|
||||
s << " TOTAL: " << (total>> 20) << "Mb" << "\n";
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
template<typename Rhs,typename Dest>
|
||||
void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
|
||||
{
|
||||
eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
|
||||
eigen_assert(m_matrix.rows()==b.rows());
|
||||
|
||||
if(m_info!=Success)
|
||||
return;
|
||||
|
||||
if(m_P.size()>0)
|
||||
dest = m_P * b;
|
||||
else
|
||||
dest = b;
|
||||
|
||||
if(m_matrix.nonZeros()>0) // otherwise L==I
|
||||
derived().matrixL().solveInPlace(dest);
|
||||
|
||||
if(m_diag.size()>0)
|
||||
dest = m_diag.asDiagonal().inverse() * dest;
|
||||
|
||||
if (m_matrix.nonZeros()>0) // otherwise U==I
|
||||
derived().matrixU().solveInPlace(dest);
|
||||
|
||||
if(m_P.size()>0)
|
||||
dest = m_Pinv * dest;
|
||||
}
|
||||
|
||||
template<typename Rhs,typename Dest>
|
||||
void _solve_impl(const SparseMatrixBase<Rhs> &b, SparseMatrixBase<Dest> &dest) const
|
||||
{
|
||||
internal::solve_sparse_through_dense_panels(derived(), b, dest);
|
||||
}
|
||||
|
||||
#endif // EIGEN_PARSED_BY_DOXYGEN
|
||||
|
||||
protected:
|
||||
|
||||
/** Computes the sparse Cholesky decomposition of \a matrix */
|
||||
template<bool DoLDLT>
|
||||
void compute(const MatrixType& matrix)
|
||||
{
|
||||
eigen_assert(matrix.rows()==matrix.cols());
|
||||
Index size = matrix.cols();
|
||||
CholMatrixType tmp(size,size);
|
||||
ConstCholMatrixPtr pmat;
|
||||
ordering(matrix, pmat, tmp);
|
||||
analyzePattern_preordered(*pmat, DoLDLT);
|
||||
factorize_preordered<DoLDLT>(*pmat);
|
||||
}
|
||||
|
||||
template<bool DoLDLT>
|
||||
void factorize(const MatrixType& a)
|
||||
{
|
||||
eigen_assert(a.rows()==a.cols());
|
||||
Index size = a.cols();
|
||||
CholMatrixType tmp(size,size);
|
||||
ConstCholMatrixPtr pmat;
|
||||
|
||||
if(m_P.size()==0 && (UpLo&Upper)==Upper)
|
||||
{
|
||||
// If there is no ordering, try to directly use the input matrix without any copy
|
||||
internal::simplicial_cholesky_grab_input<CholMatrixType,MatrixType>::run(a, pmat, tmp);
|
||||
}
|
||||
else
|
||||
{
|
||||
tmp.template selfadjointView<Upper>() = a.template selfadjointView<UpLo>().twistedBy(m_P);
|
||||
pmat = &tmp;
|
||||
}
|
||||
|
||||
factorize_preordered<DoLDLT>(*pmat);
|
||||
}
|
||||
|
||||
template<bool DoLDLT>
|
||||
void factorize_preordered(const CholMatrixType& a);
|
||||
|
||||
void analyzePattern(const MatrixType& a, bool doLDLT)
|
||||
{
|
||||
eigen_assert(a.rows()==a.cols());
|
||||
Index size = a.cols();
|
||||
CholMatrixType tmp(size,size);
|
||||
ConstCholMatrixPtr pmat;
|
||||
ordering(a, pmat, tmp);
|
||||
analyzePattern_preordered(*pmat,doLDLT);
|
||||
}
|
||||
void analyzePattern_preordered(const CholMatrixType& a, bool doLDLT);
|
||||
|
||||
void ordering(const MatrixType& a, ConstCholMatrixPtr &pmat, CholMatrixType& ap);
|
||||
|
||||
/** keeps off-diagonal entries; drops diagonal entries */
|
||||
struct keep_diag {
|
||||
inline bool operator() (const Index& row, const Index& col, const Scalar&) const
|
||||
{
|
||||
return row!=col;
|
||||
}
|
||||
};
|
||||
|
||||
mutable ComputationInfo m_info;
|
||||
bool m_factorizationIsOk;
|
||||
bool m_analysisIsOk;
|
||||
|
||||
CholMatrixType m_matrix;
|
||||
VectorType m_diag; // the diagonal coefficients (LDLT mode)
|
||||
VectorI m_parent; // elimination tree
|
||||
VectorI m_nonZerosPerCol;
|
||||
PermutationMatrix<Dynamic,Dynamic,StorageIndex> m_P; // the permutation
|
||||
PermutationMatrix<Dynamic,Dynamic,StorageIndex> m_Pinv; // the inverse permutation
|
||||
|
||||
RealScalar m_shiftOffset;
|
||||
RealScalar m_shiftScale;
|
||||
};
|
||||
|
||||
template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::StorageIndex> > class SimplicialLLT;
|
||||
template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::StorageIndex> > class SimplicialLDLT;
|
||||
template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::StorageIndex> > class SimplicialCholesky;
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename _MatrixType, int _UpLo, typename _Ordering> struct traits<SimplicialLLT<_MatrixType,_UpLo,_Ordering> >
|
||||
{
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef _Ordering OrderingType;
|
||||
enum { UpLo = _UpLo };
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::StorageIndex StorageIndex;
|
||||
typedef SparseMatrix<Scalar, ColMajor, StorageIndex> CholMatrixType;
|
||||
typedef TriangularView<const CholMatrixType, Eigen::Lower> MatrixL;
|
||||
typedef TriangularView<const typename CholMatrixType::AdjointReturnType, Eigen::Upper> MatrixU;
|
||||
static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); }
|
||||
static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); }
|
||||
};
|
||||
|
||||
template<typename _MatrixType,int _UpLo, typename _Ordering> struct traits<SimplicialLDLT<_MatrixType,_UpLo,_Ordering> >
|
||||
{
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef _Ordering OrderingType;
|
||||
enum { UpLo = _UpLo };
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::StorageIndex StorageIndex;
|
||||
typedef SparseMatrix<Scalar, ColMajor, StorageIndex> CholMatrixType;
|
||||
typedef TriangularView<const CholMatrixType, Eigen::UnitLower> MatrixL;
|
||||
typedef TriangularView<const typename CholMatrixType::AdjointReturnType, Eigen::UnitUpper> MatrixU;
|
||||
static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); }
|
||||
static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); }
|
||||
};
|
||||
|
||||
template<typename _MatrixType, int _UpLo, typename _Ordering> struct traits<SimplicialCholesky<_MatrixType,_UpLo,_Ordering> >
|
||||
{
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef _Ordering OrderingType;
|
||||
enum { UpLo = _UpLo };
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
/** \ingroup SparseCholesky_Module
|
||||
* \class SimplicialLLT
|
||||
* \brief A direct sparse LLT Cholesky factorizations
|
||||
*
|
||||
* This class provides a LL^T Cholesky factorizations of sparse matrices that are
|
||||
* selfadjoint and positive definite. The factorization allows for solving A.X = B where
|
||||
* X and B can be either dense or sparse.
|
||||
*
|
||||
* In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization
|
||||
* such that the factorized matrix is P A P^-1.
|
||||
*
|
||||
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
|
||||
* or Upper. Default is Lower.
|
||||
* \tparam _Ordering The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<>
|
||||
*
|
||||
* \implsparsesolverconcept
|
||||
*
|
||||
* \sa class SimplicialLDLT, class AMDOrdering, class NaturalOrdering
|
||||
*/
|
||||
template<typename _MatrixType, int _UpLo, typename _Ordering>
|
||||
class SimplicialLLT : public SimplicialCholeskyBase<SimplicialLLT<_MatrixType,_UpLo,_Ordering> >
|
||||
{
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
enum { UpLo = _UpLo };
|
||||
typedef SimplicialCholeskyBase<SimplicialLLT> Base;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef typename MatrixType::StorageIndex StorageIndex;
|
||||
typedef SparseMatrix<Scalar,ColMajor,Index> CholMatrixType;
|
||||
typedef Matrix<Scalar,Dynamic,1> VectorType;
|
||||
typedef internal::traits<SimplicialLLT> Traits;
|
||||
typedef typename Traits::MatrixL MatrixL;
|
||||
typedef typename Traits::MatrixU MatrixU;
|
||||
public:
|
||||
/** Default constructor */
|
||||
SimplicialLLT() : Base() {}
|
||||
/** Constructs and performs the LLT factorization of \a matrix */
|
||||
explicit SimplicialLLT(const MatrixType& matrix)
|
||||
: Base(matrix) {}
|
||||
|
||||
/** \returns an expression of the factor L */
|
||||
inline const MatrixL matrixL() const {
|
||||
eigen_assert(Base::m_factorizationIsOk && "Simplicial LLT not factorized");
|
||||
return Traits::getL(Base::m_matrix);
|
||||
}
|
||||
|
||||
/** \returns an expression of the factor U (= L^*) */
|
||||
inline const MatrixU matrixU() const {
|
||||
eigen_assert(Base::m_factorizationIsOk && "Simplicial LLT not factorized");
|
||||
return Traits::getU(Base::m_matrix);
|
||||
}
|
||||
|
||||
/** Computes the sparse Cholesky decomposition of \a matrix */
|
||||
SimplicialLLT& compute(const MatrixType& matrix)
|
||||
{
|
||||
Base::template compute<false>(matrix);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Performs a symbolic decomposition on the sparcity of \a matrix.
|
||||
*
|
||||
* This function is particularly useful when solving for several problems having the same structure.
|
||||
*
|
||||
* \sa factorize()
|
||||
*/
|
||||
void analyzePattern(const MatrixType& a)
|
||||
{
|
||||
Base::analyzePattern(a, false);
|
||||
}
|
||||
|
||||
/** Performs a numeric decomposition of \a matrix
|
||||
*
|
||||
* The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
|
||||
*
|
||||
* \sa analyzePattern()
|
||||
*/
|
||||
void factorize(const MatrixType& a)
|
||||
{
|
||||
Base::template factorize<false>(a);
|
||||
}
|
||||
|
||||
/** \returns the determinant of the underlying matrix from the current factorization */
|
||||
Scalar determinant() const
|
||||
{
|
||||
Scalar detL = Base::m_matrix.diagonal().prod();
|
||||
return numext::abs2(detL);
|
||||
}
|
||||
};
|
||||
|
||||
/** \ingroup SparseCholesky_Module
|
||||
* \class SimplicialLDLT
|
||||
* \brief A direct sparse LDLT Cholesky factorizations without square root.
|
||||
*
|
||||
* This class provides a LDL^T Cholesky factorizations without square root of sparse matrices that are
|
||||
* selfadjoint and positive definite. The factorization allows for solving A.X = B where
|
||||
* X and B can be either dense or sparse.
|
||||
*
|
||||
* In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization
|
||||
* such that the factorized matrix is P A P^-1.
|
||||
*
|
||||
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
|
||||
* or Upper. Default is Lower.
|
||||
* \tparam _Ordering The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<>
|
||||
*
|
||||
* \implsparsesolverconcept
|
||||
*
|
||||
* \sa class SimplicialLLT, class AMDOrdering, class NaturalOrdering
|
||||
*/
|
||||
template<typename _MatrixType, int _UpLo, typename _Ordering>
|
||||
class SimplicialLDLT : public SimplicialCholeskyBase<SimplicialLDLT<_MatrixType,_UpLo,_Ordering> >
|
||||
{
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
enum { UpLo = _UpLo };
|
||||
typedef SimplicialCholeskyBase<SimplicialLDLT> Base;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef typename MatrixType::StorageIndex StorageIndex;
|
||||
typedef SparseMatrix<Scalar,ColMajor,StorageIndex> CholMatrixType;
|
||||
typedef Matrix<Scalar,Dynamic,1> VectorType;
|
||||
typedef internal::traits<SimplicialLDLT> Traits;
|
||||
typedef typename Traits::MatrixL MatrixL;
|
||||
typedef typename Traits::MatrixU MatrixU;
|
||||
public:
|
||||
/** Default constructor */
|
||||
SimplicialLDLT() : Base() {}
|
||||
|
||||
/** Constructs and performs the LLT factorization of \a matrix */
|
||||
explicit SimplicialLDLT(const MatrixType& matrix)
|
||||
: Base(matrix) {}
|
||||
|
||||
/** \returns a vector expression of the diagonal D */
|
||||
inline const VectorType vectorD() const {
|
||||
eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized");
|
||||
return Base::m_diag;
|
||||
}
|
||||
/** \returns an expression of the factor L */
|
||||
inline const MatrixL matrixL() const {
|
||||
eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized");
|
||||
return Traits::getL(Base::m_matrix);
|
||||
}
|
||||
|
||||
/** \returns an expression of the factor U (= L^*) */
|
||||
inline const MatrixU matrixU() const {
|
||||
eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized");
|
||||
return Traits::getU(Base::m_matrix);
|
||||
}
|
||||
|
||||
/** Computes the sparse Cholesky decomposition of \a matrix */
|
||||
SimplicialLDLT& compute(const MatrixType& matrix)
|
||||
{
|
||||
Base::template compute<true>(matrix);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Performs a symbolic decomposition on the sparcity of \a matrix.
|
||||
*
|
||||
* This function is particularly useful when solving for several problems having the same structure.
|
||||
*
|
||||
* \sa factorize()
|
||||
*/
|
||||
void analyzePattern(const MatrixType& a)
|
||||
{
|
||||
Base::analyzePattern(a, true);
|
||||
}
|
||||
|
||||
/** Performs a numeric decomposition of \a matrix
|
||||
*
|
||||
* The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
|
||||
*
|
||||
* \sa analyzePattern()
|
||||
*/
|
||||
void factorize(const MatrixType& a)
|
||||
{
|
||||
Base::template factorize<true>(a);
|
||||
}
|
||||
|
||||
/** \returns the determinant of the underlying matrix from the current factorization */
|
||||
Scalar determinant() const
|
||||
{
|
||||
return Base::m_diag.prod();
|
||||
}
|
||||
};
|
||||
|
||||
/** \deprecated use SimplicialLDLT or class SimplicialLLT
|
||||
* \ingroup SparseCholesky_Module
|
||||
* \class SimplicialCholesky
|
||||
*
|
||||
* \sa class SimplicialLDLT, class SimplicialLLT
|
||||
*/
|
||||
template<typename _MatrixType, int _UpLo, typename _Ordering>
|
||||
class SimplicialCholesky : public SimplicialCholeskyBase<SimplicialCholesky<_MatrixType,_UpLo,_Ordering> >
|
||||
{
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
enum { UpLo = _UpLo };
|
||||
typedef SimplicialCholeskyBase<SimplicialCholesky> Base;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
typedef typename MatrixType::StorageIndex StorageIndex;
|
||||
typedef SparseMatrix<Scalar,ColMajor,StorageIndex> CholMatrixType;
|
||||
typedef Matrix<Scalar,Dynamic,1> VectorType;
|
||||
typedef internal::traits<SimplicialCholesky> Traits;
|
||||
typedef internal::traits<SimplicialLDLT<MatrixType,UpLo> > LDLTTraits;
|
||||
typedef internal::traits<SimplicialLLT<MatrixType,UpLo> > LLTTraits;
|
||||
public:
|
||||
SimplicialCholesky() : Base(), m_LDLT(true) {}
|
||||
|
||||
explicit SimplicialCholesky(const MatrixType& matrix)
|
||||
: Base(), m_LDLT(true)
|
||||
{
|
||||
compute(matrix);
|
||||
}
|
||||
|
||||
SimplicialCholesky& setMode(SimplicialCholeskyMode mode)
|
||||
{
|
||||
switch(mode)
|
||||
{
|
||||
case SimplicialCholeskyLLT:
|
||||
m_LDLT = false;
|
||||
break;
|
||||
case SimplicialCholeskyLDLT:
|
||||
m_LDLT = true;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline const VectorType vectorD() const {
|
||||
eigen_assert(Base::m_factorizationIsOk && "Simplicial Cholesky not factorized");
|
||||
return Base::m_diag;
|
||||
}
|
||||
inline const CholMatrixType rawMatrix() const {
|
||||
eigen_assert(Base::m_factorizationIsOk && "Simplicial Cholesky not factorized");
|
||||
return Base::m_matrix;
|
||||
}
|
||||
|
||||
/** Computes the sparse Cholesky decomposition of \a matrix */
|
||||
SimplicialCholesky& compute(const MatrixType& matrix)
|
||||
{
|
||||
if(m_LDLT)
|
||||
Base::template compute<true>(matrix);
|
||||
else
|
||||
Base::template compute<false>(matrix);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Performs a symbolic decomposition on the sparcity of \a matrix.
|
||||
*
|
||||
* This function is particularly useful when solving for several problems having the same structure.
|
||||
*
|
||||
* \sa factorize()
|
||||
*/
|
||||
void analyzePattern(const MatrixType& a)
|
||||
{
|
||||
Base::analyzePattern(a, m_LDLT);
|
||||
}
|
||||
|
||||
/** Performs a numeric decomposition of \a matrix
|
||||
*
|
||||
* The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
|
||||
*
|
||||
* \sa analyzePattern()
|
||||
*/
|
||||
void factorize(const MatrixType& a)
|
||||
{
|
||||
if(m_LDLT)
|
||||
Base::template factorize<true>(a);
|
||||
else
|
||||
Base::template factorize<false>(a);
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
template<typename Rhs,typename Dest>
|
||||
void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
|
||||
{
|
||||
eigen_assert(Base::m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
|
||||
eigen_assert(Base::m_matrix.rows()==b.rows());
|
||||
|
||||
if(Base::m_info!=Success)
|
||||
return;
|
||||
|
||||
if(Base::m_P.size()>0)
|
||||
dest = Base::m_P * b;
|
||||
else
|
||||
dest = b;
|
||||
|
||||
if(Base::m_matrix.nonZeros()>0) // otherwise L==I
|
||||
{
|
||||
if(m_LDLT)
|
||||
LDLTTraits::getL(Base::m_matrix).solveInPlace(dest);
|
||||
else
|
||||
LLTTraits::getL(Base::m_matrix).solveInPlace(dest);
|
||||
}
|
||||
|
||||
if(Base::m_diag.size()>0)
|
||||
dest = Base::m_diag.asDiagonal().inverse() * dest;
|
||||
|
||||
if (Base::m_matrix.nonZeros()>0) // otherwise I==I
|
||||
{
|
||||
if(m_LDLT)
|
||||
LDLTTraits::getU(Base::m_matrix).solveInPlace(dest);
|
||||
else
|
||||
LLTTraits::getU(Base::m_matrix).solveInPlace(dest);
|
||||
}
|
||||
|
||||
if(Base::m_P.size()>0)
|
||||
dest = Base::m_Pinv * dest;
|
||||
}
|
||||
|
||||
/** \internal */
|
||||
template<typename Rhs,typename Dest>
|
||||
void _solve_impl(const SparseMatrixBase<Rhs> &b, SparseMatrixBase<Dest> &dest) const
|
||||
{
|
||||
internal::solve_sparse_through_dense_panels(*this, b, dest);
|
||||
}
|
||||
|
||||
Scalar determinant() const
|
||||
{
|
||||
if(m_LDLT)
|
||||
{
|
||||
return Base::m_diag.prod();
|
||||
}
|
||||
else
|
||||
{
|
||||
Scalar detL = Diagonal<const CholMatrixType>(Base::m_matrix).prod();
|
||||
return numext::abs2(detL);
|
||||
}
|
||||
}
|
||||
|
||||
protected:
|
||||
bool m_LDLT;
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
void SimplicialCholeskyBase<Derived>::ordering(const MatrixType& a, ConstCholMatrixPtr &pmat, CholMatrixType& ap)
|
||||
{
|
||||
eigen_assert(a.rows()==a.cols());
|
||||
const Index size = a.rows();
|
||||
pmat = ≈
|
||||
// Note that ordering methods compute the inverse permutation
|
||||
if(!internal::is_same<OrderingType,NaturalOrdering<Index> >::value)
|
||||
{
|
||||
{
|
||||
CholMatrixType C;
|
||||
C = a.template selfadjointView<UpLo>();
|
||||
|
||||
OrderingType ordering;
|
||||
ordering(C,m_Pinv);
|
||||
}
|
||||
|
||||
if(m_Pinv.size()>0) m_P = m_Pinv.inverse();
|
||||
else m_P.resize(0);
|
||||
|
||||
ap.resize(size,size);
|
||||
ap.template selfadjointView<Upper>() = a.template selfadjointView<UpLo>().twistedBy(m_P);
|
||||
}
|
||||
else
|
||||
{
|
||||
m_Pinv.resize(0);
|
||||
m_P.resize(0);
|
||||
if(int(UpLo)==int(Lower) || MatrixType::IsRowMajor)
|
||||
{
|
||||
// we have to transpose the lower part to to the upper one
|
||||
ap.resize(size,size);
|
||||
ap.template selfadjointView<Upper>() = a.template selfadjointView<UpLo>();
|
||||
}
|
||||
else
|
||||
internal::simplicial_cholesky_grab_input<CholMatrixType,MatrixType>::run(a, pmat, ap);
|
||||
}
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SIMPLICIAL_CHOLESKY_H
|
||||
@@ -0,0 +1,199 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2012 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
|
||||
/*
|
||||
|
||||
NOTE: thes functions vave been adapted from the LDL library:
|
||||
|
||||
LDL Copyright (c) 2005 by Timothy A. Davis. All Rights Reserved.
|
||||
|
||||
LDL License:
|
||||
|
||||
Your use or distribution of LDL or any modified version of
|
||||
LDL implies that you agree to this License.
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
This library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with this library; if not, write to the Free Software
|
||||
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
|
||||
USA
|
||||
|
||||
Permission is hereby granted to use or copy this program under the
|
||||
terms of the GNU LGPL, provided that the Copyright, this License,
|
||||
and the Availability of the original version is retained on all copies.
|
||||
User documentation of any code that uses this code or any modified
|
||||
version of this code must cite the Copyright, this License, the
|
||||
Availability note, and "Used by permission." Permission to modify
|
||||
the code and to distribute modified code is granted, provided the
|
||||
Copyright, this License, and the Availability note are retained,
|
||||
and a notice that the code was modified is included.
|
||||
*/
|
||||
|
||||
#include "../Core/util/NonMPL2.h"
|
||||
|
||||
#ifndef EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H
|
||||
#define EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
template<typename Derived>
|
||||
void SimplicialCholeskyBase<Derived>::analyzePattern_preordered(const CholMatrixType& ap, bool doLDLT)
|
||||
{
|
||||
const StorageIndex size = StorageIndex(ap.rows());
|
||||
m_matrix.resize(size, size);
|
||||
m_parent.resize(size);
|
||||
m_nonZerosPerCol.resize(size);
|
||||
|
||||
ei_declare_aligned_stack_constructed_variable(StorageIndex, tags, size, 0);
|
||||
|
||||
for(StorageIndex k = 0; k < size; ++k)
|
||||
{
|
||||
/* L(k,:) pattern: all nodes reachable in etree from nz in A(0:k-1,k) */
|
||||
m_parent[k] = -1; /* parent of k is not yet known */
|
||||
tags[k] = k; /* mark node k as visited */
|
||||
m_nonZerosPerCol[k] = 0; /* count of nonzeros in column k of L */
|
||||
for(typename CholMatrixType::InnerIterator it(ap,k); it; ++it)
|
||||
{
|
||||
StorageIndex i = it.index();
|
||||
if(i < k)
|
||||
{
|
||||
/* follow path from i to root of etree, stop at flagged node */
|
||||
for(; tags[i] != k; i = m_parent[i])
|
||||
{
|
||||
/* find parent of i if not yet determined */
|
||||
if (m_parent[i] == -1)
|
||||
m_parent[i] = k;
|
||||
m_nonZerosPerCol[i]++; /* L (k,i) is nonzero */
|
||||
tags[i] = k; /* mark i as visited */
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* construct Lp index array from m_nonZerosPerCol column counts */
|
||||
StorageIndex* Lp = m_matrix.outerIndexPtr();
|
||||
Lp[0] = 0;
|
||||
for(StorageIndex k = 0; k < size; ++k)
|
||||
Lp[k+1] = Lp[k] + m_nonZerosPerCol[k] + (doLDLT ? 0 : 1);
|
||||
|
||||
m_matrix.resizeNonZeros(Lp[size]);
|
||||
|
||||
m_isInitialized = true;
|
||||
m_info = Success;
|
||||
m_analysisIsOk = true;
|
||||
m_factorizationIsOk = false;
|
||||
}
|
||||
|
||||
|
||||
template<typename Derived>
|
||||
template<bool DoLDLT>
|
||||
void SimplicialCholeskyBase<Derived>::factorize_preordered(const CholMatrixType& ap)
|
||||
{
|
||||
using std::sqrt;
|
||||
|
||||
eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
|
||||
eigen_assert(ap.rows()==ap.cols());
|
||||
eigen_assert(m_parent.size()==ap.rows());
|
||||
eigen_assert(m_nonZerosPerCol.size()==ap.rows());
|
||||
|
||||
const StorageIndex size = StorageIndex(ap.rows());
|
||||
const StorageIndex* Lp = m_matrix.outerIndexPtr();
|
||||
StorageIndex* Li = m_matrix.innerIndexPtr();
|
||||
Scalar* Lx = m_matrix.valuePtr();
|
||||
|
||||
ei_declare_aligned_stack_constructed_variable(Scalar, y, size, 0);
|
||||
ei_declare_aligned_stack_constructed_variable(StorageIndex, pattern, size, 0);
|
||||
ei_declare_aligned_stack_constructed_variable(StorageIndex, tags, size, 0);
|
||||
|
||||
bool ok = true;
|
||||
m_diag.resize(DoLDLT ? size : 0);
|
||||
|
||||
for(StorageIndex k = 0; k < size; ++k)
|
||||
{
|
||||
// compute nonzero pattern of kth row of L, in topological order
|
||||
y[k] = 0.0; // Y(0:k) is now all zero
|
||||
StorageIndex top = size; // stack for pattern is empty
|
||||
tags[k] = k; // mark node k as visited
|
||||
m_nonZerosPerCol[k] = 0; // count of nonzeros in column k of L
|
||||
for(typename CholMatrixType::InnerIterator it(ap,k); it; ++it)
|
||||
{
|
||||
StorageIndex i = it.index();
|
||||
if(i <= k)
|
||||
{
|
||||
y[i] += numext::conj(it.value()); /* scatter A(i,k) into Y (sum duplicates) */
|
||||
Index len;
|
||||
for(len = 0; tags[i] != k; i = m_parent[i])
|
||||
{
|
||||
pattern[len++] = i; /* L(k,i) is nonzero */
|
||||
tags[i] = k; /* mark i as visited */
|
||||
}
|
||||
while(len > 0)
|
||||
pattern[--top] = pattern[--len];
|
||||
}
|
||||
}
|
||||
|
||||
/* compute numerical values kth row of L (a sparse triangular solve) */
|
||||
|
||||
RealScalar d = numext::real(y[k]) * m_shiftScale + m_shiftOffset; // get D(k,k), apply the shift function, and clear Y(k)
|
||||
y[k] = 0.0;
|
||||
for(; top < size; ++top)
|
||||
{
|
||||
Index i = pattern[top]; /* pattern[top:n-1] is pattern of L(:,k) */
|
||||
Scalar yi = y[i]; /* get and clear Y(i) */
|
||||
y[i] = 0.0;
|
||||
|
||||
/* the nonzero entry L(k,i) */
|
||||
Scalar l_ki;
|
||||
if(DoLDLT)
|
||||
l_ki = yi / m_diag[i];
|
||||
else
|
||||
yi = l_ki = yi / Lx[Lp[i]];
|
||||
|
||||
Index p2 = Lp[i] + m_nonZerosPerCol[i];
|
||||
Index p;
|
||||
for(p = Lp[i] + (DoLDLT ? 0 : 1); p < p2; ++p)
|
||||
y[Li[p]] -= numext::conj(Lx[p]) * yi;
|
||||
d -= numext::real(l_ki * numext::conj(yi));
|
||||
Li[p] = k; /* store L(k,i) in column form of L */
|
||||
Lx[p] = l_ki;
|
||||
++m_nonZerosPerCol[i]; /* increment count of nonzeros in col i */
|
||||
}
|
||||
if(DoLDLT)
|
||||
{
|
||||
m_diag[k] = d;
|
||||
if(d == RealScalar(0))
|
||||
{
|
||||
ok = false; /* failure, D(k,k) is zero */
|
||||
break;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
Index p = Lp[k] + m_nonZerosPerCol[k]++;
|
||||
Li[p] = k ; /* store L(k,k) = sqrt (d) in column k */
|
||||
if(d <= RealScalar(0)) {
|
||||
ok = false; /* failure, matrix is not positive definite */
|
||||
break;
|
||||
}
|
||||
Lx[p] = sqrt(d) ;
|
||||
}
|
||||
}
|
||||
|
||||
m_info = ok ? Success : NumericalIssue;
|
||||
m_factorizationIsOk = true;
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H
|
||||
Reference in New Issue
Block a user