Add preliminary PhysX 4.0 backend for PyBullet
Add inverse dynamics / mass matrix code from DeepMimic, thanks to Xue Bin (Jason) Peng Add example how to use stable PD control for humanoid with spherical joints (see humanoidMotionCapture.py) Fix related to TinyRenderer object transforms not updating when using collision filtering
This commit is contained in:
377
examples/ThirdPartyLibs/Eigen/src/SparseCore/AmbiVector.h
Normal file
377
examples/ThirdPartyLibs/Eigen/src/SparseCore/AmbiVector.h
Normal file
@@ -0,0 +1,377 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_AMBIVECTOR_H
|
||||
#define EIGEN_AMBIVECTOR_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
/** \internal
|
||||
* Hybrid sparse/dense vector class designed for intensive read-write operations.
|
||||
*
|
||||
* See BasicSparseLLT and SparseProduct for usage examples.
|
||||
*/
|
||||
template<typename _Scalar, typename _StorageIndex>
|
||||
class AmbiVector
|
||||
{
|
||||
public:
|
||||
typedef _Scalar Scalar;
|
||||
typedef _StorageIndex StorageIndex;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
|
||||
explicit AmbiVector(Index size)
|
||||
: m_buffer(0), m_zero(0), m_size(0), m_allocatedSize(0), m_allocatedElements(0), m_mode(-1)
|
||||
{
|
||||
resize(size);
|
||||
}
|
||||
|
||||
void init(double estimatedDensity);
|
||||
void init(int mode);
|
||||
|
||||
Index nonZeros() const;
|
||||
|
||||
/** Specifies a sub-vector to work on */
|
||||
void setBounds(Index start, Index end) { m_start = convert_index(start); m_end = convert_index(end); }
|
||||
|
||||
void setZero();
|
||||
|
||||
void restart();
|
||||
Scalar& coeffRef(Index i);
|
||||
Scalar& coeff(Index i);
|
||||
|
||||
class Iterator;
|
||||
|
||||
~AmbiVector() { delete[] m_buffer; }
|
||||
|
||||
void resize(Index size)
|
||||
{
|
||||
if (m_allocatedSize < size)
|
||||
reallocate(size);
|
||||
m_size = convert_index(size);
|
||||
}
|
||||
|
||||
StorageIndex size() const { return m_size; }
|
||||
|
||||
protected:
|
||||
StorageIndex convert_index(Index idx)
|
||||
{
|
||||
return internal::convert_index<StorageIndex>(idx);
|
||||
}
|
||||
|
||||
void reallocate(Index size)
|
||||
{
|
||||
// if the size of the matrix is not too large, let's allocate a bit more than needed such
|
||||
// that we can handle dense vector even in sparse mode.
|
||||
delete[] m_buffer;
|
||||
if (size<1000)
|
||||
{
|
||||
Index allocSize = (size * sizeof(ListEl) + sizeof(Scalar) - 1)/sizeof(Scalar);
|
||||
m_allocatedElements = convert_index((allocSize*sizeof(Scalar))/sizeof(ListEl));
|
||||
m_buffer = new Scalar[allocSize];
|
||||
}
|
||||
else
|
||||
{
|
||||
m_allocatedElements = convert_index((size*sizeof(Scalar))/sizeof(ListEl));
|
||||
m_buffer = new Scalar[size];
|
||||
}
|
||||
m_size = convert_index(size);
|
||||
m_start = 0;
|
||||
m_end = m_size;
|
||||
}
|
||||
|
||||
void reallocateSparse()
|
||||
{
|
||||
Index copyElements = m_allocatedElements;
|
||||
m_allocatedElements = (std::min)(StorageIndex(m_allocatedElements*1.5),m_size);
|
||||
Index allocSize = m_allocatedElements * sizeof(ListEl);
|
||||
allocSize = (allocSize + sizeof(Scalar) - 1)/sizeof(Scalar);
|
||||
Scalar* newBuffer = new Scalar[allocSize];
|
||||
std::memcpy(newBuffer, m_buffer, copyElements * sizeof(ListEl));
|
||||
delete[] m_buffer;
|
||||
m_buffer = newBuffer;
|
||||
}
|
||||
|
||||
protected:
|
||||
// element type of the linked list
|
||||
struct ListEl
|
||||
{
|
||||
StorageIndex next;
|
||||
StorageIndex index;
|
||||
Scalar value;
|
||||
};
|
||||
|
||||
// used to store data in both mode
|
||||
Scalar* m_buffer;
|
||||
Scalar m_zero;
|
||||
StorageIndex m_size;
|
||||
StorageIndex m_start;
|
||||
StorageIndex m_end;
|
||||
StorageIndex m_allocatedSize;
|
||||
StorageIndex m_allocatedElements;
|
||||
StorageIndex m_mode;
|
||||
|
||||
// linked list mode
|
||||
StorageIndex m_llStart;
|
||||
StorageIndex m_llCurrent;
|
||||
StorageIndex m_llSize;
|
||||
};
|
||||
|
||||
/** \returns the number of non zeros in the current sub vector */
|
||||
template<typename _Scalar,typename _StorageIndex>
|
||||
Index AmbiVector<_Scalar,_StorageIndex>::nonZeros() const
|
||||
{
|
||||
if (m_mode==IsSparse)
|
||||
return m_llSize;
|
||||
else
|
||||
return m_end - m_start;
|
||||
}
|
||||
|
||||
template<typename _Scalar,typename _StorageIndex>
|
||||
void AmbiVector<_Scalar,_StorageIndex>::init(double estimatedDensity)
|
||||
{
|
||||
if (estimatedDensity>0.1)
|
||||
init(IsDense);
|
||||
else
|
||||
init(IsSparse);
|
||||
}
|
||||
|
||||
template<typename _Scalar,typename _StorageIndex>
|
||||
void AmbiVector<_Scalar,_StorageIndex>::init(int mode)
|
||||
{
|
||||
m_mode = mode;
|
||||
if (m_mode==IsSparse)
|
||||
{
|
||||
m_llSize = 0;
|
||||
m_llStart = -1;
|
||||
}
|
||||
}
|
||||
|
||||
/** Must be called whenever we might perform a write access
|
||||
* with an index smaller than the previous one.
|
||||
*
|
||||
* Don't worry, this function is extremely cheap.
|
||||
*/
|
||||
template<typename _Scalar,typename _StorageIndex>
|
||||
void AmbiVector<_Scalar,_StorageIndex>::restart()
|
||||
{
|
||||
m_llCurrent = m_llStart;
|
||||
}
|
||||
|
||||
/** Set all coefficients of current subvector to zero */
|
||||
template<typename _Scalar,typename _StorageIndex>
|
||||
void AmbiVector<_Scalar,_StorageIndex>::setZero()
|
||||
{
|
||||
if (m_mode==IsDense)
|
||||
{
|
||||
for (Index i=m_start; i<m_end; ++i)
|
||||
m_buffer[i] = Scalar(0);
|
||||
}
|
||||
else
|
||||
{
|
||||
eigen_assert(m_mode==IsSparse);
|
||||
m_llSize = 0;
|
||||
m_llStart = -1;
|
||||
}
|
||||
}
|
||||
|
||||
template<typename _Scalar,typename _StorageIndex>
|
||||
_Scalar& AmbiVector<_Scalar,_StorageIndex>::coeffRef(Index i)
|
||||
{
|
||||
if (m_mode==IsDense)
|
||||
return m_buffer[i];
|
||||
else
|
||||
{
|
||||
ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_buffer);
|
||||
// TODO factorize the following code to reduce code generation
|
||||
eigen_assert(m_mode==IsSparse);
|
||||
if (m_llSize==0)
|
||||
{
|
||||
// this is the first element
|
||||
m_llStart = 0;
|
||||
m_llCurrent = 0;
|
||||
++m_llSize;
|
||||
llElements[0].value = Scalar(0);
|
||||
llElements[0].index = convert_index(i);
|
||||
llElements[0].next = -1;
|
||||
return llElements[0].value;
|
||||
}
|
||||
else if (i<llElements[m_llStart].index)
|
||||
{
|
||||
// this is going to be the new first element of the list
|
||||
ListEl& el = llElements[m_llSize];
|
||||
el.value = Scalar(0);
|
||||
el.index = convert_index(i);
|
||||
el.next = m_llStart;
|
||||
m_llStart = m_llSize;
|
||||
++m_llSize;
|
||||
m_llCurrent = m_llStart;
|
||||
return el.value;
|
||||
}
|
||||
else
|
||||
{
|
||||
StorageIndex nextel = llElements[m_llCurrent].next;
|
||||
eigen_assert(i>=llElements[m_llCurrent].index && "you must call restart() before inserting an element with lower or equal index");
|
||||
while (nextel >= 0 && llElements[nextel].index<=i)
|
||||
{
|
||||
m_llCurrent = nextel;
|
||||
nextel = llElements[nextel].next;
|
||||
}
|
||||
|
||||
if (llElements[m_llCurrent].index==i)
|
||||
{
|
||||
// the coefficient already exists and we found it !
|
||||
return llElements[m_llCurrent].value;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (m_llSize>=m_allocatedElements)
|
||||
{
|
||||
reallocateSparse();
|
||||
llElements = reinterpret_cast<ListEl*>(m_buffer);
|
||||
}
|
||||
eigen_internal_assert(m_llSize<m_allocatedElements && "internal error: overflow in sparse mode");
|
||||
// let's insert a new coefficient
|
||||
ListEl& el = llElements[m_llSize];
|
||||
el.value = Scalar(0);
|
||||
el.index = convert_index(i);
|
||||
el.next = llElements[m_llCurrent].next;
|
||||
llElements[m_llCurrent].next = m_llSize;
|
||||
++m_llSize;
|
||||
return el.value;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<typename _Scalar,typename _StorageIndex>
|
||||
_Scalar& AmbiVector<_Scalar,_StorageIndex>::coeff(Index i)
|
||||
{
|
||||
if (m_mode==IsDense)
|
||||
return m_buffer[i];
|
||||
else
|
||||
{
|
||||
ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_buffer);
|
||||
eigen_assert(m_mode==IsSparse);
|
||||
if ((m_llSize==0) || (i<llElements[m_llStart].index))
|
||||
{
|
||||
return m_zero;
|
||||
}
|
||||
else
|
||||
{
|
||||
Index elid = m_llStart;
|
||||
while (elid >= 0 && llElements[elid].index<i)
|
||||
elid = llElements[elid].next;
|
||||
|
||||
if (llElements[elid].index==i)
|
||||
return llElements[m_llCurrent].value;
|
||||
else
|
||||
return m_zero;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/** Iterator over the nonzero coefficients */
|
||||
template<typename _Scalar,typename _StorageIndex>
|
||||
class AmbiVector<_Scalar,_StorageIndex>::Iterator
|
||||
{
|
||||
public:
|
||||
typedef _Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
|
||||
/** Default constructor
|
||||
* \param vec the vector on which we iterate
|
||||
* \param epsilon the minimal value used to prune zero coefficients.
|
||||
* In practice, all coefficients having a magnitude smaller than \a epsilon
|
||||
* are skipped.
|
||||
*/
|
||||
explicit Iterator(const AmbiVector& vec, const RealScalar& epsilon = 0)
|
||||
: m_vector(vec)
|
||||
{
|
||||
using std::abs;
|
||||
m_epsilon = epsilon;
|
||||
m_isDense = m_vector.m_mode==IsDense;
|
||||
if (m_isDense)
|
||||
{
|
||||
m_currentEl = 0; // this is to avoid a compilation warning
|
||||
m_cachedValue = 0; // this is to avoid a compilation warning
|
||||
m_cachedIndex = m_vector.m_start-1;
|
||||
++(*this);
|
||||
}
|
||||
else
|
||||
{
|
||||
ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_vector.m_buffer);
|
||||
m_currentEl = m_vector.m_llStart;
|
||||
while (m_currentEl>=0 && abs(llElements[m_currentEl].value)<=m_epsilon)
|
||||
m_currentEl = llElements[m_currentEl].next;
|
||||
if (m_currentEl<0)
|
||||
{
|
||||
m_cachedValue = 0; // this is to avoid a compilation warning
|
||||
m_cachedIndex = -1;
|
||||
}
|
||||
else
|
||||
{
|
||||
m_cachedIndex = llElements[m_currentEl].index;
|
||||
m_cachedValue = llElements[m_currentEl].value;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
StorageIndex index() const { return m_cachedIndex; }
|
||||
Scalar value() const { return m_cachedValue; }
|
||||
|
||||
operator bool() const { return m_cachedIndex>=0; }
|
||||
|
||||
Iterator& operator++()
|
||||
{
|
||||
using std::abs;
|
||||
if (m_isDense)
|
||||
{
|
||||
do {
|
||||
++m_cachedIndex;
|
||||
} while (m_cachedIndex<m_vector.m_end && abs(m_vector.m_buffer[m_cachedIndex])<=m_epsilon);
|
||||
if (m_cachedIndex<m_vector.m_end)
|
||||
m_cachedValue = m_vector.m_buffer[m_cachedIndex];
|
||||
else
|
||||
m_cachedIndex=-1;
|
||||
}
|
||||
else
|
||||
{
|
||||
ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_vector.m_buffer);
|
||||
do {
|
||||
m_currentEl = llElements[m_currentEl].next;
|
||||
} while (m_currentEl>=0 && abs(llElements[m_currentEl].value)<=m_epsilon);
|
||||
if (m_currentEl<0)
|
||||
{
|
||||
m_cachedIndex = -1;
|
||||
}
|
||||
else
|
||||
{
|
||||
m_cachedIndex = llElements[m_currentEl].index;
|
||||
m_cachedValue = llElements[m_currentEl].value;
|
||||
}
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
protected:
|
||||
const AmbiVector& m_vector; // the target vector
|
||||
StorageIndex m_currentEl; // the current element in sparse/linked-list mode
|
||||
RealScalar m_epsilon; // epsilon used to prune zero coefficients
|
||||
StorageIndex m_cachedIndex; // current coordinate
|
||||
Scalar m_cachedValue; // current value
|
||||
bool m_isDense; // mode of the vector
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_AMBIVECTOR_H
|
||||
258
examples/ThirdPartyLibs/Eigen/src/SparseCore/CompressedStorage.h
Normal file
258
examples/ThirdPartyLibs/Eigen/src/SparseCore/CompressedStorage.h
Normal file
@@ -0,0 +1,258 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_COMPRESSED_STORAGE_H
|
||||
#define EIGEN_COMPRESSED_STORAGE_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
/** \internal
|
||||
* Stores a sparse set of values as a list of values and a list of indices.
|
||||
*
|
||||
*/
|
||||
template<typename _Scalar,typename _StorageIndex>
|
||||
class CompressedStorage
|
||||
{
|
||||
public:
|
||||
|
||||
typedef _Scalar Scalar;
|
||||
typedef _StorageIndex StorageIndex;
|
||||
|
||||
protected:
|
||||
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
|
||||
public:
|
||||
|
||||
CompressedStorage()
|
||||
: m_values(0), m_indices(0), m_size(0), m_allocatedSize(0)
|
||||
{}
|
||||
|
||||
explicit CompressedStorage(Index size)
|
||||
: m_values(0), m_indices(0), m_size(0), m_allocatedSize(0)
|
||||
{
|
||||
resize(size);
|
||||
}
|
||||
|
||||
CompressedStorage(const CompressedStorage& other)
|
||||
: m_values(0), m_indices(0), m_size(0), m_allocatedSize(0)
|
||||
{
|
||||
*this = other;
|
||||
}
|
||||
|
||||
CompressedStorage& operator=(const CompressedStorage& other)
|
||||
{
|
||||
resize(other.size());
|
||||
if(other.size()>0)
|
||||
{
|
||||
internal::smart_copy(other.m_values, other.m_values + m_size, m_values);
|
||||
internal::smart_copy(other.m_indices, other.m_indices + m_size, m_indices);
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
void swap(CompressedStorage& other)
|
||||
{
|
||||
std::swap(m_values, other.m_values);
|
||||
std::swap(m_indices, other.m_indices);
|
||||
std::swap(m_size, other.m_size);
|
||||
std::swap(m_allocatedSize, other.m_allocatedSize);
|
||||
}
|
||||
|
||||
~CompressedStorage()
|
||||
{
|
||||
delete[] m_values;
|
||||
delete[] m_indices;
|
||||
}
|
||||
|
||||
void reserve(Index size)
|
||||
{
|
||||
Index newAllocatedSize = m_size + size;
|
||||
if (newAllocatedSize > m_allocatedSize)
|
||||
reallocate(newAllocatedSize);
|
||||
}
|
||||
|
||||
void squeeze()
|
||||
{
|
||||
if (m_allocatedSize>m_size)
|
||||
reallocate(m_size);
|
||||
}
|
||||
|
||||
void resize(Index size, double reserveSizeFactor = 0)
|
||||
{
|
||||
if (m_allocatedSize<size)
|
||||
{
|
||||
Index realloc_size = (std::min<Index>)(NumTraits<StorageIndex>::highest(), size + Index(reserveSizeFactor*double(size)));
|
||||
if(realloc_size<size)
|
||||
internal::throw_std_bad_alloc();
|
||||
reallocate(realloc_size);
|
||||
}
|
||||
m_size = size;
|
||||
}
|
||||
|
||||
void append(const Scalar& v, Index i)
|
||||
{
|
||||
Index id = m_size;
|
||||
resize(m_size+1, 1);
|
||||
m_values[id] = v;
|
||||
m_indices[id] = internal::convert_index<StorageIndex>(i);
|
||||
}
|
||||
|
||||
inline Index size() const { return m_size; }
|
||||
inline Index allocatedSize() const { return m_allocatedSize; }
|
||||
inline void clear() { m_size = 0; }
|
||||
|
||||
const Scalar* valuePtr() const { return m_values; }
|
||||
Scalar* valuePtr() { return m_values; }
|
||||
const StorageIndex* indexPtr() const { return m_indices; }
|
||||
StorageIndex* indexPtr() { return m_indices; }
|
||||
|
||||
inline Scalar& value(Index i) { eigen_internal_assert(m_values!=0); return m_values[i]; }
|
||||
inline const Scalar& value(Index i) const { eigen_internal_assert(m_values!=0); return m_values[i]; }
|
||||
|
||||
inline StorageIndex& index(Index i) { eigen_internal_assert(m_indices!=0); return m_indices[i]; }
|
||||
inline const StorageIndex& index(Index i) const { eigen_internal_assert(m_indices!=0); return m_indices[i]; }
|
||||
|
||||
/** \returns the largest \c k such that for all \c j in [0,k) index[\c j]\<\a key */
|
||||
inline Index searchLowerIndex(Index key) const
|
||||
{
|
||||
return searchLowerIndex(0, m_size, key);
|
||||
}
|
||||
|
||||
/** \returns the largest \c k in [start,end) such that for all \c j in [start,k) index[\c j]\<\a key */
|
||||
inline Index searchLowerIndex(Index start, Index end, Index key) const
|
||||
{
|
||||
while(end>start)
|
||||
{
|
||||
Index mid = (end+start)>>1;
|
||||
if (m_indices[mid]<key)
|
||||
start = mid+1;
|
||||
else
|
||||
end = mid;
|
||||
}
|
||||
return start;
|
||||
}
|
||||
|
||||
/** \returns the stored value at index \a key
|
||||
* If the value does not exist, then the value \a defaultValue is returned without any insertion. */
|
||||
inline Scalar at(Index key, const Scalar& defaultValue = Scalar(0)) const
|
||||
{
|
||||
if (m_size==0)
|
||||
return defaultValue;
|
||||
else if (key==m_indices[m_size-1])
|
||||
return m_values[m_size-1];
|
||||
// ^^ optimization: let's first check if it is the last coefficient
|
||||
// (very common in high level algorithms)
|
||||
const Index id = searchLowerIndex(0,m_size-1,key);
|
||||
return ((id<m_size) && (m_indices[id]==key)) ? m_values[id] : defaultValue;
|
||||
}
|
||||
|
||||
/** Like at(), but the search is performed in the range [start,end) */
|
||||
inline Scalar atInRange(Index start, Index end, Index key, const Scalar &defaultValue = Scalar(0)) const
|
||||
{
|
||||
if (start>=end)
|
||||
return defaultValue;
|
||||
else if (end>start && key==m_indices[end-1])
|
||||
return m_values[end-1];
|
||||
// ^^ optimization: let's first check if it is the last coefficient
|
||||
// (very common in high level algorithms)
|
||||
const Index id = searchLowerIndex(start,end-1,key);
|
||||
return ((id<end) && (m_indices[id]==key)) ? m_values[id] : defaultValue;
|
||||
}
|
||||
|
||||
/** \returns a reference to the value at index \a key
|
||||
* If the value does not exist, then the value \a defaultValue is inserted
|
||||
* such that the keys are sorted. */
|
||||
inline Scalar& atWithInsertion(Index key, const Scalar& defaultValue = Scalar(0))
|
||||
{
|
||||
Index id = searchLowerIndex(0,m_size,key);
|
||||
if (id>=m_size || m_indices[id]!=key)
|
||||
{
|
||||
if (m_allocatedSize<m_size+1)
|
||||
{
|
||||
m_allocatedSize = 2*(m_size+1);
|
||||
internal::scoped_array<Scalar> newValues(m_allocatedSize);
|
||||
internal::scoped_array<StorageIndex> newIndices(m_allocatedSize);
|
||||
|
||||
// copy first chunk
|
||||
internal::smart_copy(m_values, m_values +id, newValues.ptr());
|
||||
internal::smart_copy(m_indices, m_indices+id, newIndices.ptr());
|
||||
|
||||
// copy the rest
|
||||
if(m_size>id)
|
||||
{
|
||||
internal::smart_copy(m_values +id, m_values +m_size, newValues.ptr() +id+1);
|
||||
internal::smart_copy(m_indices+id, m_indices+m_size, newIndices.ptr()+id+1);
|
||||
}
|
||||
std::swap(m_values,newValues.ptr());
|
||||
std::swap(m_indices,newIndices.ptr());
|
||||
}
|
||||
else if(m_size>id)
|
||||
{
|
||||
internal::smart_memmove(m_values +id, m_values +m_size, m_values +id+1);
|
||||
internal::smart_memmove(m_indices+id, m_indices+m_size, m_indices+id+1);
|
||||
}
|
||||
m_size++;
|
||||
m_indices[id] = internal::convert_index<StorageIndex>(key);
|
||||
m_values[id] = defaultValue;
|
||||
}
|
||||
return m_values[id];
|
||||
}
|
||||
|
||||
void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision())
|
||||
{
|
||||
Index k = 0;
|
||||
Index n = size();
|
||||
for (Index i=0; i<n; ++i)
|
||||
{
|
||||
if (!internal::isMuchSmallerThan(value(i), reference, epsilon))
|
||||
{
|
||||
value(k) = value(i);
|
||||
index(k) = index(i);
|
||||
++k;
|
||||
}
|
||||
}
|
||||
resize(k,0);
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
inline void reallocate(Index size)
|
||||
{
|
||||
#ifdef EIGEN_SPARSE_COMPRESSED_STORAGE_REALLOCATE_PLUGIN
|
||||
EIGEN_SPARSE_COMPRESSED_STORAGE_REALLOCATE_PLUGIN
|
||||
#endif
|
||||
eigen_internal_assert(size!=m_allocatedSize);
|
||||
internal::scoped_array<Scalar> newValues(size);
|
||||
internal::scoped_array<StorageIndex> newIndices(size);
|
||||
Index copySize = (std::min)(size, m_size);
|
||||
if (copySize>0) {
|
||||
internal::smart_copy(m_values, m_values+copySize, newValues.ptr());
|
||||
internal::smart_copy(m_indices, m_indices+copySize, newIndices.ptr());
|
||||
}
|
||||
std::swap(m_values,newValues.ptr());
|
||||
std::swap(m_indices,newIndices.ptr());
|
||||
m_allocatedSize = size;
|
||||
}
|
||||
|
||||
protected:
|
||||
Scalar* m_values;
|
||||
StorageIndex* m_indices;
|
||||
Index m_size;
|
||||
Index m_allocatedSize;
|
||||
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_COMPRESSED_STORAGE_H
|
||||
@@ -0,0 +1,352 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H
|
||||
#define EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
static void conservative_sparse_sparse_product_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res, bool sortedInsertion = false)
|
||||
{
|
||||
typedef typename remove_all<Lhs>::type::Scalar LhsScalar;
|
||||
typedef typename remove_all<Rhs>::type::Scalar RhsScalar;
|
||||
typedef typename remove_all<ResultType>::type::Scalar ResScalar;
|
||||
|
||||
// make sure to call innerSize/outerSize since we fake the storage order.
|
||||
Index rows = lhs.innerSize();
|
||||
Index cols = rhs.outerSize();
|
||||
eigen_assert(lhs.outerSize() == rhs.innerSize());
|
||||
|
||||
ei_declare_aligned_stack_constructed_variable(bool, mask, rows, 0);
|
||||
ei_declare_aligned_stack_constructed_variable(ResScalar, values, rows, 0);
|
||||
ei_declare_aligned_stack_constructed_variable(Index, indices, rows, 0);
|
||||
|
||||
std::memset(mask,0,sizeof(bool)*rows);
|
||||
|
||||
evaluator<Lhs> lhsEval(lhs);
|
||||
evaluator<Rhs> rhsEval(rhs);
|
||||
|
||||
// estimate the number of non zero entries
|
||||
// given a rhs column containing Y non zeros, we assume that the respective Y columns
|
||||
// of the lhs differs in average of one non zeros, thus the number of non zeros for
|
||||
// the product of a rhs column with the lhs is X+Y where X is the average number of non zero
|
||||
// per column of the lhs.
|
||||
// Therefore, we have nnz(lhs*rhs) = nnz(lhs) + nnz(rhs)
|
||||
Index estimated_nnz_prod = lhsEval.nonZerosEstimate() + rhsEval.nonZerosEstimate();
|
||||
|
||||
res.setZero();
|
||||
res.reserve(Index(estimated_nnz_prod));
|
||||
// we compute each column of the result, one after the other
|
||||
for (Index j=0; j<cols; ++j)
|
||||
{
|
||||
|
||||
res.startVec(j);
|
||||
Index nnz = 0;
|
||||
for (typename evaluator<Rhs>::InnerIterator rhsIt(rhsEval, j); rhsIt; ++rhsIt)
|
||||
{
|
||||
RhsScalar y = rhsIt.value();
|
||||
Index k = rhsIt.index();
|
||||
for (typename evaluator<Lhs>::InnerIterator lhsIt(lhsEval, k); lhsIt; ++lhsIt)
|
||||
{
|
||||
Index i = lhsIt.index();
|
||||
LhsScalar x = lhsIt.value();
|
||||
if(!mask[i])
|
||||
{
|
||||
mask[i] = true;
|
||||
values[i] = x * y;
|
||||
indices[nnz] = i;
|
||||
++nnz;
|
||||
}
|
||||
else
|
||||
values[i] += x * y;
|
||||
}
|
||||
}
|
||||
if(!sortedInsertion)
|
||||
{
|
||||
// unordered insertion
|
||||
for(Index k=0; k<nnz; ++k)
|
||||
{
|
||||
Index i = indices[k];
|
||||
res.insertBackByOuterInnerUnordered(j,i) = values[i];
|
||||
mask[i] = false;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// alternative ordered insertion code:
|
||||
const Index t200 = rows/11; // 11 == (log2(200)*1.39)
|
||||
const Index t = (rows*100)/139;
|
||||
|
||||
// FIXME reserve nnz non zeros
|
||||
// FIXME implement faster sorting algorithms for very small nnz
|
||||
// if the result is sparse enough => use a quick sort
|
||||
// otherwise => loop through the entire vector
|
||||
// In order to avoid to perform an expensive log2 when the
|
||||
// result is clearly very sparse we use a linear bound up to 200.
|
||||
if((nnz<200 && nnz<t200) || nnz * numext::log2(int(nnz)) < t)
|
||||
{
|
||||
if(nnz>1) std::sort(indices,indices+nnz);
|
||||
for(Index k=0; k<nnz; ++k)
|
||||
{
|
||||
Index i = indices[k];
|
||||
res.insertBackByOuterInner(j,i) = values[i];
|
||||
mask[i] = false;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// dense path
|
||||
for(Index i=0; i<rows; ++i)
|
||||
{
|
||||
if(mask[i])
|
||||
{
|
||||
mask[i] = false;
|
||||
res.insertBackByOuterInner(j,i) = values[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
res.finalize();
|
||||
}
|
||||
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType,
|
||||
int LhsStorageOrder = (traits<Lhs>::Flags&RowMajorBit) ? RowMajor : ColMajor,
|
||||
int RhsStorageOrder = (traits<Rhs>::Flags&RowMajorBit) ? RowMajor : ColMajor,
|
||||
int ResStorageOrder = (traits<ResultType>::Flags&RowMajorBit) ? RowMajor : ColMajor>
|
||||
struct conservative_sparse_sparse_product_selector;
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor>
|
||||
{
|
||||
typedef typename remove_all<Lhs>::type LhsCleaned;
|
||||
typedef typename LhsCleaned::Scalar Scalar;
|
||||
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||
{
|
||||
typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::StorageIndex> RowMajorMatrix;
|
||||
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorMatrixAux;
|
||||
typedef typename sparse_eval<ColMajorMatrixAux,ResultType::RowsAtCompileTime,ResultType::ColsAtCompileTime,ColMajorMatrixAux::Flags>::type ColMajorMatrix;
|
||||
|
||||
// If the result is tall and thin (in the extreme case a column vector)
|
||||
// then it is faster to sort the coefficients inplace instead of transposing twice.
|
||||
// FIXME, the following heuristic is probably not very good.
|
||||
if(lhs.rows()>rhs.cols())
|
||||
{
|
||||
ColMajorMatrix resCol(lhs.rows(),rhs.cols());
|
||||
// perform sorted insertion
|
||||
internal::conservative_sparse_sparse_product_impl<Lhs,Rhs,ColMajorMatrix>(lhs, rhs, resCol, true);
|
||||
res = resCol.markAsRValue();
|
||||
}
|
||||
else
|
||||
{
|
||||
ColMajorMatrixAux resCol(lhs.rows(),rhs.cols());
|
||||
// ressort to transpose to sort the entries
|
||||
internal::conservative_sparse_sparse_product_impl<Lhs,Rhs,ColMajorMatrixAux>(lhs, rhs, resCol, false);
|
||||
RowMajorMatrix resRow(resCol);
|
||||
res = resRow.markAsRValue();
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,ColMajor,ColMajor>
|
||||
{
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||
{
|
||||
typedef SparseMatrix<typename Rhs::Scalar,RowMajor,typename ResultType::StorageIndex> RowMajorRhs;
|
||||
typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::StorageIndex> RowMajorRes;
|
||||
RowMajorRhs rhsRow = rhs;
|
||||
RowMajorRes resRow(lhs.rows(), rhs.cols());
|
||||
internal::conservative_sparse_sparse_product_impl<RowMajorRhs,Lhs,RowMajorRes>(rhsRow, lhs, resRow);
|
||||
res = resRow;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,RowMajor,ColMajor>
|
||||
{
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||
{
|
||||
typedef SparseMatrix<typename Lhs::Scalar,RowMajor,typename ResultType::StorageIndex> RowMajorLhs;
|
||||
typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::StorageIndex> RowMajorRes;
|
||||
RowMajorLhs lhsRow = lhs;
|
||||
RowMajorRes resRow(lhs.rows(), rhs.cols());
|
||||
internal::conservative_sparse_sparse_product_impl<Rhs,RowMajorLhs,RowMajorRes>(rhs, lhsRow, resRow);
|
||||
res = resRow;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,ColMajor>
|
||||
{
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||
{
|
||||
typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::StorageIndex> RowMajorMatrix;
|
||||
RowMajorMatrix resRow(lhs.rows(), rhs.cols());
|
||||
internal::conservative_sparse_sparse_product_impl<Rhs,Lhs,RowMajorMatrix>(rhs, lhs, resRow);
|
||||
res = resRow;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,RowMajor>
|
||||
{
|
||||
typedef typename traits<typename remove_all<Lhs>::type>::Scalar Scalar;
|
||||
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||
{
|
||||
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorMatrix;
|
||||
ColMajorMatrix resCol(lhs.rows(), rhs.cols());
|
||||
internal::conservative_sparse_sparse_product_impl<Lhs,Rhs,ColMajorMatrix>(lhs, rhs, resCol);
|
||||
res = resCol;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,ColMajor,RowMajor>
|
||||
{
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||
{
|
||||
typedef SparseMatrix<typename Lhs::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorLhs;
|
||||
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorRes;
|
||||
ColMajorLhs lhsCol = lhs;
|
||||
ColMajorRes resCol(lhs.rows(), rhs.cols());
|
||||
internal::conservative_sparse_sparse_product_impl<ColMajorLhs,Rhs,ColMajorRes>(lhsCol, rhs, resCol);
|
||||
res = resCol;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,RowMajor,RowMajor>
|
||||
{
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||
{
|
||||
typedef SparseMatrix<typename Rhs::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorRhs;
|
||||
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorRes;
|
||||
ColMajorRhs rhsCol = rhs;
|
||||
ColMajorRes resCol(lhs.rows(), rhs.cols());
|
||||
internal::conservative_sparse_sparse_product_impl<Lhs,ColMajorRhs,ColMajorRes>(lhs, rhsCol, resCol);
|
||||
res = resCol;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,RowMajor>
|
||||
{
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||
{
|
||||
typedef SparseMatrix<typename ResultType::Scalar,RowMajor,typename ResultType::StorageIndex> RowMajorMatrix;
|
||||
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorMatrix;
|
||||
RowMajorMatrix resRow(lhs.rows(),rhs.cols());
|
||||
internal::conservative_sparse_sparse_product_impl<Rhs,Lhs,RowMajorMatrix>(rhs, lhs, resRow);
|
||||
// sort the non zeros:
|
||||
ColMajorMatrix resCol(resRow);
|
||||
res = resCol;
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
static void sparse_sparse_to_dense_product_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||
{
|
||||
typedef typename remove_all<Lhs>::type::Scalar LhsScalar;
|
||||
typedef typename remove_all<Rhs>::type::Scalar RhsScalar;
|
||||
Index cols = rhs.outerSize();
|
||||
eigen_assert(lhs.outerSize() == rhs.innerSize());
|
||||
|
||||
evaluator<Lhs> lhsEval(lhs);
|
||||
evaluator<Rhs> rhsEval(rhs);
|
||||
|
||||
for (Index j=0; j<cols; ++j)
|
||||
{
|
||||
for (typename evaluator<Rhs>::InnerIterator rhsIt(rhsEval, j); rhsIt; ++rhsIt)
|
||||
{
|
||||
RhsScalar y = rhsIt.value();
|
||||
Index k = rhsIt.index();
|
||||
for (typename evaluator<Lhs>::InnerIterator lhsIt(lhsEval, k); lhsIt; ++lhsIt)
|
||||
{
|
||||
Index i = lhsIt.index();
|
||||
LhsScalar x = lhsIt.value();
|
||||
res.coeffRef(i,j) += x * y;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType,
|
||||
int LhsStorageOrder = (traits<Lhs>::Flags&RowMajorBit) ? RowMajor : ColMajor,
|
||||
int RhsStorageOrder = (traits<Rhs>::Flags&RowMajorBit) ? RowMajor : ColMajor>
|
||||
struct sparse_sparse_to_dense_product_selector;
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
struct sparse_sparse_to_dense_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor>
|
||||
{
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||
{
|
||||
internal::sparse_sparse_to_dense_product_impl<Lhs,Rhs,ResultType>(lhs, rhs, res);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
struct sparse_sparse_to_dense_product_selector<Lhs,Rhs,ResultType,RowMajor,ColMajor>
|
||||
{
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||
{
|
||||
typedef SparseMatrix<typename Lhs::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorLhs;
|
||||
ColMajorLhs lhsCol(lhs);
|
||||
internal::sparse_sparse_to_dense_product_impl<ColMajorLhs,Rhs,ResultType>(lhsCol, rhs, res);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
struct sparse_sparse_to_dense_product_selector<Lhs,Rhs,ResultType,ColMajor,RowMajor>
|
||||
{
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||
{
|
||||
typedef SparseMatrix<typename Rhs::Scalar,ColMajor,typename ResultType::StorageIndex> ColMajorRhs;
|
||||
ColMajorRhs rhsCol(rhs);
|
||||
internal::sparse_sparse_to_dense_product_impl<Lhs,ColMajorRhs,ResultType>(lhs, rhsCol, res);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
struct sparse_sparse_to_dense_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor>
|
||||
{
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
||||
{
|
||||
Transpose<ResultType> trRes(res);
|
||||
internal::sparse_sparse_to_dense_product_impl<Rhs,Lhs,Transpose<ResultType> >(rhs, lhs, trRes);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H
|
||||
@@ -0,0 +1,67 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_MAPPED_SPARSEMATRIX_H
|
||||
#define EIGEN_MAPPED_SPARSEMATRIX_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \deprecated Use Map<SparseMatrix<> >
|
||||
* \class MappedSparseMatrix
|
||||
*
|
||||
* \brief Sparse matrix
|
||||
*
|
||||
* \param _Scalar the scalar type, i.e. the type of the coefficients
|
||||
*
|
||||
* See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme.
|
||||
*
|
||||
*/
|
||||
namespace internal {
|
||||
template<typename _Scalar, int _Flags, typename _StorageIndex>
|
||||
struct traits<MappedSparseMatrix<_Scalar, _Flags, _StorageIndex> > : traits<SparseMatrix<_Scalar, _Flags, _StorageIndex> >
|
||||
{};
|
||||
} // end namespace internal
|
||||
|
||||
template<typename _Scalar, int _Flags, typename _StorageIndex>
|
||||
class MappedSparseMatrix
|
||||
: public Map<SparseMatrix<_Scalar, _Flags, _StorageIndex> >
|
||||
{
|
||||
typedef Map<SparseMatrix<_Scalar, _Flags, _StorageIndex> > Base;
|
||||
|
||||
public:
|
||||
|
||||
typedef typename Base::StorageIndex StorageIndex;
|
||||
typedef typename Base::Scalar Scalar;
|
||||
|
||||
inline MappedSparseMatrix(Index rows, Index cols, Index nnz, StorageIndex* outerIndexPtr, StorageIndex* innerIndexPtr, Scalar* valuePtr, StorageIndex* innerNonZeroPtr = 0)
|
||||
: Base(rows, cols, nnz, outerIndexPtr, innerIndexPtr, valuePtr, innerNonZeroPtr)
|
||||
{}
|
||||
|
||||
/** Empty destructor */
|
||||
inline ~MappedSparseMatrix() {}
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename _Scalar, int _Options, typename _StorageIndex>
|
||||
struct evaluator<MappedSparseMatrix<_Scalar,_Options,_StorageIndex> >
|
||||
: evaluator<SparseCompressedBase<MappedSparseMatrix<_Scalar,_Options,_StorageIndex> > >
|
||||
{
|
||||
typedef MappedSparseMatrix<_Scalar,_Options,_StorageIndex> XprType;
|
||||
typedef evaluator<SparseCompressedBase<XprType> > Base;
|
||||
|
||||
evaluator() : Base() {}
|
||||
explicit evaluator(const XprType &mat) : Base(mat) {}
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_MAPPED_SPARSEMATRIX_H
|
||||
216
examples/ThirdPartyLibs/Eigen/src/SparseCore/SparseAssign.h
Normal file
216
examples/ThirdPartyLibs/Eigen/src/SparseCore/SparseAssign.h
Normal file
@@ -0,0 +1,216 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SPARSEASSIGN_H
|
||||
#define EIGEN_SPARSEASSIGN_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
Derived& SparseMatrixBase<Derived>::operator=(const EigenBase<OtherDerived> &other)
|
||||
{
|
||||
internal::call_assignment_no_alias(derived(), other.derived());
|
||||
return derived();
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
Derived& SparseMatrixBase<Derived>::operator=(const ReturnByValue<OtherDerived>& other)
|
||||
{
|
||||
// TODO use the evaluator mechanism
|
||||
other.evalTo(derived());
|
||||
return derived();
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
inline Derived& SparseMatrixBase<Derived>::operator=(const SparseMatrixBase<OtherDerived>& other)
|
||||
{
|
||||
// by default sparse evaluation do not alias, so we can safely bypass the generic call_assignment routine
|
||||
internal::Assignment<Derived,OtherDerived,internal::assign_op<Scalar,typename OtherDerived::Scalar> >
|
||||
::run(derived(), other.derived(), internal::assign_op<Scalar,typename OtherDerived::Scalar>());
|
||||
return derived();
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
inline Derived& SparseMatrixBase<Derived>::operator=(const Derived& other)
|
||||
{
|
||||
internal::call_assignment_no_alias(derived(), other.derived());
|
||||
return derived();
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<>
|
||||
struct storage_kind_to_evaluator_kind<Sparse> {
|
||||
typedef IteratorBased Kind;
|
||||
};
|
||||
|
||||
template<>
|
||||
struct storage_kind_to_shape<Sparse> {
|
||||
typedef SparseShape Shape;
|
||||
};
|
||||
|
||||
struct Sparse2Sparse {};
|
||||
struct Sparse2Dense {};
|
||||
|
||||
template<> struct AssignmentKind<SparseShape, SparseShape> { typedef Sparse2Sparse Kind; };
|
||||
template<> struct AssignmentKind<SparseShape, SparseTriangularShape> { typedef Sparse2Sparse Kind; };
|
||||
template<> struct AssignmentKind<DenseShape, SparseShape> { typedef Sparse2Dense Kind; };
|
||||
template<> struct AssignmentKind<DenseShape, SparseTriangularShape> { typedef Sparse2Dense Kind; };
|
||||
|
||||
|
||||
template<typename DstXprType, typename SrcXprType>
|
||||
void assign_sparse_to_sparse(DstXprType &dst, const SrcXprType &src)
|
||||
{
|
||||
typedef typename DstXprType::Scalar Scalar;
|
||||
typedef internal::evaluator<DstXprType> DstEvaluatorType;
|
||||
typedef internal::evaluator<SrcXprType> SrcEvaluatorType;
|
||||
|
||||
SrcEvaluatorType srcEvaluator(src);
|
||||
|
||||
const bool transpose = (DstEvaluatorType::Flags & RowMajorBit) != (SrcEvaluatorType::Flags & RowMajorBit);
|
||||
const Index outerEvaluationSize = (SrcEvaluatorType::Flags&RowMajorBit) ? src.rows() : src.cols();
|
||||
if ((!transpose) && src.isRValue())
|
||||
{
|
||||
// eval without temporary
|
||||
dst.resize(src.rows(), src.cols());
|
||||
dst.setZero();
|
||||
dst.reserve((std::min)(src.rows()*src.cols(), (std::max)(src.rows(),src.cols())*2));
|
||||
for (Index j=0; j<outerEvaluationSize; ++j)
|
||||
{
|
||||
dst.startVec(j);
|
||||
for (typename SrcEvaluatorType::InnerIterator it(srcEvaluator, j); it; ++it)
|
||||
{
|
||||
Scalar v = it.value();
|
||||
dst.insertBackByOuterInner(j,it.index()) = v;
|
||||
}
|
||||
}
|
||||
dst.finalize();
|
||||
}
|
||||
else
|
||||
{
|
||||
// eval through a temporary
|
||||
eigen_assert(( ((internal::traits<DstXprType>::SupportedAccessPatterns & OuterRandomAccessPattern)==OuterRandomAccessPattern) ||
|
||||
(!((DstEvaluatorType::Flags & RowMajorBit) != (SrcEvaluatorType::Flags & RowMajorBit)))) &&
|
||||
"the transpose operation is supposed to be handled in SparseMatrix::operator=");
|
||||
|
||||
enum { Flip = (DstEvaluatorType::Flags & RowMajorBit) != (SrcEvaluatorType::Flags & RowMajorBit) };
|
||||
|
||||
|
||||
DstXprType temp(src.rows(), src.cols());
|
||||
|
||||
temp.reserve((std::min)(src.rows()*src.cols(), (std::max)(src.rows(),src.cols())*2));
|
||||
for (Index j=0; j<outerEvaluationSize; ++j)
|
||||
{
|
||||
temp.startVec(j);
|
||||
for (typename SrcEvaluatorType::InnerIterator it(srcEvaluator, j); it; ++it)
|
||||
{
|
||||
Scalar v = it.value();
|
||||
temp.insertBackByOuterInner(Flip?it.index():j,Flip?j:it.index()) = v;
|
||||
}
|
||||
}
|
||||
temp.finalize();
|
||||
|
||||
dst = temp.markAsRValue();
|
||||
}
|
||||
}
|
||||
|
||||
// Generic Sparse to Sparse assignment
|
||||
template< typename DstXprType, typename SrcXprType, typename Functor>
|
||||
struct Assignment<DstXprType, SrcXprType, Functor, Sparse2Sparse>
|
||||
{
|
||||
static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
|
||||
{
|
||||
assign_sparse_to_sparse(dst.derived(), src.derived());
|
||||
}
|
||||
};
|
||||
|
||||
// Generic Sparse to Dense assignment
|
||||
template< typename DstXprType, typename SrcXprType, typename Functor>
|
||||
struct Assignment<DstXprType, SrcXprType, Functor, Sparse2Dense>
|
||||
{
|
||||
static void run(DstXprType &dst, const SrcXprType &src, const Functor &func)
|
||||
{
|
||||
if(internal::is_same<Functor,internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> >::value)
|
||||
dst.setZero();
|
||||
|
||||
internal::evaluator<SrcXprType> srcEval(src);
|
||||
resize_if_allowed(dst, src, func);
|
||||
internal::evaluator<DstXprType> dstEval(dst);
|
||||
|
||||
const Index outerEvaluationSize = (internal::evaluator<SrcXprType>::Flags&RowMajorBit) ? src.rows() : src.cols();
|
||||
for (Index j=0; j<outerEvaluationSize; ++j)
|
||||
for (typename internal::evaluator<SrcXprType>::InnerIterator i(srcEval,j); i; ++i)
|
||||
func.assignCoeff(dstEval.coeffRef(i.row(),i.col()), i.value());
|
||||
}
|
||||
};
|
||||
|
||||
// Specialization for "dst = dec.solve(rhs)"
|
||||
// NOTE we need to specialize it for Sparse2Sparse to avoid ambiguous specialization error
|
||||
template<typename DstXprType, typename DecType, typename RhsType, typename Scalar>
|
||||
struct Assignment<DstXprType, Solve<DecType,RhsType>, internal::assign_op<Scalar,Scalar>, Sparse2Sparse>
|
||||
{
|
||||
typedef Solve<DecType,RhsType> SrcXprType;
|
||||
static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,Scalar> &)
|
||||
{
|
||||
Index dstRows = src.rows();
|
||||
Index dstCols = src.cols();
|
||||
if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
|
||||
dst.resize(dstRows, dstCols);
|
||||
|
||||
src.dec()._solve_impl(src.rhs(), dst);
|
||||
}
|
||||
};
|
||||
|
||||
struct Diagonal2Sparse {};
|
||||
|
||||
template<> struct AssignmentKind<SparseShape,DiagonalShape> { typedef Diagonal2Sparse Kind; };
|
||||
|
||||
template< typename DstXprType, typename SrcXprType, typename Functor>
|
||||
struct Assignment<DstXprType, SrcXprType, Functor, Diagonal2Sparse>
|
||||
{
|
||||
typedef typename DstXprType::StorageIndex StorageIndex;
|
||||
typedef typename DstXprType::Scalar Scalar;
|
||||
typedef Array<StorageIndex,Dynamic,1> ArrayXI;
|
||||
typedef Array<Scalar,Dynamic,1> ArrayXS;
|
||||
template<int Options>
|
||||
static void run(SparseMatrix<Scalar,Options,StorageIndex> &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
|
||||
{
|
||||
Index dstRows = src.rows();
|
||||
Index dstCols = src.cols();
|
||||
if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
|
||||
dst.resize(dstRows, dstCols);
|
||||
|
||||
Index size = src.diagonal().size();
|
||||
dst.makeCompressed();
|
||||
dst.resizeNonZeros(size);
|
||||
Map<ArrayXI>(dst.innerIndexPtr(), size).setLinSpaced(0,StorageIndex(size)-1);
|
||||
Map<ArrayXI>(dst.outerIndexPtr(), size+1).setLinSpaced(0,StorageIndex(size));
|
||||
Map<ArrayXS>(dst.valuePtr(), size) = src.diagonal();
|
||||
}
|
||||
|
||||
template<typename DstDerived>
|
||||
static void run(SparseMatrixBase<DstDerived> &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
|
||||
{
|
||||
dst.diagonal() = src.diagonal();
|
||||
}
|
||||
|
||||
static void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
|
||||
{ dst.diagonal() += src.diagonal(); }
|
||||
|
||||
static void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &/*func*/)
|
||||
{ dst.diagonal() -= src.diagonal(); }
|
||||
};
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SPARSEASSIGN_H
|
||||
603
examples/ThirdPartyLibs/Eigen/src/SparseCore/SparseBlock.h
Normal file
603
examples/ThirdPartyLibs/Eigen/src/SparseCore/SparseBlock.h
Normal file
@@ -0,0 +1,603 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SPARSE_BLOCK_H
|
||||
#define EIGEN_SPARSE_BLOCK_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
// Subset of columns or rows
|
||||
template<typename XprType, int BlockRows, int BlockCols>
|
||||
class BlockImpl<XprType,BlockRows,BlockCols,true,Sparse>
|
||||
: public SparseMatrixBase<Block<XprType,BlockRows,BlockCols,true> >
|
||||
{
|
||||
typedef typename internal::remove_all<typename XprType::Nested>::type _MatrixTypeNested;
|
||||
typedef Block<XprType, BlockRows, BlockCols, true> BlockType;
|
||||
public:
|
||||
enum { IsRowMajor = internal::traits<BlockType>::IsRowMajor };
|
||||
protected:
|
||||
enum { OuterSize = IsRowMajor ? BlockRows : BlockCols };
|
||||
typedef SparseMatrixBase<BlockType> Base;
|
||||
using Base::convert_index;
|
||||
public:
|
||||
EIGEN_SPARSE_PUBLIC_INTERFACE(BlockType)
|
||||
|
||||
inline BlockImpl(XprType& xpr, Index i)
|
||||
: m_matrix(xpr), m_outerStart(convert_index(i)), m_outerSize(OuterSize)
|
||||
{}
|
||||
|
||||
inline BlockImpl(XprType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols)
|
||||
: m_matrix(xpr), m_outerStart(convert_index(IsRowMajor ? startRow : startCol)), m_outerSize(convert_index(IsRowMajor ? blockRows : blockCols))
|
||||
{}
|
||||
|
||||
EIGEN_STRONG_INLINE Index rows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); }
|
||||
EIGEN_STRONG_INLINE Index cols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); }
|
||||
|
||||
Index nonZeros() const
|
||||
{
|
||||
typedef internal::evaluator<XprType> EvaluatorType;
|
||||
EvaluatorType matEval(m_matrix);
|
||||
Index nnz = 0;
|
||||
Index end = m_outerStart + m_outerSize.value();
|
||||
for(Index j=m_outerStart; j<end; ++j)
|
||||
for(typename EvaluatorType::InnerIterator it(matEval, j); it; ++it)
|
||||
++nnz;
|
||||
return nnz;
|
||||
}
|
||||
|
||||
inline const Scalar coeff(Index row, Index col) const
|
||||
{
|
||||
return m_matrix.coeff(row + (IsRowMajor ? m_outerStart : 0), col + (IsRowMajor ? 0 : m_outerStart));
|
||||
}
|
||||
|
||||
inline const Scalar coeff(Index index) const
|
||||
{
|
||||
return m_matrix.coeff(IsRowMajor ? m_outerStart : index, IsRowMajor ? index : m_outerStart);
|
||||
}
|
||||
|
||||
inline const XprType& nestedExpression() const { return m_matrix; }
|
||||
inline XprType& nestedExpression() { return m_matrix; }
|
||||
Index startRow() const { return IsRowMajor ? m_outerStart : 0; }
|
||||
Index startCol() const { return IsRowMajor ? 0 : m_outerStart; }
|
||||
Index blockRows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); }
|
||||
Index blockCols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); }
|
||||
|
||||
protected:
|
||||
|
||||
typename internal::ref_selector<XprType>::non_const_type m_matrix;
|
||||
Index m_outerStart;
|
||||
const internal::variable_if_dynamic<Index, OuterSize> m_outerSize;
|
||||
|
||||
protected:
|
||||
// Disable assignment with clear error message.
|
||||
// Note that simply removing operator= yields compilation errors with ICC+MSVC
|
||||
template<typename T>
|
||||
BlockImpl& operator=(const T&)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(sizeof(T)==0, THIS_SPARSE_BLOCK_SUBEXPRESSION_IS_READ_ONLY);
|
||||
return *this;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
/***************************************************************************
|
||||
* specialization for SparseMatrix
|
||||
***************************************************************************/
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename SparseMatrixType, int BlockRows, int BlockCols>
|
||||
class sparse_matrix_block_impl
|
||||
: public SparseCompressedBase<Block<SparseMatrixType,BlockRows,BlockCols,true> >
|
||||
{
|
||||
typedef typename internal::remove_all<typename SparseMatrixType::Nested>::type _MatrixTypeNested;
|
||||
typedef Block<SparseMatrixType, BlockRows, BlockCols, true> BlockType;
|
||||
typedef SparseCompressedBase<Block<SparseMatrixType,BlockRows,BlockCols,true> > Base;
|
||||
using Base::convert_index;
|
||||
public:
|
||||
enum { IsRowMajor = internal::traits<BlockType>::IsRowMajor };
|
||||
EIGEN_SPARSE_PUBLIC_INTERFACE(BlockType)
|
||||
protected:
|
||||
typedef typename Base::IndexVector IndexVector;
|
||||
enum { OuterSize = IsRowMajor ? BlockRows : BlockCols };
|
||||
public:
|
||||
|
||||
inline sparse_matrix_block_impl(SparseMatrixType& xpr, Index i)
|
||||
: m_matrix(xpr), m_outerStart(convert_index(i)), m_outerSize(OuterSize)
|
||||
{}
|
||||
|
||||
inline sparse_matrix_block_impl(SparseMatrixType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols)
|
||||
: m_matrix(xpr), m_outerStart(convert_index(IsRowMajor ? startRow : startCol)), m_outerSize(convert_index(IsRowMajor ? blockRows : blockCols))
|
||||
{}
|
||||
|
||||
template<typename OtherDerived>
|
||||
inline BlockType& operator=(const SparseMatrixBase<OtherDerived>& other)
|
||||
{
|
||||
typedef typename internal::remove_all<typename SparseMatrixType::Nested>::type _NestedMatrixType;
|
||||
_NestedMatrixType& matrix = m_matrix;
|
||||
// This assignment is slow if this vector set is not empty
|
||||
// and/or it is not at the end of the nonzeros of the underlying matrix.
|
||||
|
||||
// 1 - eval to a temporary to avoid transposition and/or aliasing issues
|
||||
Ref<const SparseMatrix<Scalar, IsRowMajor ? RowMajor : ColMajor, StorageIndex> > tmp(other.derived());
|
||||
eigen_internal_assert(tmp.outerSize()==m_outerSize.value());
|
||||
|
||||
// 2 - let's check whether there is enough allocated memory
|
||||
Index nnz = tmp.nonZeros();
|
||||
Index start = m_outerStart==0 ? 0 : m_matrix.outerIndexPtr()[m_outerStart]; // starting position of the current block
|
||||
Index end = m_matrix.outerIndexPtr()[m_outerStart+m_outerSize.value()]; // ending position of the current block
|
||||
Index block_size = end - start; // available room in the current block
|
||||
Index tail_size = m_matrix.outerIndexPtr()[m_matrix.outerSize()] - end;
|
||||
|
||||
Index free_size = m_matrix.isCompressed()
|
||||
? Index(matrix.data().allocatedSize()) + block_size
|
||||
: block_size;
|
||||
|
||||
Index tmp_start = tmp.outerIndexPtr()[0];
|
||||
|
||||
bool update_trailing_pointers = false;
|
||||
if(nnz>free_size)
|
||||
{
|
||||
// realloc manually to reduce copies
|
||||
typename SparseMatrixType::Storage newdata(m_matrix.data().allocatedSize() - block_size + nnz);
|
||||
|
||||
internal::smart_copy(m_matrix.valuePtr(), m_matrix.valuePtr() + start, newdata.valuePtr());
|
||||
internal::smart_copy(m_matrix.innerIndexPtr(), m_matrix.innerIndexPtr() + start, newdata.indexPtr());
|
||||
|
||||
internal::smart_copy(tmp.valuePtr() + tmp_start, tmp.valuePtr() + tmp_start + nnz, newdata.valuePtr() + start);
|
||||
internal::smart_copy(tmp.innerIndexPtr() + tmp_start, tmp.innerIndexPtr() + tmp_start + nnz, newdata.indexPtr() + start);
|
||||
|
||||
internal::smart_copy(matrix.valuePtr()+end, matrix.valuePtr()+end + tail_size, newdata.valuePtr()+start+nnz);
|
||||
internal::smart_copy(matrix.innerIndexPtr()+end, matrix.innerIndexPtr()+end + tail_size, newdata.indexPtr()+start+nnz);
|
||||
|
||||
newdata.resize(m_matrix.outerIndexPtr()[m_matrix.outerSize()] - block_size + nnz);
|
||||
|
||||
matrix.data().swap(newdata);
|
||||
|
||||
update_trailing_pointers = true;
|
||||
}
|
||||
else
|
||||
{
|
||||
if(m_matrix.isCompressed())
|
||||
{
|
||||
// no need to realloc, simply copy the tail at its respective position and insert tmp
|
||||
matrix.data().resize(start + nnz + tail_size);
|
||||
|
||||
internal::smart_memmove(matrix.valuePtr()+end, matrix.valuePtr() + end+tail_size, matrix.valuePtr() + start+nnz);
|
||||
internal::smart_memmove(matrix.innerIndexPtr()+end, matrix.innerIndexPtr() + end+tail_size, matrix.innerIndexPtr() + start+nnz);
|
||||
|
||||
update_trailing_pointers = true;
|
||||
}
|
||||
|
||||
internal::smart_copy(tmp.valuePtr() + tmp_start, tmp.valuePtr() + tmp_start + nnz, matrix.valuePtr() + start);
|
||||
internal::smart_copy(tmp.innerIndexPtr() + tmp_start, tmp.innerIndexPtr() + tmp_start + nnz, matrix.innerIndexPtr() + start);
|
||||
}
|
||||
|
||||
// update outer index pointers and innerNonZeros
|
||||
if(IsVectorAtCompileTime)
|
||||
{
|
||||
if(!m_matrix.isCompressed())
|
||||
matrix.innerNonZeroPtr()[m_outerStart] = StorageIndex(nnz);
|
||||
matrix.outerIndexPtr()[m_outerStart] = StorageIndex(start);
|
||||
}
|
||||
else
|
||||
{
|
||||
StorageIndex p = StorageIndex(start);
|
||||
for(Index k=0; k<m_outerSize.value(); ++k)
|
||||
{
|
||||
StorageIndex nnz_k = internal::convert_index<StorageIndex>(tmp.innerVector(k).nonZeros());
|
||||
if(!m_matrix.isCompressed())
|
||||
matrix.innerNonZeroPtr()[m_outerStart+k] = nnz_k;
|
||||
matrix.outerIndexPtr()[m_outerStart+k] = p;
|
||||
p += nnz_k;
|
||||
}
|
||||
}
|
||||
|
||||
if(update_trailing_pointers)
|
||||
{
|
||||
StorageIndex offset = internal::convert_index<StorageIndex>(nnz - block_size);
|
||||
for(Index k = m_outerStart + m_outerSize.value(); k<=matrix.outerSize(); ++k)
|
||||
{
|
||||
matrix.outerIndexPtr()[k] += offset;
|
||||
}
|
||||
}
|
||||
|
||||
return derived();
|
||||
}
|
||||
|
||||
inline BlockType& operator=(const BlockType& other)
|
||||
{
|
||||
return operator=<BlockType>(other);
|
||||
}
|
||||
|
||||
inline const Scalar* valuePtr() const
|
||||
{ return m_matrix.valuePtr(); }
|
||||
inline Scalar* valuePtr()
|
||||
{ return m_matrix.valuePtr(); }
|
||||
|
||||
inline const StorageIndex* innerIndexPtr() const
|
||||
{ return m_matrix.innerIndexPtr(); }
|
||||
inline StorageIndex* innerIndexPtr()
|
||||
{ return m_matrix.innerIndexPtr(); }
|
||||
|
||||
inline const StorageIndex* outerIndexPtr() const
|
||||
{ return m_matrix.outerIndexPtr() + m_outerStart; }
|
||||
inline StorageIndex* outerIndexPtr()
|
||||
{ return m_matrix.outerIndexPtr() + m_outerStart; }
|
||||
|
||||
inline const StorageIndex* innerNonZeroPtr() const
|
||||
{ return isCompressed() ? 0 : (m_matrix.innerNonZeroPtr()+m_outerStart); }
|
||||
inline StorageIndex* innerNonZeroPtr()
|
||||
{ return isCompressed() ? 0 : (m_matrix.innerNonZeroPtr()+m_outerStart); }
|
||||
|
||||
bool isCompressed() const { return m_matrix.innerNonZeroPtr()==0; }
|
||||
|
||||
inline Scalar& coeffRef(Index row, Index col)
|
||||
{
|
||||
return m_matrix.coeffRef(row + (IsRowMajor ? m_outerStart : 0), col + (IsRowMajor ? 0 : m_outerStart));
|
||||
}
|
||||
|
||||
inline const Scalar coeff(Index row, Index col) const
|
||||
{
|
||||
return m_matrix.coeff(row + (IsRowMajor ? m_outerStart : 0), col + (IsRowMajor ? 0 : m_outerStart));
|
||||
}
|
||||
|
||||
inline const Scalar coeff(Index index) const
|
||||
{
|
||||
return m_matrix.coeff(IsRowMajor ? m_outerStart : index, IsRowMajor ? index : m_outerStart);
|
||||
}
|
||||
|
||||
const Scalar& lastCoeff() const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(sparse_matrix_block_impl);
|
||||
eigen_assert(Base::nonZeros()>0);
|
||||
if(m_matrix.isCompressed())
|
||||
return m_matrix.valuePtr()[m_matrix.outerIndexPtr()[m_outerStart+1]-1];
|
||||
else
|
||||
return m_matrix.valuePtr()[m_matrix.outerIndexPtr()[m_outerStart]+m_matrix.innerNonZeroPtr()[m_outerStart]-1];
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE Index rows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); }
|
||||
EIGEN_STRONG_INLINE Index cols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); }
|
||||
|
||||
inline const SparseMatrixType& nestedExpression() const { return m_matrix; }
|
||||
inline SparseMatrixType& nestedExpression() { return m_matrix; }
|
||||
Index startRow() const { return IsRowMajor ? m_outerStart : 0; }
|
||||
Index startCol() const { return IsRowMajor ? 0 : m_outerStart; }
|
||||
Index blockRows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); }
|
||||
Index blockCols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); }
|
||||
|
||||
protected:
|
||||
|
||||
typename internal::ref_selector<SparseMatrixType>::non_const_type m_matrix;
|
||||
Index m_outerStart;
|
||||
const internal::variable_if_dynamic<Index, OuterSize> m_outerSize;
|
||||
|
||||
};
|
||||
|
||||
} // namespace internal
|
||||
|
||||
template<typename _Scalar, int _Options, typename _StorageIndex, int BlockRows, int BlockCols>
|
||||
class BlockImpl<SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true,Sparse>
|
||||
: public internal::sparse_matrix_block_impl<SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols>
|
||||
{
|
||||
public:
|
||||
typedef _StorageIndex StorageIndex;
|
||||
typedef SparseMatrix<_Scalar, _Options, _StorageIndex> SparseMatrixType;
|
||||
typedef internal::sparse_matrix_block_impl<SparseMatrixType,BlockRows,BlockCols> Base;
|
||||
inline BlockImpl(SparseMatrixType& xpr, Index i)
|
||||
: Base(xpr, i)
|
||||
{}
|
||||
|
||||
inline BlockImpl(SparseMatrixType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols)
|
||||
: Base(xpr, startRow, startCol, blockRows, blockCols)
|
||||
{}
|
||||
|
||||
using Base::operator=;
|
||||
};
|
||||
|
||||
template<typename _Scalar, int _Options, typename _StorageIndex, int BlockRows, int BlockCols>
|
||||
class BlockImpl<const SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true,Sparse>
|
||||
: public internal::sparse_matrix_block_impl<const SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols>
|
||||
{
|
||||
public:
|
||||
typedef _StorageIndex StorageIndex;
|
||||
typedef const SparseMatrix<_Scalar, _Options, _StorageIndex> SparseMatrixType;
|
||||
typedef internal::sparse_matrix_block_impl<SparseMatrixType,BlockRows,BlockCols> Base;
|
||||
inline BlockImpl(SparseMatrixType& xpr, Index i)
|
||||
: Base(xpr, i)
|
||||
{}
|
||||
|
||||
inline BlockImpl(SparseMatrixType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols)
|
||||
: Base(xpr, startRow, startCol, blockRows, blockCols)
|
||||
{}
|
||||
|
||||
using Base::operator=;
|
||||
private:
|
||||
template<typename Derived> BlockImpl(const SparseMatrixBase<Derived>& xpr, Index i);
|
||||
template<typename Derived> BlockImpl(const SparseMatrixBase<Derived>& xpr);
|
||||
};
|
||||
|
||||
//----------
|
||||
|
||||
/** \returns the \a outer -th column (resp. row) of the matrix \c *this if \c *this
|
||||
* is col-major (resp. row-major).
|
||||
*/
|
||||
template<typename Derived>
|
||||
typename SparseMatrixBase<Derived>::InnerVectorReturnType SparseMatrixBase<Derived>::innerVector(Index outer)
|
||||
{ return InnerVectorReturnType(derived(), outer); }
|
||||
|
||||
/** \returns the \a outer -th column (resp. row) of the matrix \c *this if \c *this
|
||||
* is col-major (resp. row-major). Read-only.
|
||||
*/
|
||||
template<typename Derived>
|
||||
const typename SparseMatrixBase<Derived>::ConstInnerVectorReturnType SparseMatrixBase<Derived>::innerVector(Index outer) const
|
||||
{ return ConstInnerVectorReturnType(derived(), outer); }
|
||||
|
||||
/** \returns the \a outer -th column (resp. row) of the matrix \c *this if \c *this
|
||||
* is col-major (resp. row-major).
|
||||
*/
|
||||
template<typename Derived>
|
||||
typename SparseMatrixBase<Derived>::InnerVectorsReturnType
|
||||
SparseMatrixBase<Derived>::innerVectors(Index outerStart, Index outerSize)
|
||||
{
|
||||
return Block<Derived,Dynamic,Dynamic,true>(derived(),
|
||||
IsRowMajor ? outerStart : 0, IsRowMajor ? 0 : outerStart,
|
||||
IsRowMajor ? outerSize : rows(), IsRowMajor ? cols() : outerSize);
|
||||
|
||||
}
|
||||
|
||||
/** \returns the \a outer -th column (resp. row) of the matrix \c *this if \c *this
|
||||
* is col-major (resp. row-major). Read-only.
|
||||
*/
|
||||
template<typename Derived>
|
||||
const typename SparseMatrixBase<Derived>::ConstInnerVectorsReturnType
|
||||
SparseMatrixBase<Derived>::innerVectors(Index outerStart, Index outerSize) const
|
||||
{
|
||||
return Block<const Derived,Dynamic,Dynamic,true>(derived(),
|
||||
IsRowMajor ? outerStart : 0, IsRowMajor ? 0 : outerStart,
|
||||
IsRowMajor ? outerSize : rows(), IsRowMajor ? cols() : outerSize);
|
||||
|
||||
}
|
||||
|
||||
/** Generic implementation of sparse Block expression.
|
||||
* Real-only.
|
||||
*/
|
||||
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel>
|
||||
class BlockImpl<XprType,BlockRows,BlockCols,InnerPanel,Sparse>
|
||||
: public SparseMatrixBase<Block<XprType,BlockRows,BlockCols,InnerPanel> >, internal::no_assignment_operator
|
||||
{
|
||||
typedef Block<XprType, BlockRows, BlockCols, InnerPanel> BlockType;
|
||||
typedef SparseMatrixBase<BlockType> Base;
|
||||
using Base::convert_index;
|
||||
public:
|
||||
enum { IsRowMajor = internal::traits<BlockType>::IsRowMajor };
|
||||
EIGEN_SPARSE_PUBLIC_INTERFACE(BlockType)
|
||||
|
||||
typedef typename internal::remove_all<typename XprType::Nested>::type _MatrixTypeNested;
|
||||
|
||||
/** Column or Row constructor
|
||||
*/
|
||||
inline BlockImpl(XprType& xpr, Index i)
|
||||
: m_matrix(xpr),
|
||||
m_startRow( (BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) ? convert_index(i) : 0),
|
||||
m_startCol( (BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) ? convert_index(i) : 0),
|
||||
m_blockRows(BlockRows==1 ? 1 : xpr.rows()),
|
||||
m_blockCols(BlockCols==1 ? 1 : xpr.cols())
|
||||
{}
|
||||
|
||||
/** Dynamic-size constructor
|
||||
*/
|
||||
inline BlockImpl(XprType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols)
|
||||
: m_matrix(xpr), m_startRow(convert_index(startRow)), m_startCol(convert_index(startCol)), m_blockRows(convert_index(blockRows)), m_blockCols(convert_index(blockCols))
|
||||
{}
|
||||
|
||||
inline Index rows() const { return m_blockRows.value(); }
|
||||
inline Index cols() const { return m_blockCols.value(); }
|
||||
|
||||
inline Scalar& coeffRef(Index row, Index col)
|
||||
{
|
||||
return m_matrix.coeffRef(row + m_startRow.value(), col + m_startCol.value());
|
||||
}
|
||||
|
||||
inline const Scalar coeff(Index row, Index col) const
|
||||
{
|
||||
return m_matrix.coeff(row + m_startRow.value(), col + m_startCol.value());
|
||||
}
|
||||
|
||||
inline Scalar& coeffRef(Index index)
|
||||
{
|
||||
return m_matrix.coeffRef(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
|
||||
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
|
||||
}
|
||||
|
||||
inline const Scalar coeff(Index index) const
|
||||
{
|
||||
return m_matrix.coeff(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
|
||||
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
|
||||
}
|
||||
|
||||
inline const XprType& nestedExpression() const { return m_matrix; }
|
||||
inline XprType& nestedExpression() { return m_matrix; }
|
||||
Index startRow() const { return m_startRow.value(); }
|
||||
Index startCol() const { return m_startCol.value(); }
|
||||
Index blockRows() const { return m_blockRows.value(); }
|
||||
Index blockCols() const { return m_blockCols.value(); }
|
||||
|
||||
protected:
|
||||
// friend class internal::GenericSparseBlockInnerIteratorImpl<XprType,BlockRows,BlockCols,InnerPanel>;
|
||||
friend struct internal::unary_evaluator<Block<XprType,BlockRows,BlockCols,InnerPanel>, internal::IteratorBased, Scalar >;
|
||||
|
||||
Index nonZeros() const { return Dynamic; }
|
||||
|
||||
typename internal::ref_selector<XprType>::non_const_type m_matrix;
|
||||
const internal::variable_if_dynamic<Index, XprType::RowsAtCompileTime == 1 ? 0 : Dynamic> m_startRow;
|
||||
const internal::variable_if_dynamic<Index, XprType::ColsAtCompileTime == 1 ? 0 : Dynamic> m_startCol;
|
||||
const internal::variable_if_dynamic<Index, RowsAtCompileTime> m_blockRows;
|
||||
const internal::variable_if_dynamic<Index, ColsAtCompileTime> m_blockCols;
|
||||
|
||||
protected:
|
||||
// Disable assignment with clear error message.
|
||||
// Note that simply removing operator= yields compilation errors with ICC+MSVC
|
||||
template<typename T>
|
||||
BlockImpl& operator=(const T&)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(sizeof(T)==0, THIS_SPARSE_BLOCK_SUBEXPRESSION_IS_READ_ONLY);
|
||||
return *this;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel>
|
||||
struct unary_evaluator<Block<ArgType,BlockRows,BlockCols,InnerPanel>, IteratorBased >
|
||||
: public evaluator_base<Block<ArgType,BlockRows,BlockCols,InnerPanel> >
|
||||
{
|
||||
class InnerVectorInnerIterator;
|
||||
class OuterVectorInnerIterator;
|
||||
public:
|
||||
typedef Block<ArgType,BlockRows,BlockCols,InnerPanel> XprType;
|
||||
typedef typename XprType::StorageIndex StorageIndex;
|
||||
typedef typename XprType::Scalar Scalar;
|
||||
|
||||
enum {
|
||||
IsRowMajor = XprType::IsRowMajor,
|
||||
|
||||
OuterVector = (BlockCols==1 && ArgType::IsRowMajor)
|
||||
| // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&".
|
||||
// revert to || as soon as not needed anymore.
|
||||
(BlockRows==1 && !ArgType::IsRowMajor),
|
||||
|
||||
CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
|
||||
Flags = XprType::Flags
|
||||
};
|
||||
|
||||
typedef typename internal::conditional<OuterVector,OuterVectorInnerIterator,InnerVectorInnerIterator>::type InnerIterator;
|
||||
|
||||
explicit unary_evaluator(const XprType& op)
|
||||
: m_argImpl(op.nestedExpression()), m_block(op)
|
||||
{}
|
||||
|
||||
inline Index nonZerosEstimate() const {
|
||||
Index nnz = m_block.nonZeros();
|
||||
if(nnz<0)
|
||||
return m_argImpl.nonZerosEstimate() * m_block.size() / m_block.nestedExpression().size();
|
||||
return nnz;
|
||||
}
|
||||
|
||||
protected:
|
||||
typedef typename evaluator<ArgType>::InnerIterator EvalIterator;
|
||||
|
||||
evaluator<ArgType> m_argImpl;
|
||||
const XprType &m_block;
|
||||
};
|
||||
|
||||
template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel>
|
||||
class unary_evaluator<Block<ArgType,BlockRows,BlockCols,InnerPanel>, IteratorBased>::InnerVectorInnerIterator
|
||||
: public EvalIterator
|
||||
{
|
||||
enum { IsRowMajor = unary_evaluator::IsRowMajor };
|
||||
const XprType& m_block;
|
||||
Index m_end;
|
||||
public:
|
||||
|
||||
EIGEN_STRONG_INLINE InnerVectorInnerIterator(const unary_evaluator& aEval, Index outer)
|
||||
: EvalIterator(aEval.m_argImpl, outer + (IsRowMajor ? aEval.m_block.startRow() : aEval.m_block.startCol())),
|
||||
m_block(aEval.m_block),
|
||||
m_end(IsRowMajor ? aEval.m_block.startCol()+aEval.m_block.blockCols() : aEval.m_block.startRow()+aEval.m_block.blockRows())
|
||||
{
|
||||
while( (EvalIterator::operator bool()) && (EvalIterator::index() < (IsRowMajor ? m_block.startCol() : m_block.startRow())) )
|
||||
EvalIterator::operator++();
|
||||
}
|
||||
|
||||
inline StorageIndex index() const { return EvalIterator::index() - convert_index<StorageIndex>(IsRowMajor ? m_block.startCol() : m_block.startRow()); }
|
||||
inline Index outer() const { return EvalIterator::outer() - (IsRowMajor ? m_block.startRow() : m_block.startCol()); }
|
||||
inline Index row() const { return EvalIterator::row() - m_block.startRow(); }
|
||||
inline Index col() const { return EvalIterator::col() - m_block.startCol(); }
|
||||
|
||||
inline operator bool() const { return EvalIterator::operator bool() && EvalIterator::index() < m_end; }
|
||||
};
|
||||
|
||||
template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel>
|
||||
class unary_evaluator<Block<ArgType,BlockRows,BlockCols,InnerPanel>, IteratorBased>::OuterVectorInnerIterator
|
||||
{
|
||||
enum { IsRowMajor = unary_evaluator::IsRowMajor };
|
||||
const unary_evaluator& m_eval;
|
||||
Index m_outerPos;
|
||||
const Index m_innerIndex;
|
||||
Index m_end;
|
||||
EvalIterator m_it;
|
||||
public:
|
||||
|
||||
EIGEN_STRONG_INLINE OuterVectorInnerIterator(const unary_evaluator& aEval, Index outer)
|
||||
: m_eval(aEval),
|
||||
m_outerPos( (IsRowMajor ? aEval.m_block.startCol() : aEval.m_block.startRow()) ),
|
||||
m_innerIndex(IsRowMajor ? aEval.m_block.startRow() : aEval.m_block.startCol()),
|
||||
m_end(IsRowMajor ? aEval.m_block.startCol()+aEval.m_block.blockCols() : aEval.m_block.startRow()+aEval.m_block.blockRows()),
|
||||
m_it(m_eval.m_argImpl, m_outerPos)
|
||||
{
|
||||
EIGEN_UNUSED_VARIABLE(outer);
|
||||
eigen_assert(outer==0);
|
||||
|
||||
while(m_it && m_it.index() < m_innerIndex) ++m_it;
|
||||
if((!m_it) || (m_it.index()!=m_innerIndex))
|
||||
++(*this);
|
||||
}
|
||||
|
||||
inline StorageIndex index() const { return convert_index<StorageIndex>(m_outerPos - (IsRowMajor ? m_eval.m_block.startCol() : m_eval.m_block.startRow())); }
|
||||
inline Index outer() const { return 0; }
|
||||
inline Index row() const { return IsRowMajor ? 0 : index(); }
|
||||
inline Index col() const { return IsRowMajor ? index() : 0; }
|
||||
|
||||
inline Scalar value() const { return m_it.value(); }
|
||||
inline Scalar& valueRef() { return m_it.valueRef(); }
|
||||
|
||||
inline OuterVectorInnerIterator& operator++()
|
||||
{
|
||||
// search next non-zero entry
|
||||
while(++m_outerPos<m_end)
|
||||
{
|
||||
// Restart iterator at the next inner-vector:
|
||||
m_it.~EvalIterator();
|
||||
::new (&m_it) EvalIterator(m_eval.m_argImpl, m_outerPos);
|
||||
// search for the key m_innerIndex in the current outer-vector
|
||||
while(m_it && m_it.index() < m_innerIndex) ++m_it;
|
||||
if(m_it && m_it.index()==m_innerIndex) break;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline operator bool() const { return m_outerPos < m_end; }
|
||||
};
|
||||
|
||||
template<typename _Scalar, int _Options, typename _StorageIndex, int BlockRows, int BlockCols>
|
||||
struct unary_evaluator<Block<SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true>, IteratorBased>
|
||||
: evaluator<SparseCompressedBase<Block<SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true> > >
|
||||
{
|
||||
typedef Block<SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true> XprType;
|
||||
typedef evaluator<SparseCompressedBase<XprType> > Base;
|
||||
explicit unary_evaluator(const XprType &xpr) : Base(xpr) {}
|
||||
};
|
||||
|
||||
template<typename _Scalar, int _Options, typename _StorageIndex, int BlockRows, int BlockCols>
|
||||
struct unary_evaluator<Block<const SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true>, IteratorBased>
|
||||
: evaluator<SparseCompressedBase<Block<const SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true> > >
|
||||
{
|
||||
typedef Block<const SparseMatrix<_Scalar, _Options, _StorageIndex>,BlockRows,BlockCols,true> XprType;
|
||||
typedef evaluator<SparseCompressedBase<XprType> > Base;
|
||||
explicit unary_evaluator(const XprType &xpr) : Base(xpr) {}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SPARSE_BLOCK_H
|
||||
206
examples/ThirdPartyLibs/Eigen/src/SparseCore/SparseColEtree.h
Normal file
206
examples/ThirdPartyLibs/Eigen/src/SparseCore/SparseColEtree.h
Normal file
@@ -0,0 +1,206 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
|
||||
/*
|
||||
|
||||
* NOTE: This file is the modified version of sp_coletree.c file in SuperLU
|
||||
|
||||
* -- SuperLU routine (version 3.1) --
|
||||
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
|
||||
* and Lawrence Berkeley National Lab.
|
||||
* August 1, 2008
|
||||
*
|
||||
* Copyright (c) 1994 by Xerox Corporation. All rights reserved.
|
||||
*
|
||||
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
|
||||
* EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
|
||||
*
|
||||
* Permission is hereby granted to use or copy this program for any
|
||||
* purpose, provided the above notices are retained on all copies.
|
||||
* Permission to modify the code and to distribute modified code is
|
||||
* granted, provided the above notices are retained, and a notice that
|
||||
* the code was modified is included with the above copyright notice.
|
||||
*/
|
||||
#ifndef SPARSE_COLETREE_H
|
||||
#define SPARSE_COLETREE_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
/** Find the root of the tree/set containing the vertex i : Use Path halving */
|
||||
template<typename Index, typename IndexVector>
|
||||
Index etree_find (Index i, IndexVector& pp)
|
||||
{
|
||||
Index p = pp(i); // Parent
|
||||
Index gp = pp(p); // Grand parent
|
||||
while (gp != p)
|
||||
{
|
||||
pp(i) = gp; // Parent pointer on find path is changed to former grand parent
|
||||
i = gp;
|
||||
p = pp(i);
|
||||
gp = pp(p);
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
/** Compute the column elimination tree of a sparse matrix
|
||||
* \param mat The matrix in column-major format.
|
||||
* \param parent The elimination tree
|
||||
* \param firstRowElt The column index of the first element in each row
|
||||
* \param perm The permutation to apply to the column of \b mat
|
||||
*/
|
||||
template <typename MatrixType, typename IndexVector>
|
||||
int coletree(const MatrixType& mat, IndexVector& parent, IndexVector& firstRowElt, typename MatrixType::StorageIndex *perm=0)
|
||||
{
|
||||
typedef typename MatrixType::StorageIndex StorageIndex;
|
||||
StorageIndex nc = convert_index<StorageIndex>(mat.cols()); // Number of columns
|
||||
StorageIndex m = convert_index<StorageIndex>(mat.rows());
|
||||
StorageIndex diagSize = (std::min)(nc,m);
|
||||
IndexVector root(nc); // root of subtree of etree
|
||||
root.setZero();
|
||||
IndexVector pp(nc); // disjoint sets
|
||||
pp.setZero(); // Initialize disjoint sets
|
||||
parent.resize(mat.cols());
|
||||
//Compute first nonzero column in each row
|
||||
firstRowElt.resize(m);
|
||||
firstRowElt.setConstant(nc);
|
||||
firstRowElt.segment(0, diagSize).setLinSpaced(diagSize, 0, diagSize-1);
|
||||
bool found_diag;
|
||||
for (StorageIndex col = 0; col < nc; col++)
|
||||
{
|
||||
StorageIndex pcol = col;
|
||||
if(perm) pcol = perm[col];
|
||||
for (typename MatrixType::InnerIterator it(mat, pcol); it; ++it)
|
||||
{
|
||||
Index row = it.row();
|
||||
firstRowElt(row) = (std::min)(firstRowElt(row), col);
|
||||
}
|
||||
}
|
||||
/* Compute etree by Liu's algorithm for symmetric matrices,
|
||||
except use (firstRowElt[r],c) in place of an edge (r,c) of A.
|
||||
Thus each row clique in A'*A is replaced by a star
|
||||
centered at its first vertex, which has the same fill. */
|
||||
StorageIndex rset, cset, rroot;
|
||||
for (StorageIndex col = 0; col < nc; col++)
|
||||
{
|
||||
found_diag = col>=m;
|
||||
pp(col) = col;
|
||||
cset = col;
|
||||
root(cset) = col;
|
||||
parent(col) = nc;
|
||||
/* The diagonal element is treated here even if it does not exist in the matrix
|
||||
* hence the loop is executed once more */
|
||||
StorageIndex pcol = col;
|
||||
if(perm) pcol = perm[col];
|
||||
for (typename MatrixType::InnerIterator it(mat, pcol); it||!found_diag; ++it)
|
||||
{ // A sequence of interleaved find and union is performed
|
||||
Index i = col;
|
||||
if(it) i = it.index();
|
||||
if (i == col) found_diag = true;
|
||||
|
||||
StorageIndex row = firstRowElt(i);
|
||||
if (row >= col) continue;
|
||||
rset = internal::etree_find(row, pp); // Find the name of the set containing row
|
||||
rroot = root(rset);
|
||||
if (rroot != col)
|
||||
{
|
||||
parent(rroot) = col;
|
||||
pp(cset) = rset;
|
||||
cset = rset;
|
||||
root(cset) = col;
|
||||
}
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Depth-first search from vertex n. No recursion.
|
||||
* This routine was contributed by Cédric Doucet, CEDRAT Group, Meylan, France.
|
||||
*/
|
||||
template <typename IndexVector>
|
||||
void nr_etdfs (typename IndexVector::Scalar n, IndexVector& parent, IndexVector& first_kid, IndexVector& next_kid, IndexVector& post, typename IndexVector::Scalar postnum)
|
||||
{
|
||||
typedef typename IndexVector::Scalar StorageIndex;
|
||||
StorageIndex current = n, first, next;
|
||||
while (postnum != n)
|
||||
{
|
||||
// No kid for the current node
|
||||
first = first_kid(current);
|
||||
|
||||
// no kid for the current node
|
||||
if (first == -1)
|
||||
{
|
||||
// Numbering this node because it has no kid
|
||||
post(current) = postnum++;
|
||||
|
||||
// looking for the next kid
|
||||
next = next_kid(current);
|
||||
while (next == -1)
|
||||
{
|
||||
// No more kids : back to the parent node
|
||||
current = parent(current);
|
||||
// numbering the parent node
|
||||
post(current) = postnum++;
|
||||
|
||||
// Get the next kid
|
||||
next = next_kid(current);
|
||||
}
|
||||
// stopping criterion
|
||||
if (postnum == n+1) return;
|
||||
|
||||
// Updating current node
|
||||
current = next;
|
||||
}
|
||||
else
|
||||
{
|
||||
current = first;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* \brief Post order a tree
|
||||
* \param n the number of nodes
|
||||
* \param parent Input tree
|
||||
* \param post postordered tree
|
||||
*/
|
||||
template <typename IndexVector>
|
||||
void treePostorder(typename IndexVector::Scalar n, IndexVector& parent, IndexVector& post)
|
||||
{
|
||||
typedef typename IndexVector::Scalar StorageIndex;
|
||||
IndexVector first_kid, next_kid; // Linked list of children
|
||||
StorageIndex postnum;
|
||||
// Allocate storage for working arrays and results
|
||||
first_kid.resize(n+1);
|
||||
next_kid.setZero(n+1);
|
||||
post.setZero(n+1);
|
||||
|
||||
// Set up structure describing children
|
||||
first_kid.setConstant(-1);
|
||||
for (StorageIndex v = n-1; v >= 0; v--)
|
||||
{
|
||||
StorageIndex dad = parent(v);
|
||||
next_kid(v) = first_kid(dad);
|
||||
first_kid(dad) = v;
|
||||
}
|
||||
|
||||
// Depth-first search from dummy root vertex #n
|
||||
postnum = 0;
|
||||
internal::nr_etdfs(n, parent, first_kid, next_kid, post, postnum);
|
||||
}
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // SPARSE_COLETREE_H
|
||||
@@ -0,0 +1,357 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SPARSE_COMPRESSED_BASE_H
|
||||
#define EIGEN_SPARSE_COMPRESSED_BASE_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
template<typename Derived> class SparseCompressedBase;
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Derived>
|
||||
struct traits<SparseCompressedBase<Derived> > : traits<Derived>
|
||||
{};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/** \ingroup SparseCore_Module
|
||||
* \class SparseCompressedBase
|
||||
* \brief Common base class for sparse [compressed]-{row|column}-storage format.
|
||||
*
|
||||
* This class defines the common interface for all derived classes implementing the compressed sparse storage format, such as:
|
||||
* - SparseMatrix
|
||||
* - Ref<SparseMatrixType,Options>
|
||||
* - Map<SparseMatrixType>
|
||||
*
|
||||
*/
|
||||
template<typename Derived>
|
||||
class SparseCompressedBase
|
||||
: public SparseMatrixBase<Derived>
|
||||
{
|
||||
public:
|
||||
typedef SparseMatrixBase<Derived> Base;
|
||||
EIGEN_SPARSE_PUBLIC_INTERFACE(SparseCompressedBase)
|
||||
using Base::operator=;
|
||||
using Base::IsRowMajor;
|
||||
|
||||
class InnerIterator;
|
||||
class ReverseInnerIterator;
|
||||
|
||||
protected:
|
||||
typedef typename Base::IndexVector IndexVector;
|
||||
Eigen::Map<IndexVector> innerNonZeros() { return Eigen::Map<IndexVector>(innerNonZeroPtr(), isCompressed()?0:derived().outerSize()); }
|
||||
const Eigen::Map<const IndexVector> innerNonZeros() const { return Eigen::Map<const IndexVector>(innerNonZeroPtr(), isCompressed()?0:derived().outerSize()); }
|
||||
|
||||
public:
|
||||
|
||||
/** \returns the number of non zero coefficients */
|
||||
inline Index nonZeros() const
|
||||
{
|
||||
if(Derived::IsVectorAtCompileTime && outerIndexPtr()==0)
|
||||
return derived().nonZeros();
|
||||
else if(isCompressed())
|
||||
return outerIndexPtr()[derived().outerSize()]-outerIndexPtr()[0];
|
||||
else if(derived().outerSize()==0)
|
||||
return 0;
|
||||
else
|
||||
return innerNonZeros().sum();
|
||||
}
|
||||
|
||||
/** \returns a const pointer to the array of values.
|
||||
* This function is aimed at interoperability with other libraries.
|
||||
* \sa innerIndexPtr(), outerIndexPtr() */
|
||||
inline const Scalar* valuePtr() const { return derived().valuePtr(); }
|
||||
/** \returns a non-const pointer to the array of values.
|
||||
* This function is aimed at interoperability with other libraries.
|
||||
* \sa innerIndexPtr(), outerIndexPtr() */
|
||||
inline Scalar* valuePtr() { return derived().valuePtr(); }
|
||||
|
||||
/** \returns a const pointer to the array of inner indices.
|
||||
* This function is aimed at interoperability with other libraries.
|
||||
* \sa valuePtr(), outerIndexPtr() */
|
||||
inline const StorageIndex* innerIndexPtr() const { return derived().innerIndexPtr(); }
|
||||
/** \returns a non-const pointer to the array of inner indices.
|
||||
* This function is aimed at interoperability with other libraries.
|
||||
* \sa valuePtr(), outerIndexPtr() */
|
||||
inline StorageIndex* innerIndexPtr() { return derived().innerIndexPtr(); }
|
||||
|
||||
/** \returns a const pointer to the array of the starting positions of the inner vectors.
|
||||
* This function is aimed at interoperability with other libraries.
|
||||
* \warning it returns the null pointer 0 for SparseVector
|
||||
* \sa valuePtr(), innerIndexPtr() */
|
||||
inline const StorageIndex* outerIndexPtr() const { return derived().outerIndexPtr(); }
|
||||
/** \returns a non-const pointer to the array of the starting positions of the inner vectors.
|
||||
* This function is aimed at interoperability with other libraries.
|
||||
* \warning it returns the null pointer 0 for SparseVector
|
||||
* \sa valuePtr(), innerIndexPtr() */
|
||||
inline StorageIndex* outerIndexPtr() { return derived().outerIndexPtr(); }
|
||||
|
||||
/** \returns a const pointer to the array of the number of non zeros of the inner vectors.
|
||||
* This function is aimed at interoperability with other libraries.
|
||||
* \warning it returns the null pointer 0 in compressed mode */
|
||||
inline const StorageIndex* innerNonZeroPtr() const { return derived().innerNonZeroPtr(); }
|
||||
/** \returns a non-const pointer to the array of the number of non zeros of the inner vectors.
|
||||
* This function is aimed at interoperability with other libraries.
|
||||
* \warning it returns the null pointer 0 in compressed mode */
|
||||
inline StorageIndex* innerNonZeroPtr() { return derived().innerNonZeroPtr(); }
|
||||
|
||||
/** \returns whether \c *this is in compressed form. */
|
||||
inline bool isCompressed() const { return innerNonZeroPtr()==0; }
|
||||
|
||||
/** \returns a read-only view of the stored coefficients as a 1D array expression.
|
||||
*
|
||||
* \warning this method is for \b compressed \b storage \b only, and it will trigger an assertion otherwise.
|
||||
*
|
||||
* \sa valuePtr(), isCompressed() */
|
||||
const Map<const Array<Scalar,Dynamic,1> > coeffs() const { eigen_assert(isCompressed()); return Array<Scalar,Dynamic,1>::Map(valuePtr(),nonZeros()); }
|
||||
|
||||
/** \returns a read-write view of the stored coefficients as a 1D array expression
|
||||
*
|
||||
* \warning this method is for \b compressed \b storage \b only, and it will trigger an assertion otherwise.
|
||||
*
|
||||
* Here is an example:
|
||||
* \include SparseMatrix_coeffs.cpp
|
||||
* and the output is:
|
||||
* \include SparseMatrix_coeffs.out
|
||||
*
|
||||
* \sa valuePtr(), isCompressed() */
|
||||
Map<Array<Scalar,Dynamic,1> > coeffs() { eigen_assert(isCompressed()); return Array<Scalar,Dynamic,1>::Map(valuePtr(),nonZeros()); }
|
||||
|
||||
protected:
|
||||
/** Default constructor. Do nothing. */
|
||||
SparseCompressedBase() {}
|
||||
private:
|
||||
template<typename OtherDerived> explicit SparseCompressedBase(const SparseCompressedBase<OtherDerived>&);
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
class SparseCompressedBase<Derived>::InnerIterator
|
||||
{
|
||||
public:
|
||||
InnerIterator()
|
||||
: m_values(0), m_indices(0), m_outer(0), m_id(0), m_end(0)
|
||||
{}
|
||||
|
||||
InnerIterator(const InnerIterator& other)
|
||||
: m_values(other.m_values), m_indices(other.m_indices), m_outer(other.m_outer), m_id(other.m_id), m_end(other.m_end)
|
||||
{}
|
||||
|
||||
InnerIterator& operator=(const InnerIterator& other)
|
||||
{
|
||||
m_values = other.m_values;
|
||||
m_indices = other.m_indices;
|
||||
const_cast<OuterType&>(m_outer).setValue(other.m_outer.value());
|
||||
m_id = other.m_id;
|
||||
m_end = other.m_end;
|
||||
return *this;
|
||||
}
|
||||
|
||||
InnerIterator(const SparseCompressedBase& mat, Index outer)
|
||||
: m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(outer)
|
||||
{
|
||||
if(Derived::IsVectorAtCompileTime && mat.outerIndexPtr()==0)
|
||||
{
|
||||
m_id = 0;
|
||||
m_end = mat.nonZeros();
|
||||
}
|
||||
else
|
||||
{
|
||||
m_id = mat.outerIndexPtr()[outer];
|
||||
if(mat.isCompressed())
|
||||
m_end = mat.outerIndexPtr()[outer+1];
|
||||
else
|
||||
m_end = m_id + mat.innerNonZeroPtr()[outer];
|
||||
}
|
||||
}
|
||||
|
||||
explicit InnerIterator(const SparseCompressedBase& mat)
|
||||
: m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(0), m_id(0), m_end(mat.nonZeros())
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
|
||||
}
|
||||
|
||||
explicit InnerIterator(const internal::CompressedStorage<Scalar,StorageIndex>& data)
|
||||
: m_values(data.valuePtr()), m_indices(data.indexPtr()), m_outer(0), m_id(0), m_end(data.size())
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
|
||||
}
|
||||
|
||||
inline InnerIterator& operator++() { m_id++; return *this; }
|
||||
inline InnerIterator& operator+=(Index i) { m_id += i ; return *this; }
|
||||
|
||||
inline InnerIterator operator+(Index i)
|
||||
{
|
||||
InnerIterator result = *this;
|
||||
result += i;
|
||||
return result;
|
||||
}
|
||||
|
||||
inline const Scalar& value() const { return m_values[m_id]; }
|
||||
inline Scalar& valueRef() { return const_cast<Scalar&>(m_values[m_id]); }
|
||||
|
||||
inline StorageIndex index() const { return m_indices[m_id]; }
|
||||
inline Index outer() const { return m_outer.value(); }
|
||||
inline Index row() const { return IsRowMajor ? m_outer.value() : index(); }
|
||||
inline Index col() const { return IsRowMajor ? index() : m_outer.value(); }
|
||||
|
||||
inline operator bool() const { return (m_id < m_end); }
|
||||
|
||||
protected:
|
||||
const Scalar* m_values;
|
||||
const StorageIndex* m_indices;
|
||||
typedef internal::variable_if_dynamic<Index,Derived::IsVectorAtCompileTime?0:Dynamic> OuterType;
|
||||
const OuterType m_outer;
|
||||
Index m_id;
|
||||
Index m_end;
|
||||
private:
|
||||
// If you get here, then you're not using the right InnerIterator type, e.g.:
|
||||
// SparseMatrix<double,RowMajor> A;
|
||||
// SparseMatrix<double>::InnerIterator it(A,0);
|
||||
template<typename T> InnerIterator(const SparseMatrixBase<T>&, Index outer);
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
class SparseCompressedBase<Derived>::ReverseInnerIterator
|
||||
{
|
||||
public:
|
||||
ReverseInnerIterator(const SparseCompressedBase& mat, Index outer)
|
||||
: m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(outer)
|
||||
{
|
||||
if(Derived::IsVectorAtCompileTime && mat.outerIndexPtr()==0)
|
||||
{
|
||||
m_start = 0;
|
||||
m_id = mat.nonZeros();
|
||||
}
|
||||
else
|
||||
{
|
||||
m_start = mat.outerIndexPtr()[outer];
|
||||
if(mat.isCompressed())
|
||||
m_id = mat.outerIndexPtr()[outer+1];
|
||||
else
|
||||
m_id = m_start + mat.innerNonZeroPtr()[outer];
|
||||
}
|
||||
}
|
||||
|
||||
explicit ReverseInnerIterator(const SparseCompressedBase& mat)
|
||||
: m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(0), m_start(0), m_id(mat.nonZeros())
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
|
||||
}
|
||||
|
||||
explicit ReverseInnerIterator(const internal::CompressedStorage<Scalar,StorageIndex>& data)
|
||||
: m_values(data.valuePtr()), m_indices(data.indexPtr()), m_outer(0), m_start(0), m_id(data.size())
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
|
||||
}
|
||||
|
||||
inline ReverseInnerIterator& operator--() { --m_id; return *this; }
|
||||
inline ReverseInnerIterator& operator-=(Index i) { m_id -= i; return *this; }
|
||||
|
||||
inline ReverseInnerIterator operator-(Index i)
|
||||
{
|
||||
ReverseInnerIterator result = *this;
|
||||
result -= i;
|
||||
return result;
|
||||
}
|
||||
|
||||
inline const Scalar& value() const { return m_values[m_id-1]; }
|
||||
inline Scalar& valueRef() { return const_cast<Scalar&>(m_values[m_id-1]); }
|
||||
|
||||
inline StorageIndex index() const { return m_indices[m_id-1]; }
|
||||
inline Index outer() const { return m_outer.value(); }
|
||||
inline Index row() const { return IsRowMajor ? m_outer.value() : index(); }
|
||||
inline Index col() const { return IsRowMajor ? index() : m_outer.value(); }
|
||||
|
||||
inline operator bool() const { return (m_id > m_start); }
|
||||
|
||||
protected:
|
||||
const Scalar* m_values;
|
||||
const StorageIndex* m_indices;
|
||||
typedef internal::variable_if_dynamic<Index,Derived::IsVectorAtCompileTime?0:Dynamic> OuterType;
|
||||
const OuterType m_outer;
|
||||
Index m_start;
|
||||
Index m_id;
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Derived>
|
||||
struct evaluator<SparseCompressedBase<Derived> >
|
||||
: evaluator_base<Derived>
|
||||
{
|
||||
typedef typename Derived::Scalar Scalar;
|
||||
typedef typename Derived::InnerIterator InnerIterator;
|
||||
|
||||
enum {
|
||||
CoeffReadCost = NumTraits<Scalar>::ReadCost,
|
||||
Flags = Derived::Flags
|
||||
};
|
||||
|
||||
evaluator() : m_matrix(0), m_zero(0)
|
||||
{
|
||||
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
|
||||
}
|
||||
explicit evaluator(const Derived &mat) : m_matrix(&mat), m_zero(0)
|
||||
{
|
||||
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
|
||||
}
|
||||
|
||||
inline Index nonZerosEstimate() const {
|
||||
return m_matrix->nonZeros();
|
||||
}
|
||||
|
||||
operator Derived&() { return m_matrix->const_cast_derived(); }
|
||||
operator const Derived&() const { return *m_matrix; }
|
||||
|
||||
typedef typename DenseCoeffsBase<Derived,ReadOnlyAccessors>::CoeffReturnType CoeffReturnType;
|
||||
const Scalar& coeff(Index row, Index col) const
|
||||
{
|
||||
Index p = find(row,col);
|
||||
|
||||
if(p==Dynamic)
|
||||
return m_zero;
|
||||
else
|
||||
return m_matrix->const_cast_derived().valuePtr()[p];
|
||||
}
|
||||
|
||||
Scalar& coeffRef(Index row, Index col)
|
||||
{
|
||||
Index p = find(row,col);
|
||||
eigen_assert(p!=Dynamic && "written coefficient does not exist");
|
||||
return m_matrix->const_cast_derived().valuePtr()[p];
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
Index find(Index row, Index col) const
|
||||
{
|
||||
eigen_internal_assert(row>=0 && row<m_matrix->rows() && col>=0 && col<m_matrix->cols());
|
||||
|
||||
const Index outer = Derived::IsRowMajor ? row : col;
|
||||
const Index inner = Derived::IsRowMajor ? col : row;
|
||||
|
||||
Index start = m_matrix->outerIndexPtr()[outer];
|
||||
Index end = m_matrix->isCompressed() ? m_matrix->outerIndexPtr()[outer+1] : m_matrix->outerIndexPtr()[outer] + m_matrix->innerNonZeroPtr()[outer];
|
||||
eigen_assert(end>=start && "you are using a non finalized sparse matrix or written coefficient does not exist");
|
||||
const Index p = std::lower_bound(m_matrix->innerIndexPtr()+start, m_matrix->innerIndexPtr()+end,inner) - m_matrix->innerIndexPtr();
|
||||
|
||||
return ((p<end) && (m_matrix->innerIndexPtr()[p]==inner)) ? p : Dynamic;
|
||||
}
|
||||
|
||||
const Derived *m_matrix;
|
||||
const Scalar m_zero;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SPARSE_COMPRESSED_BASE_H
|
||||
@@ -0,0 +1,722 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SPARSE_CWISE_BINARY_OP_H
|
||||
#define EIGEN_SPARSE_CWISE_BINARY_OP_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
// Here we have to handle 3 cases:
|
||||
// 1 - sparse op dense
|
||||
// 2 - dense op sparse
|
||||
// 3 - sparse op sparse
|
||||
// We also need to implement a 4th iterator for:
|
||||
// 4 - dense op dense
|
||||
// Finally, we also need to distinguish between the product and other operations :
|
||||
// configuration returned mode
|
||||
// 1 - sparse op dense product sparse
|
||||
// generic dense
|
||||
// 2 - dense op sparse product sparse
|
||||
// generic dense
|
||||
// 3 - sparse op sparse product sparse
|
||||
// generic sparse
|
||||
// 4 - dense op dense product dense
|
||||
// generic dense
|
||||
//
|
||||
// TODO to ease compiler job, we could specialize product/quotient with a scalar
|
||||
// and fallback to cwise-unary evaluator using bind1st_op and bind2nd_op.
|
||||
|
||||
template<typename BinaryOp, typename Lhs, typename Rhs>
|
||||
class CwiseBinaryOpImpl<BinaryOp, Lhs, Rhs, Sparse>
|
||||
: public SparseMatrixBase<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
|
||||
{
|
||||
public:
|
||||
typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> Derived;
|
||||
typedef SparseMatrixBase<Derived> Base;
|
||||
EIGEN_SPARSE_PUBLIC_INTERFACE(Derived)
|
||||
CwiseBinaryOpImpl()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT((
|
||||
(!internal::is_same<typename internal::traits<Lhs>::StorageKind,
|
||||
typename internal::traits<Rhs>::StorageKind>::value)
|
||||
|| ((internal::evaluator<Lhs>::Flags&RowMajorBit) == (internal::evaluator<Rhs>::Flags&RowMajorBit))),
|
||||
THE_STORAGE_ORDER_OF_BOTH_SIDES_MUST_MATCH);
|
||||
}
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
|
||||
// Generic "sparse OP sparse"
|
||||
template<typename XprType> struct binary_sparse_evaluator;
|
||||
|
||||
template<typename BinaryOp, typename Lhs, typename Rhs>
|
||||
struct binary_evaluator<CwiseBinaryOp<BinaryOp, Lhs, Rhs>, IteratorBased, IteratorBased>
|
||||
: evaluator_base<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
|
||||
{
|
||||
protected:
|
||||
typedef typename evaluator<Lhs>::InnerIterator LhsIterator;
|
||||
typedef typename evaluator<Rhs>::InnerIterator RhsIterator;
|
||||
typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> XprType;
|
||||
typedef typename traits<XprType>::Scalar Scalar;
|
||||
typedef typename XprType::StorageIndex StorageIndex;
|
||||
public:
|
||||
|
||||
class InnerIterator
|
||||
{
|
||||
public:
|
||||
|
||||
EIGEN_STRONG_INLINE InnerIterator(const binary_evaluator& aEval, Index outer)
|
||||
: m_lhsIter(aEval.m_lhsImpl,outer), m_rhsIter(aEval.m_rhsImpl,outer), m_functor(aEval.m_functor)
|
||||
{
|
||||
this->operator++();
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE InnerIterator& operator++()
|
||||
{
|
||||
if (m_lhsIter && m_rhsIter && (m_lhsIter.index() == m_rhsIter.index()))
|
||||
{
|
||||
m_id = m_lhsIter.index();
|
||||
m_value = m_functor(m_lhsIter.value(), m_rhsIter.value());
|
||||
++m_lhsIter;
|
||||
++m_rhsIter;
|
||||
}
|
||||
else if (m_lhsIter && (!m_rhsIter || (m_lhsIter.index() < m_rhsIter.index())))
|
||||
{
|
||||
m_id = m_lhsIter.index();
|
||||
m_value = m_functor(m_lhsIter.value(), Scalar(0));
|
||||
++m_lhsIter;
|
||||
}
|
||||
else if (m_rhsIter && (!m_lhsIter || (m_lhsIter.index() > m_rhsIter.index())))
|
||||
{
|
||||
m_id = m_rhsIter.index();
|
||||
m_value = m_functor(Scalar(0), m_rhsIter.value());
|
||||
++m_rhsIter;
|
||||
}
|
||||
else
|
||||
{
|
||||
m_value = 0; // this is to avoid a compilation warning
|
||||
m_id = -1;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE Scalar value() const { return m_value; }
|
||||
|
||||
EIGEN_STRONG_INLINE StorageIndex index() const { return m_id; }
|
||||
EIGEN_STRONG_INLINE Index outer() const { return m_lhsIter.outer(); }
|
||||
EIGEN_STRONG_INLINE Index row() const { return Lhs::IsRowMajor ? m_lhsIter.row() : index(); }
|
||||
EIGEN_STRONG_INLINE Index col() const { return Lhs::IsRowMajor ? index() : m_lhsIter.col(); }
|
||||
|
||||
EIGEN_STRONG_INLINE operator bool() const { return m_id>=0; }
|
||||
|
||||
protected:
|
||||
LhsIterator m_lhsIter;
|
||||
RhsIterator m_rhsIter;
|
||||
const BinaryOp& m_functor;
|
||||
Scalar m_value;
|
||||
StorageIndex m_id;
|
||||
};
|
||||
|
||||
|
||||
enum {
|
||||
CoeffReadCost = evaluator<Lhs>::CoeffReadCost + evaluator<Rhs>::CoeffReadCost + functor_traits<BinaryOp>::Cost,
|
||||
Flags = XprType::Flags
|
||||
};
|
||||
|
||||
explicit binary_evaluator(const XprType& xpr)
|
||||
: m_functor(xpr.functor()),
|
||||
m_lhsImpl(xpr.lhs()),
|
||||
m_rhsImpl(xpr.rhs())
|
||||
{
|
||||
EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits<BinaryOp>::Cost);
|
||||
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
|
||||
}
|
||||
|
||||
inline Index nonZerosEstimate() const {
|
||||
return m_lhsImpl.nonZerosEstimate() + m_rhsImpl.nonZerosEstimate();
|
||||
}
|
||||
|
||||
protected:
|
||||
const BinaryOp m_functor;
|
||||
evaluator<Lhs> m_lhsImpl;
|
||||
evaluator<Rhs> m_rhsImpl;
|
||||
};
|
||||
|
||||
// dense op sparse
|
||||
template<typename BinaryOp, typename Lhs, typename Rhs>
|
||||
struct binary_evaluator<CwiseBinaryOp<BinaryOp, Lhs, Rhs>, IndexBased, IteratorBased>
|
||||
: evaluator_base<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
|
||||
{
|
||||
protected:
|
||||
typedef typename evaluator<Rhs>::InnerIterator RhsIterator;
|
||||
typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> XprType;
|
||||
typedef typename traits<XprType>::Scalar Scalar;
|
||||
typedef typename XprType::StorageIndex StorageIndex;
|
||||
public:
|
||||
|
||||
class InnerIterator
|
||||
{
|
||||
enum { IsRowMajor = (int(Rhs::Flags)&RowMajorBit)==RowMajorBit };
|
||||
public:
|
||||
|
||||
EIGEN_STRONG_INLINE InnerIterator(const binary_evaluator& aEval, Index outer)
|
||||
: m_lhsEval(aEval.m_lhsImpl), m_rhsIter(aEval.m_rhsImpl,outer), m_functor(aEval.m_functor), m_value(0), m_id(-1), m_innerSize(aEval.m_expr.rhs().innerSize())
|
||||
{
|
||||
this->operator++();
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE InnerIterator& operator++()
|
||||
{
|
||||
++m_id;
|
||||
if(m_id<m_innerSize)
|
||||
{
|
||||
Scalar lhsVal = m_lhsEval.coeff(IsRowMajor?m_rhsIter.outer():m_id,
|
||||
IsRowMajor?m_id:m_rhsIter.outer());
|
||||
if(m_rhsIter && m_rhsIter.index()==m_id)
|
||||
{
|
||||
m_value = m_functor(lhsVal, m_rhsIter.value());
|
||||
++m_rhsIter;
|
||||
}
|
||||
else
|
||||
m_value = m_functor(lhsVal, Scalar(0));
|
||||
}
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE Scalar value() const { eigen_internal_assert(m_id<m_innerSize); return m_value; }
|
||||
|
||||
EIGEN_STRONG_INLINE StorageIndex index() const { return m_id; }
|
||||
EIGEN_STRONG_INLINE Index outer() const { return m_rhsIter.outer(); }
|
||||
EIGEN_STRONG_INLINE Index row() const { return IsRowMajor ? m_rhsIter.outer() : m_id; }
|
||||
EIGEN_STRONG_INLINE Index col() const { return IsRowMajor ? m_id : m_rhsIter.outer(); }
|
||||
|
||||
EIGEN_STRONG_INLINE operator bool() const { return m_id<m_innerSize; }
|
||||
|
||||
protected:
|
||||
const evaluator<Lhs> &m_lhsEval;
|
||||
RhsIterator m_rhsIter;
|
||||
const BinaryOp& m_functor;
|
||||
Scalar m_value;
|
||||
StorageIndex m_id;
|
||||
StorageIndex m_innerSize;
|
||||
};
|
||||
|
||||
|
||||
enum {
|
||||
CoeffReadCost = evaluator<Lhs>::CoeffReadCost + evaluator<Rhs>::CoeffReadCost + functor_traits<BinaryOp>::Cost,
|
||||
Flags = XprType::Flags
|
||||
};
|
||||
|
||||
explicit binary_evaluator(const XprType& xpr)
|
||||
: m_functor(xpr.functor()),
|
||||
m_lhsImpl(xpr.lhs()),
|
||||
m_rhsImpl(xpr.rhs()),
|
||||
m_expr(xpr)
|
||||
{
|
||||
EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits<BinaryOp>::Cost);
|
||||
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
|
||||
}
|
||||
|
||||
inline Index nonZerosEstimate() const {
|
||||
return m_expr.size();
|
||||
}
|
||||
|
||||
protected:
|
||||
const BinaryOp m_functor;
|
||||
evaluator<Lhs> m_lhsImpl;
|
||||
evaluator<Rhs> m_rhsImpl;
|
||||
const XprType &m_expr;
|
||||
};
|
||||
|
||||
// sparse op dense
|
||||
template<typename BinaryOp, typename Lhs, typename Rhs>
|
||||
struct binary_evaluator<CwiseBinaryOp<BinaryOp, Lhs, Rhs>, IteratorBased, IndexBased>
|
||||
: evaluator_base<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
|
||||
{
|
||||
protected:
|
||||
typedef typename evaluator<Lhs>::InnerIterator LhsIterator;
|
||||
typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> XprType;
|
||||
typedef typename traits<XprType>::Scalar Scalar;
|
||||
typedef typename XprType::StorageIndex StorageIndex;
|
||||
public:
|
||||
|
||||
class InnerIterator
|
||||
{
|
||||
enum { IsRowMajor = (int(Lhs::Flags)&RowMajorBit)==RowMajorBit };
|
||||
public:
|
||||
|
||||
EIGEN_STRONG_INLINE InnerIterator(const binary_evaluator& aEval, Index outer)
|
||||
: m_lhsIter(aEval.m_lhsImpl,outer), m_rhsEval(aEval.m_rhsImpl), m_functor(aEval.m_functor), m_value(0), m_id(-1), m_innerSize(aEval.m_expr.lhs().innerSize())
|
||||
{
|
||||
this->operator++();
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE InnerIterator& operator++()
|
||||
{
|
||||
++m_id;
|
||||
if(m_id<m_innerSize)
|
||||
{
|
||||
Scalar rhsVal = m_rhsEval.coeff(IsRowMajor?m_lhsIter.outer():m_id,
|
||||
IsRowMajor?m_id:m_lhsIter.outer());
|
||||
if(m_lhsIter && m_lhsIter.index()==m_id)
|
||||
{
|
||||
m_value = m_functor(m_lhsIter.value(), rhsVal);
|
||||
++m_lhsIter;
|
||||
}
|
||||
else
|
||||
m_value = m_functor(Scalar(0),rhsVal);
|
||||
}
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE Scalar value() const { eigen_internal_assert(m_id<m_innerSize); return m_value; }
|
||||
|
||||
EIGEN_STRONG_INLINE StorageIndex index() const { return m_id; }
|
||||
EIGEN_STRONG_INLINE Index outer() const { return m_lhsIter.outer(); }
|
||||
EIGEN_STRONG_INLINE Index row() const { return IsRowMajor ? m_lhsIter.outer() : m_id; }
|
||||
EIGEN_STRONG_INLINE Index col() const { return IsRowMajor ? m_id : m_lhsIter.outer(); }
|
||||
|
||||
EIGEN_STRONG_INLINE operator bool() const { return m_id<m_innerSize; }
|
||||
|
||||
protected:
|
||||
LhsIterator m_lhsIter;
|
||||
const evaluator<Rhs> &m_rhsEval;
|
||||
const BinaryOp& m_functor;
|
||||
Scalar m_value;
|
||||
StorageIndex m_id;
|
||||
StorageIndex m_innerSize;
|
||||
};
|
||||
|
||||
|
||||
enum {
|
||||
CoeffReadCost = evaluator<Lhs>::CoeffReadCost + evaluator<Rhs>::CoeffReadCost + functor_traits<BinaryOp>::Cost,
|
||||
Flags = XprType::Flags
|
||||
};
|
||||
|
||||
explicit binary_evaluator(const XprType& xpr)
|
||||
: m_functor(xpr.functor()),
|
||||
m_lhsImpl(xpr.lhs()),
|
||||
m_rhsImpl(xpr.rhs()),
|
||||
m_expr(xpr)
|
||||
{
|
||||
EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits<BinaryOp>::Cost);
|
||||
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
|
||||
}
|
||||
|
||||
inline Index nonZerosEstimate() const {
|
||||
return m_expr.size();
|
||||
}
|
||||
|
||||
protected:
|
||||
const BinaryOp m_functor;
|
||||
evaluator<Lhs> m_lhsImpl;
|
||||
evaluator<Rhs> m_rhsImpl;
|
||||
const XprType &m_expr;
|
||||
};
|
||||
|
||||
template<typename T,
|
||||
typename LhsKind = typename evaluator_traits<typename T::Lhs>::Kind,
|
||||
typename RhsKind = typename evaluator_traits<typename T::Rhs>::Kind,
|
||||
typename LhsScalar = typename traits<typename T::Lhs>::Scalar,
|
||||
typename RhsScalar = typename traits<typename T::Rhs>::Scalar> struct sparse_conjunction_evaluator;
|
||||
|
||||
// "sparse .* sparse"
|
||||
template<typename T1, typename T2, typename Lhs, typename Rhs>
|
||||
struct binary_evaluator<CwiseBinaryOp<scalar_product_op<T1,T2>, Lhs, Rhs>, IteratorBased, IteratorBased>
|
||||
: sparse_conjunction_evaluator<CwiseBinaryOp<scalar_product_op<T1,T2>, Lhs, Rhs> >
|
||||
{
|
||||
typedef CwiseBinaryOp<scalar_product_op<T1,T2>, Lhs, Rhs> XprType;
|
||||
typedef sparse_conjunction_evaluator<XprType> Base;
|
||||
explicit binary_evaluator(const XprType& xpr) : Base(xpr) {}
|
||||
};
|
||||
// "dense .* sparse"
|
||||
template<typename T1, typename T2, typename Lhs, typename Rhs>
|
||||
struct binary_evaluator<CwiseBinaryOp<scalar_product_op<T1,T2>, Lhs, Rhs>, IndexBased, IteratorBased>
|
||||
: sparse_conjunction_evaluator<CwiseBinaryOp<scalar_product_op<T1,T2>, Lhs, Rhs> >
|
||||
{
|
||||
typedef CwiseBinaryOp<scalar_product_op<T1,T2>, Lhs, Rhs> XprType;
|
||||
typedef sparse_conjunction_evaluator<XprType> Base;
|
||||
explicit binary_evaluator(const XprType& xpr) : Base(xpr) {}
|
||||
};
|
||||
// "sparse .* dense"
|
||||
template<typename T1, typename T2, typename Lhs, typename Rhs>
|
||||
struct binary_evaluator<CwiseBinaryOp<scalar_product_op<T1,T2>, Lhs, Rhs>, IteratorBased, IndexBased>
|
||||
: sparse_conjunction_evaluator<CwiseBinaryOp<scalar_product_op<T1,T2>, Lhs, Rhs> >
|
||||
{
|
||||
typedef CwiseBinaryOp<scalar_product_op<T1,T2>, Lhs, Rhs> XprType;
|
||||
typedef sparse_conjunction_evaluator<XprType> Base;
|
||||
explicit binary_evaluator(const XprType& xpr) : Base(xpr) {}
|
||||
};
|
||||
|
||||
// "sparse ./ dense"
|
||||
template<typename T1, typename T2, typename Lhs, typename Rhs>
|
||||
struct binary_evaluator<CwiseBinaryOp<scalar_quotient_op<T1,T2>, Lhs, Rhs>, IteratorBased, IndexBased>
|
||||
: sparse_conjunction_evaluator<CwiseBinaryOp<scalar_quotient_op<T1,T2>, Lhs, Rhs> >
|
||||
{
|
||||
typedef CwiseBinaryOp<scalar_quotient_op<T1,T2>, Lhs, Rhs> XprType;
|
||||
typedef sparse_conjunction_evaluator<XprType> Base;
|
||||
explicit binary_evaluator(const XprType& xpr) : Base(xpr) {}
|
||||
};
|
||||
|
||||
// "sparse && sparse"
|
||||
template<typename Lhs, typename Rhs>
|
||||
struct binary_evaluator<CwiseBinaryOp<scalar_boolean_and_op, Lhs, Rhs>, IteratorBased, IteratorBased>
|
||||
: sparse_conjunction_evaluator<CwiseBinaryOp<scalar_boolean_and_op, Lhs, Rhs> >
|
||||
{
|
||||
typedef CwiseBinaryOp<scalar_boolean_and_op, Lhs, Rhs> XprType;
|
||||
typedef sparse_conjunction_evaluator<XprType> Base;
|
||||
explicit binary_evaluator(const XprType& xpr) : Base(xpr) {}
|
||||
};
|
||||
// "dense && sparse"
|
||||
template<typename Lhs, typename Rhs>
|
||||
struct binary_evaluator<CwiseBinaryOp<scalar_boolean_and_op, Lhs, Rhs>, IndexBased, IteratorBased>
|
||||
: sparse_conjunction_evaluator<CwiseBinaryOp<scalar_boolean_and_op, Lhs, Rhs> >
|
||||
{
|
||||
typedef CwiseBinaryOp<scalar_boolean_and_op, Lhs, Rhs> XprType;
|
||||
typedef sparse_conjunction_evaluator<XprType> Base;
|
||||
explicit binary_evaluator(const XprType& xpr) : Base(xpr) {}
|
||||
};
|
||||
// "sparse && dense"
|
||||
template<typename Lhs, typename Rhs>
|
||||
struct binary_evaluator<CwiseBinaryOp<scalar_boolean_and_op, Lhs, Rhs>, IteratorBased, IndexBased>
|
||||
: sparse_conjunction_evaluator<CwiseBinaryOp<scalar_boolean_and_op, Lhs, Rhs> >
|
||||
{
|
||||
typedef CwiseBinaryOp<scalar_boolean_and_op, Lhs, Rhs> XprType;
|
||||
typedef sparse_conjunction_evaluator<XprType> Base;
|
||||
explicit binary_evaluator(const XprType& xpr) : Base(xpr) {}
|
||||
};
|
||||
|
||||
// "sparse ^ sparse"
|
||||
template<typename XprType>
|
||||
struct sparse_conjunction_evaluator<XprType, IteratorBased, IteratorBased>
|
||||
: evaluator_base<XprType>
|
||||
{
|
||||
protected:
|
||||
typedef typename XprType::Functor BinaryOp;
|
||||
typedef typename XprType::Lhs LhsArg;
|
||||
typedef typename XprType::Rhs RhsArg;
|
||||
typedef typename evaluator<LhsArg>::InnerIterator LhsIterator;
|
||||
typedef typename evaluator<RhsArg>::InnerIterator RhsIterator;
|
||||
typedef typename XprType::StorageIndex StorageIndex;
|
||||
typedef typename traits<XprType>::Scalar Scalar;
|
||||
public:
|
||||
|
||||
class InnerIterator
|
||||
{
|
||||
public:
|
||||
|
||||
EIGEN_STRONG_INLINE InnerIterator(const sparse_conjunction_evaluator& aEval, Index outer)
|
||||
: m_lhsIter(aEval.m_lhsImpl,outer), m_rhsIter(aEval.m_rhsImpl,outer), m_functor(aEval.m_functor)
|
||||
{
|
||||
while (m_lhsIter && m_rhsIter && (m_lhsIter.index() != m_rhsIter.index()))
|
||||
{
|
||||
if (m_lhsIter.index() < m_rhsIter.index())
|
||||
++m_lhsIter;
|
||||
else
|
||||
++m_rhsIter;
|
||||
}
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE InnerIterator& operator++()
|
||||
{
|
||||
++m_lhsIter;
|
||||
++m_rhsIter;
|
||||
while (m_lhsIter && m_rhsIter && (m_lhsIter.index() != m_rhsIter.index()))
|
||||
{
|
||||
if (m_lhsIter.index() < m_rhsIter.index())
|
||||
++m_lhsIter;
|
||||
else
|
||||
++m_rhsIter;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE Scalar value() const { return m_functor(m_lhsIter.value(), m_rhsIter.value()); }
|
||||
|
||||
EIGEN_STRONG_INLINE StorageIndex index() const { return m_lhsIter.index(); }
|
||||
EIGEN_STRONG_INLINE Index outer() const { return m_lhsIter.outer(); }
|
||||
EIGEN_STRONG_INLINE Index row() const { return m_lhsIter.row(); }
|
||||
EIGEN_STRONG_INLINE Index col() const { return m_lhsIter.col(); }
|
||||
|
||||
EIGEN_STRONG_INLINE operator bool() const { return (m_lhsIter && m_rhsIter); }
|
||||
|
||||
protected:
|
||||
LhsIterator m_lhsIter;
|
||||
RhsIterator m_rhsIter;
|
||||
const BinaryOp& m_functor;
|
||||
};
|
||||
|
||||
|
||||
enum {
|
||||
CoeffReadCost = evaluator<LhsArg>::CoeffReadCost + evaluator<RhsArg>::CoeffReadCost + functor_traits<BinaryOp>::Cost,
|
||||
Flags = XprType::Flags
|
||||
};
|
||||
|
||||
explicit sparse_conjunction_evaluator(const XprType& xpr)
|
||||
: m_functor(xpr.functor()),
|
||||
m_lhsImpl(xpr.lhs()),
|
||||
m_rhsImpl(xpr.rhs())
|
||||
{
|
||||
EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits<BinaryOp>::Cost);
|
||||
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
|
||||
}
|
||||
|
||||
inline Index nonZerosEstimate() const {
|
||||
return (std::min)(m_lhsImpl.nonZerosEstimate(), m_rhsImpl.nonZerosEstimate());
|
||||
}
|
||||
|
||||
protected:
|
||||
const BinaryOp m_functor;
|
||||
evaluator<LhsArg> m_lhsImpl;
|
||||
evaluator<RhsArg> m_rhsImpl;
|
||||
};
|
||||
|
||||
// "dense ^ sparse"
|
||||
template<typename XprType>
|
||||
struct sparse_conjunction_evaluator<XprType, IndexBased, IteratorBased>
|
||||
: evaluator_base<XprType>
|
||||
{
|
||||
protected:
|
||||
typedef typename XprType::Functor BinaryOp;
|
||||
typedef typename XprType::Lhs LhsArg;
|
||||
typedef typename XprType::Rhs RhsArg;
|
||||
typedef evaluator<LhsArg> LhsEvaluator;
|
||||
typedef typename evaluator<RhsArg>::InnerIterator RhsIterator;
|
||||
typedef typename XprType::StorageIndex StorageIndex;
|
||||
typedef typename traits<XprType>::Scalar Scalar;
|
||||
public:
|
||||
|
||||
class InnerIterator
|
||||
{
|
||||
enum { IsRowMajor = (int(RhsArg::Flags)&RowMajorBit)==RowMajorBit };
|
||||
|
||||
public:
|
||||
|
||||
EIGEN_STRONG_INLINE InnerIterator(const sparse_conjunction_evaluator& aEval, Index outer)
|
||||
: m_lhsEval(aEval.m_lhsImpl), m_rhsIter(aEval.m_rhsImpl,outer), m_functor(aEval.m_functor), m_outer(outer)
|
||||
{}
|
||||
|
||||
EIGEN_STRONG_INLINE InnerIterator& operator++()
|
||||
{
|
||||
++m_rhsIter;
|
||||
return *this;
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE Scalar value() const
|
||||
{ return m_functor(m_lhsEval.coeff(IsRowMajor?m_outer:m_rhsIter.index(),IsRowMajor?m_rhsIter.index():m_outer), m_rhsIter.value()); }
|
||||
|
||||
EIGEN_STRONG_INLINE StorageIndex index() const { return m_rhsIter.index(); }
|
||||
EIGEN_STRONG_INLINE Index outer() const { return m_rhsIter.outer(); }
|
||||
EIGEN_STRONG_INLINE Index row() const { return m_rhsIter.row(); }
|
||||
EIGEN_STRONG_INLINE Index col() const { return m_rhsIter.col(); }
|
||||
|
||||
EIGEN_STRONG_INLINE operator bool() const { return m_rhsIter; }
|
||||
|
||||
protected:
|
||||
const LhsEvaluator &m_lhsEval;
|
||||
RhsIterator m_rhsIter;
|
||||
const BinaryOp& m_functor;
|
||||
const Index m_outer;
|
||||
};
|
||||
|
||||
|
||||
enum {
|
||||
CoeffReadCost = evaluator<LhsArg>::CoeffReadCost + evaluator<RhsArg>::CoeffReadCost + functor_traits<BinaryOp>::Cost,
|
||||
Flags = XprType::Flags
|
||||
};
|
||||
|
||||
explicit sparse_conjunction_evaluator(const XprType& xpr)
|
||||
: m_functor(xpr.functor()),
|
||||
m_lhsImpl(xpr.lhs()),
|
||||
m_rhsImpl(xpr.rhs())
|
||||
{
|
||||
EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits<BinaryOp>::Cost);
|
||||
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
|
||||
}
|
||||
|
||||
inline Index nonZerosEstimate() const {
|
||||
return m_rhsImpl.nonZerosEstimate();
|
||||
}
|
||||
|
||||
protected:
|
||||
const BinaryOp m_functor;
|
||||
evaluator<LhsArg> m_lhsImpl;
|
||||
evaluator<RhsArg> m_rhsImpl;
|
||||
};
|
||||
|
||||
// "sparse ^ dense"
|
||||
template<typename XprType>
|
||||
struct sparse_conjunction_evaluator<XprType, IteratorBased, IndexBased>
|
||||
: evaluator_base<XprType>
|
||||
{
|
||||
protected:
|
||||
typedef typename XprType::Functor BinaryOp;
|
||||
typedef typename XprType::Lhs LhsArg;
|
||||
typedef typename XprType::Rhs RhsArg;
|
||||
typedef typename evaluator<LhsArg>::InnerIterator LhsIterator;
|
||||
typedef evaluator<RhsArg> RhsEvaluator;
|
||||
typedef typename XprType::StorageIndex StorageIndex;
|
||||
typedef typename traits<XprType>::Scalar Scalar;
|
||||
public:
|
||||
|
||||
class InnerIterator
|
||||
{
|
||||
enum { IsRowMajor = (int(LhsArg::Flags)&RowMajorBit)==RowMajorBit };
|
||||
|
||||
public:
|
||||
|
||||
EIGEN_STRONG_INLINE InnerIterator(const sparse_conjunction_evaluator& aEval, Index outer)
|
||||
: m_lhsIter(aEval.m_lhsImpl,outer), m_rhsEval(aEval.m_rhsImpl), m_functor(aEval.m_functor), m_outer(outer)
|
||||
{}
|
||||
|
||||
EIGEN_STRONG_INLINE InnerIterator& operator++()
|
||||
{
|
||||
++m_lhsIter;
|
||||
return *this;
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE Scalar value() const
|
||||
{ return m_functor(m_lhsIter.value(),
|
||||
m_rhsEval.coeff(IsRowMajor?m_outer:m_lhsIter.index(),IsRowMajor?m_lhsIter.index():m_outer)); }
|
||||
|
||||
EIGEN_STRONG_INLINE StorageIndex index() const { return m_lhsIter.index(); }
|
||||
EIGEN_STRONG_INLINE Index outer() const { return m_lhsIter.outer(); }
|
||||
EIGEN_STRONG_INLINE Index row() const { return m_lhsIter.row(); }
|
||||
EIGEN_STRONG_INLINE Index col() const { return m_lhsIter.col(); }
|
||||
|
||||
EIGEN_STRONG_INLINE operator bool() const { return m_lhsIter; }
|
||||
|
||||
protected:
|
||||
LhsIterator m_lhsIter;
|
||||
const evaluator<RhsArg> &m_rhsEval;
|
||||
const BinaryOp& m_functor;
|
||||
const Index m_outer;
|
||||
};
|
||||
|
||||
|
||||
enum {
|
||||
CoeffReadCost = evaluator<LhsArg>::CoeffReadCost + evaluator<RhsArg>::CoeffReadCost + functor_traits<BinaryOp>::Cost,
|
||||
Flags = XprType::Flags
|
||||
};
|
||||
|
||||
explicit sparse_conjunction_evaluator(const XprType& xpr)
|
||||
: m_functor(xpr.functor()),
|
||||
m_lhsImpl(xpr.lhs()),
|
||||
m_rhsImpl(xpr.rhs())
|
||||
{
|
||||
EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits<BinaryOp>::Cost);
|
||||
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
|
||||
}
|
||||
|
||||
inline Index nonZerosEstimate() const {
|
||||
return m_lhsImpl.nonZerosEstimate();
|
||||
}
|
||||
|
||||
protected:
|
||||
const BinaryOp m_functor;
|
||||
evaluator<LhsArg> m_lhsImpl;
|
||||
evaluator<RhsArg> m_rhsImpl;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Implementation of SparseMatrixBase and SparseCwise functions/operators
|
||||
***************************************************************************/
|
||||
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
Derived& SparseMatrixBase<Derived>::operator+=(const EigenBase<OtherDerived> &other)
|
||||
{
|
||||
call_assignment(derived(), other.derived(), internal::add_assign_op<Scalar,typename OtherDerived::Scalar>());
|
||||
return derived();
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
Derived& SparseMatrixBase<Derived>::operator-=(const EigenBase<OtherDerived> &other)
|
||||
{
|
||||
call_assignment(derived(), other.derived(), internal::assign_op<Scalar,typename OtherDerived::Scalar>());
|
||||
return derived();
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Derived &
|
||||
SparseMatrixBase<Derived>::operator-=(const SparseMatrixBase<OtherDerived> &other)
|
||||
{
|
||||
return derived() = derived() - other.derived();
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE Derived &
|
||||
SparseMatrixBase<Derived>::operator+=(const SparseMatrixBase<OtherDerived>& other)
|
||||
{
|
||||
return derived() = derived() + other.derived();
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
Derived& SparseMatrixBase<Derived>::operator+=(const DiagonalBase<OtherDerived>& other)
|
||||
{
|
||||
call_assignment_no_alias(derived(), other.derived(), internal::add_assign_op<Scalar,typename OtherDerived::Scalar>());
|
||||
return derived();
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
Derived& SparseMatrixBase<Derived>::operator-=(const DiagonalBase<OtherDerived>& other)
|
||||
{
|
||||
call_assignment_no_alias(derived(), other.derived(), internal::sub_assign_op<Scalar,typename OtherDerived::Scalar>());
|
||||
return derived();
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE const typename SparseMatrixBase<Derived>::template CwiseProductDenseReturnType<OtherDerived>::Type
|
||||
SparseMatrixBase<Derived>::cwiseProduct(const MatrixBase<OtherDerived> &other) const
|
||||
{
|
||||
return typename CwiseProductDenseReturnType<OtherDerived>::Type(derived(), other.derived());
|
||||
}
|
||||
|
||||
template<typename DenseDerived, typename SparseDerived>
|
||||
EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_sum_op<typename DenseDerived::Scalar,typename SparseDerived::Scalar>, const DenseDerived, const SparseDerived>
|
||||
operator+(const MatrixBase<DenseDerived> &a, const SparseMatrixBase<SparseDerived> &b)
|
||||
{
|
||||
return CwiseBinaryOp<internal::scalar_sum_op<typename DenseDerived::Scalar,typename SparseDerived::Scalar>, const DenseDerived, const SparseDerived>(a.derived(), b.derived());
|
||||
}
|
||||
|
||||
template<typename SparseDerived, typename DenseDerived>
|
||||
EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_sum_op<typename SparseDerived::Scalar,typename DenseDerived::Scalar>, const SparseDerived, const DenseDerived>
|
||||
operator+(const SparseMatrixBase<SparseDerived> &a, const MatrixBase<DenseDerived> &b)
|
||||
{
|
||||
return CwiseBinaryOp<internal::scalar_sum_op<typename SparseDerived::Scalar,typename DenseDerived::Scalar>, const SparseDerived, const DenseDerived>(a.derived(), b.derived());
|
||||
}
|
||||
|
||||
template<typename DenseDerived, typename SparseDerived>
|
||||
EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_difference_op<typename DenseDerived::Scalar,typename SparseDerived::Scalar>, const DenseDerived, const SparseDerived>
|
||||
operator-(const MatrixBase<DenseDerived> &a, const SparseMatrixBase<SparseDerived> &b)
|
||||
{
|
||||
return CwiseBinaryOp<internal::scalar_difference_op<typename DenseDerived::Scalar,typename SparseDerived::Scalar>, const DenseDerived, const SparseDerived>(a.derived(), b.derived());
|
||||
}
|
||||
|
||||
template<typename SparseDerived, typename DenseDerived>
|
||||
EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_difference_op<typename SparseDerived::Scalar,typename DenseDerived::Scalar>, const SparseDerived, const DenseDerived>
|
||||
operator-(const SparseMatrixBase<SparseDerived> &a, const MatrixBase<DenseDerived> &b)
|
||||
{
|
||||
return CwiseBinaryOp<internal::scalar_difference_op<typename SparseDerived::Scalar,typename DenseDerived::Scalar>, const SparseDerived, const DenseDerived>(a.derived(), b.derived());
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SPARSE_CWISE_BINARY_OP_H
|
||||
@@ -0,0 +1,148 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SPARSE_CWISE_UNARY_OP_H
|
||||
#define EIGEN_SPARSE_CWISE_UNARY_OP_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename UnaryOp, typename ArgType>
|
||||
struct unary_evaluator<CwiseUnaryOp<UnaryOp,ArgType>, IteratorBased>
|
||||
: public evaluator_base<CwiseUnaryOp<UnaryOp,ArgType> >
|
||||
{
|
||||
public:
|
||||
typedef CwiseUnaryOp<UnaryOp, ArgType> XprType;
|
||||
|
||||
class InnerIterator;
|
||||
|
||||
enum {
|
||||
CoeffReadCost = evaluator<ArgType>::CoeffReadCost + functor_traits<UnaryOp>::Cost,
|
||||
Flags = XprType::Flags
|
||||
};
|
||||
|
||||
explicit unary_evaluator(const XprType& op) : m_functor(op.functor()), m_argImpl(op.nestedExpression())
|
||||
{
|
||||
EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits<UnaryOp>::Cost);
|
||||
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
|
||||
}
|
||||
|
||||
inline Index nonZerosEstimate() const {
|
||||
return m_argImpl.nonZerosEstimate();
|
||||
}
|
||||
|
||||
protected:
|
||||
typedef typename evaluator<ArgType>::InnerIterator EvalIterator;
|
||||
|
||||
const UnaryOp m_functor;
|
||||
evaluator<ArgType> m_argImpl;
|
||||
};
|
||||
|
||||
template<typename UnaryOp, typename ArgType>
|
||||
class unary_evaluator<CwiseUnaryOp<UnaryOp,ArgType>, IteratorBased>::InnerIterator
|
||||
: public unary_evaluator<CwiseUnaryOp<UnaryOp,ArgType>, IteratorBased>::EvalIterator
|
||||
{
|
||||
typedef typename XprType::Scalar Scalar;
|
||||
typedef typename unary_evaluator<CwiseUnaryOp<UnaryOp,ArgType>, IteratorBased>::EvalIterator Base;
|
||||
public:
|
||||
|
||||
EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& unaryOp, Index outer)
|
||||
: Base(unaryOp.m_argImpl,outer), m_functor(unaryOp.m_functor)
|
||||
{}
|
||||
|
||||
EIGEN_STRONG_INLINE InnerIterator& operator++()
|
||||
{ Base::operator++(); return *this; }
|
||||
|
||||
EIGEN_STRONG_INLINE Scalar value() const { return m_functor(Base::value()); }
|
||||
|
||||
protected:
|
||||
const UnaryOp m_functor;
|
||||
private:
|
||||
Scalar& valueRef();
|
||||
};
|
||||
|
||||
template<typename ViewOp, typename ArgType>
|
||||
struct unary_evaluator<CwiseUnaryView<ViewOp,ArgType>, IteratorBased>
|
||||
: public evaluator_base<CwiseUnaryView<ViewOp,ArgType> >
|
||||
{
|
||||
public:
|
||||
typedef CwiseUnaryView<ViewOp, ArgType> XprType;
|
||||
|
||||
class InnerIterator;
|
||||
|
||||
enum {
|
||||
CoeffReadCost = evaluator<ArgType>::CoeffReadCost + functor_traits<ViewOp>::Cost,
|
||||
Flags = XprType::Flags
|
||||
};
|
||||
|
||||
explicit unary_evaluator(const XprType& op) : m_functor(op.functor()), m_argImpl(op.nestedExpression())
|
||||
{
|
||||
EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits<ViewOp>::Cost);
|
||||
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
|
||||
}
|
||||
|
||||
protected:
|
||||
typedef typename evaluator<ArgType>::InnerIterator EvalIterator;
|
||||
|
||||
const ViewOp m_functor;
|
||||
evaluator<ArgType> m_argImpl;
|
||||
};
|
||||
|
||||
template<typename ViewOp, typename ArgType>
|
||||
class unary_evaluator<CwiseUnaryView<ViewOp,ArgType>, IteratorBased>::InnerIterator
|
||||
: public unary_evaluator<CwiseUnaryView<ViewOp,ArgType>, IteratorBased>::EvalIterator
|
||||
{
|
||||
typedef typename XprType::Scalar Scalar;
|
||||
typedef typename unary_evaluator<CwiseUnaryView<ViewOp,ArgType>, IteratorBased>::EvalIterator Base;
|
||||
public:
|
||||
|
||||
EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& unaryOp, Index outer)
|
||||
: Base(unaryOp.m_argImpl,outer), m_functor(unaryOp.m_functor)
|
||||
{}
|
||||
|
||||
EIGEN_STRONG_INLINE InnerIterator& operator++()
|
||||
{ Base::operator++(); return *this; }
|
||||
|
||||
EIGEN_STRONG_INLINE Scalar value() const { return m_functor(Base::value()); }
|
||||
EIGEN_STRONG_INLINE Scalar& valueRef() { return m_functor(Base::valueRef()); }
|
||||
|
||||
protected:
|
||||
const ViewOp m_functor;
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived&
|
||||
SparseMatrixBase<Derived>::operator*=(const Scalar& other)
|
||||
{
|
||||
typedef typename internal::evaluator<Derived>::InnerIterator EvalIterator;
|
||||
internal::evaluator<Derived> thisEval(derived());
|
||||
for (Index j=0; j<outerSize(); ++j)
|
||||
for (EvalIterator i(thisEval,j); i; ++i)
|
||||
i.valueRef() *= other;
|
||||
return derived();
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
EIGEN_STRONG_INLINE Derived&
|
||||
SparseMatrixBase<Derived>::operator/=(const Scalar& other)
|
||||
{
|
||||
typedef typename internal::evaluator<Derived>::InnerIterator EvalIterator;
|
||||
internal::evaluator<Derived> thisEval(derived());
|
||||
for (Index j=0; j<outerSize(); ++j)
|
||||
for (EvalIterator i(thisEval,j); i; ++i)
|
||||
i.valueRef() /= other;
|
||||
return derived();
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SPARSE_CWISE_UNARY_OP_H
|
||||
@@ -0,0 +1,320 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SPARSEDENSEPRODUCT_H
|
||||
#define EIGEN_SPARSEDENSEPRODUCT_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
template <> struct product_promote_storage_type<Sparse,Dense, OuterProduct> { typedef Sparse ret; };
|
||||
template <> struct product_promote_storage_type<Dense,Sparse, OuterProduct> { typedef Sparse ret; };
|
||||
|
||||
template<typename SparseLhsType, typename DenseRhsType, typename DenseResType,
|
||||
typename AlphaType,
|
||||
int LhsStorageOrder = ((SparseLhsType::Flags&RowMajorBit)==RowMajorBit) ? RowMajor : ColMajor,
|
||||
bool ColPerCol = ((DenseRhsType::Flags&RowMajorBit)==0) || DenseRhsType::ColsAtCompileTime==1>
|
||||
struct sparse_time_dense_product_impl;
|
||||
|
||||
template<typename SparseLhsType, typename DenseRhsType, typename DenseResType>
|
||||
struct sparse_time_dense_product_impl<SparseLhsType,DenseRhsType,DenseResType, typename DenseResType::Scalar, RowMajor, true>
|
||||
{
|
||||
typedef typename internal::remove_all<SparseLhsType>::type Lhs;
|
||||
typedef typename internal::remove_all<DenseRhsType>::type Rhs;
|
||||
typedef typename internal::remove_all<DenseResType>::type Res;
|
||||
typedef typename evaluator<Lhs>::InnerIterator LhsInnerIterator;
|
||||
typedef evaluator<Lhs> LhsEval;
|
||||
static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const typename Res::Scalar& alpha)
|
||||
{
|
||||
LhsEval lhsEval(lhs);
|
||||
|
||||
Index n = lhs.outerSize();
|
||||
#ifdef EIGEN_HAS_OPENMP
|
||||
Eigen::initParallel();
|
||||
Index threads = Eigen::nbThreads();
|
||||
#endif
|
||||
|
||||
for(Index c=0; c<rhs.cols(); ++c)
|
||||
{
|
||||
#ifdef EIGEN_HAS_OPENMP
|
||||
// This 20000 threshold has been found experimentally on 2D and 3D Poisson problems.
|
||||
// It basically represents the minimal amount of work to be done to be worth it.
|
||||
if(threads>1 && lhsEval.nonZerosEstimate() > 20000)
|
||||
{
|
||||
#pragma omp parallel for schedule(dynamic,(n+threads*4-1)/(threads*4)) num_threads(threads)
|
||||
for(Index i=0; i<n; ++i)
|
||||
processRow(lhsEval,rhs,res,alpha,i,c);
|
||||
}
|
||||
else
|
||||
#endif
|
||||
{
|
||||
for(Index i=0; i<n; ++i)
|
||||
processRow(lhsEval,rhs,res,alpha,i,c);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void processRow(const LhsEval& lhsEval, const DenseRhsType& rhs, DenseResType& res, const typename Res::Scalar& alpha, Index i, Index col)
|
||||
{
|
||||
typename Res::Scalar tmp(0);
|
||||
for(LhsInnerIterator it(lhsEval,i); it ;++it)
|
||||
tmp += it.value() * rhs.coeff(it.index(),col);
|
||||
res.coeffRef(i,col) += alpha * tmp;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
// FIXME: what is the purpose of the following specialization? Is it for the BlockedSparse format?
|
||||
// -> let's disable it for now as it is conflicting with generic scalar*matrix and matrix*scalar operators
|
||||
// template<typename T1, typename T2/*, int _Options, typename _StrideType*/>
|
||||
// struct ScalarBinaryOpTraits<T1, Ref<T2/*, _Options, _StrideType*/> >
|
||||
// {
|
||||
// enum {
|
||||
// Defined = 1
|
||||
// };
|
||||
// typedef typename CwiseUnaryOp<scalar_multiple2_op<T1, typename T2::Scalar>, T2>::PlainObject ReturnType;
|
||||
// };
|
||||
|
||||
template<typename SparseLhsType, typename DenseRhsType, typename DenseResType, typename AlphaType>
|
||||
struct sparse_time_dense_product_impl<SparseLhsType,DenseRhsType,DenseResType, AlphaType, ColMajor, true>
|
||||
{
|
||||
typedef typename internal::remove_all<SparseLhsType>::type Lhs;
|
||||
typedef typename internal::remove_all<DenseRhsType>::type Rhs;
|
||||
typedef typename internal::remove_all<DenseResType>::type Res;
|
||||
typedef typename evaluator<Lhs>::InnerIterator LhsInnerIterator;
|
||||
static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const AlphaType& alpha)
|
||||
{
|
||||
evaluator<Lhs> lhsEval(lhs);
|
||||
for(Index c=0; c<rhs.cols(); ++c)
|
||||
{
|
||||
for(Index j=0; j<lhs.outerSize(); ++j)
|
||||
{
|
||||
// typename Res::Scalar rhs_j = alpha * rhs.coeff(j,c);
|
||||
typename ScalarBinaryOpTraits<AlphaType, typename Rhs::Scalar>::ReturnType rhs_j(alpha * rhs.coeff(j,c));
|
||||
for(LhsInnerIterator it(lhsEval,j); it ;++it)
|
||||
res.coeffRef(it.index(),c) += it.value() * rhs_j;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<typename SparseLhsType, typename DenseRhsType, typename DenseResType>
|
||||
struct sparse_time_dense_product_impl<SparseLhsType,DenseRhsType,DenseResType, typename DenseResType::Scalar, RowMajor, false>
|
||||
{
|
||||
typedef typename internal::remove_all<SparseLhsType>::type Lhs;
|
||||
typedef typename internal::remove_all<DenseRhsType>::type Rhs;
|
||||
typedef typename internal::remove_all<DenseResType>::type Res;
|
||||
typedef typename evaluator<Lhs>::InnerIterator LhsInnerIterator;
|
||||
static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const typename Res::Scalar& alpha)
|
||||
{
|
||||
evaluator<Lhs> lhsEval(lhs);
|
||||
for(Index j=0; j<lhs.outerSize(); ++j)
|
||||
{
|
||||
typename Res::RowXpr res_j(res.row(j));
|
||||
for(LhsInnerIterator it(lhsEval,j); it ;++it)
|
||||
res_j += (alpha*it.value()) * rhs.row(it.index());
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<typename SparseLhsType, typename DenseRhsType, typename DenseResType>
|
||||
struct sparse_time_dense_product_impl<SparseLhsType,DenseRhsType,DenseResType, typename DenseResType::Scalar, ColMajor, false>
|
||||
{
|
||||
typedef typename internal::remove_all<SparseLhsType>::type Lhs;
|
||||
typedef typename internal::remove_all<DenseRhsType>::type Rhs;
|
||||
typedef typename internal::remove_all<DenseResType>::type Res;
|
||||
typedef typename evaluator<Lhs>::InnerIterator LhsInnerIterator;
|
||||
static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const typename Res::Scalar& alpha)
|
||||
{
|
||||
evaluator<Lhs> lhsEval(lhs);
|
||||
for(Index j=0; j<lhs.outerSize(); ++j)
|
||||
{
|
||||
typename Rhs::ConstRowXpr rhs_j(rhs.row(j));
|
||||
for(LhsInnerIterator it(lhsEval,j); it ;++it)
|
||||
res.row(it.index()) += (alpha*it.value()) * rhs_j;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<typename SparseLhsType, typename DenseRhsType, typename DenseResType,typename AlphaType>
|
||||
inline void sparse_time_dense_product(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const AlphaType& alpha)
|
||||
{
|
||||
sparse_time_dense_product_impl<SparseLhsType,DenseRhsType,DenseResType, AlphaType>::run(lhs, rhs, res, alpha);
|
||||
}
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Lhs, typename Rhs, int ProductType>
|
||||
struct generic_product_impl<Lhs, Rhs, SparseShape, DenseShape, ProductType>
|
||||
: generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,SparseShape,DenseShape,ProductType> >
|
||||
{
|
||||
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
|
||||
|
||||
template<typename Dest>
|
||||
static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
|
||||
{
|
||||
typedef typename nested_eval<Lhs,((Rhs::Flags&RowMajorBit)==0) ? 1 : Rhs::ColsAtCompileTime>::type LhsNested;
|
||||
typedef typename nested_eval<Rhs,((Lhs::Flags&RowMajorBit)==0) ? 1 : Dynamic>::type RhsNested;
|
||||
LhsNested lhsNested(lhs);
|
||||
RhsNested rhsNested(rhs);
|
||||
internal::sparse_time_dense_product(lhsNested, rhsNested, dst, alpha);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, int ProductType>
|
||||
struct generic_product_impl<Lhs, Rhs, SparseTriangularShape, DenseShape, ProductType>
|
||||
: generic_product_impl<Lhs, Rhs, SparseShape, DenseShape, ProductType>
|
||||
{};
|
||||
|
||||
template<typename Lhs, typename Rhs, int ProductType>
|
||||
struct generic_product_impl<Lhs, Rhs, DenseShape, SparseShape, ProductType>
|
||||
: generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,SparseShape,ProductType> >
|
||||
{
|
||||
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
|
||||
|
||||
template<typename Dst>
|
||||
static void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
|
||||
{
|
||||
typedef typename nested_eval<Lhs,((Rhs::Flags&RowMajorBit)==0) ? Dynamic : 1>::type LhsNested;
|
||||
typedef typename nested_eval<Rhs,((Lhs::Flags&RowMajorBit)==RowMajorBit) ? 1 : Lhs::RowsAtCompileTime>::type RhsNested;
|
||||
LhsNested lhsNested(lhs);
|
||||
RhsNested rhsNested(rhs);
|
||||
|
||||
// transpose everything
|
||||
Transpose<Dst> dstT(dst);
|
||||
internal::sparse_time_dense_product(rhsNested.transpose(), lhsNested.transpose(), dstT, alpha);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, int ProductType>
|
||||
struct generic_product_impl<Lhs, Rhs, DenseShape, SparseTriangularShape, ProductType>
|
||||
: generic_product_impl<Lhs, Rhs, DenseShape, SparseShape, ProductType>
|
||||
{};
|
||||
|
||||
template<typename LhsT, typename RhsT, bool NeedToTranspose>
|
||||
struct sparse_dense_outer_product_evaluator
|
||||
{
|
||||
protected:
|
||||
typedef typename conditional<NeedToTranspose,RhsT,LhsT>::type Lhs1;
|
||||
typedef typename conditional<NeedToTranspose,LhsT,RhsT>::type ActualRhs;
|
||||
typedef Product<LhsT,RhsT,DefaultProduct> ProdXprType;
|
||||
|
||||
// if the actual left-hand side is a dense vector,
|
||||
// then build a sparse-view so that we can seamlessly iterate over it.
|
||||
typedef typename conditional<is_same<typename internal::traits<Lhs1>::StorageKind,Sparse>::value,
|
||||
Lhs1, SparseView<Lhs1> >::type ActualLhs;
|
||||
typedef typename conditional<is_same<typename internal::traits<Lhs1>::StorageKind,Sparse>::value,
|
||||
Lhs1 const&, SparseView<Lhs1> >::type LhsArg;
|
||||
|
||||
typedef evaluator<ActualLhs> LhsEval;
|
||||
typedef evaluator<ActualRhs> RhsEval;
|
||||
typedef typename evaluator<ActualLhs>::InnerIterator LhsIterator;
|
||||
typedef typename ProdXprType::Scalar Scalar;
|
||||
|
||||
public:
|
||||
enum {
|
||||
Flags = NeedToTranspose ? RowMajorBit : 0,
|
||||
CoeffReadCost = HugeCost
|
||||
};
|
||||
|
||||
class InnerIterator : public LhsIterator
|
||||
{
|
||||
public:
|
||||
InnerIterator(const sparse_dense_outer_product_evaluator &xprEval, Index outer)
|
||||
: LhsIterator(xprEval.m_lhsXprImpl, 0),
|
||||
m_outer(outer),
|
||||
m_empty(false),
|
||||
m_factor(get(xprEval.m_rhsXprImpl, outer, typename internal::traits<ActualRhs>::StorageKind() ))
|
||||
{}
|
||||
|
||||
EIGEN_STRONG_INLINE Index outer() const { return m_outer; }
|
||||
EIGEN_STRONG_INLINE Index row() const { return NeedToTranspose ? m_outer : LhsIterator::index(); }
|
||||
EIGEN_STRONG_INLINE Index col() const { return NeedToTranspose ? LhsIterator::index() : m_outer; }
|
||||
|
||||
EIGEN_STRONG_INLINE Scalar value() const { return LhsIterator::value() * m_factor; }
|
||||
EIGEN_STRONG_INLINE operator bool() const { return LhsIterator::operator bool() && (!m_empty); }
|
||||
|
||||
protected:
|
||||
Scalar get(const RhsEval &rhs, Index outer, Dense = Dense()) const
|
||||
{
|
||||
return rhs.coeff(outer);
|
||||
}
|
||||
|
||||
Scalar get(const RhsEval &rhs, Index outer, Sparse = Sparse())
|
||||
{
|
||||
typename RhsEval::InnerIterator it(rhs, outer);
|
||||
if (it && it.index()==0 && it.value()!=Scalar(0))
|
||||
return it.value();
|
||||
m_empty = true;
|
||||
return Scalar(0);
|
||||
}
|
||||
|
||||
Index m_outer;
|
||||
bool m_empty;
|
||||
Scalar m_factor;
|
||||
};
|
||||
|
||||
sparse_dense_outer_product_evaluator(const Lhs1 &lhs, const ActualRhs &rhs)
|
||||
: m_lhs(lhs), m_lhsXprImpl(m_lhs), m_rhsXprImpl(rhs)
|
||||
{
|
||||
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
|
||||
}
|
||||
|
||||
// transpose case
|
||||
sparse_dense_outer_product_evaluator(const ActualRhs &rhs, const Lhs1 &lhs)
|
||||
: m_lhs(lhs), m_lhsXprImpl(m_lhs), m_rhsXprImpl(rhs)
|
||||
{
|
||||
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
|
||||
}
|
||||
|
||||
protected:
|
||||
const LhsArg m_lhs;
|
||||
evaluator<ActualLhs> m_lhsXprImpl;
|
||||
evaluator<ActualRhs> m_rhsXprImpl;
|
||||
};
|
||||
|
||||
// sparse * dense outer product
|
||||
template<typename Lhs, typename Rhs>
|
||||
struct product_evaluator<Product<Lhs, Rhs, DefaultProduct>, OuterProduct, SparseShape, DenseShape>
|
||||
: sparse_dense_outer_product_evaluator<Lhs,Rhs, Lhs::IsRowMajor>
|
||||
{
|
||||
typedef sparse_dense_outer_product_evaluator<Lhs,Rhs, Lhs::IsRowMajor> Base;
|
||||
|
||||
typedef Product<Lhs, Rhs> XprType;
|
||||
typedef typename XprType::PlainObject PlainObject;
|
||||
|
||||
explicit product_evaluator(const XprType& xpr)
|
||||
: Base(xpr.lhs(), xpr.rhs())
|
||||
{}
|
||||
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs>
|
||||
struct product_evaluator<Product<Lhs, Rhs, DefaultProduct>, OuterProduct, DenseShape, SparseShape>
|
||||
: sparse_dense_outer_product_evaluator<Lhs,Rhs, Rhs::IsRowMajor>
|
||||
{
|
||||
typedef sparse_dense_outer_product_evaluator<Lhs,Rhs, Rhs::IsRowMajor> Base;
|
||||
|
||||
typedef Product<Lhs, Rhs> XprType;
|
||||
typedef typename XprType::PlainObject PlainObject;
|
||||
|
||||
explicit product_evaluator(const XprType& xpr)
|
||||
: Base(xpr.lhs(), xpr.rhs())
|
||||
{}
|
||||
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SPARSEDENSEPRODUCT_H
|
||||
@@ -0,0 +1,138 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SPARSE_DIAGONAL_PRODUCT_H
|
||||
#define EIGEN_SPARSE_DIAGONAL_PRODUCT_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
// The product of a diagonal matrix with a sparse matrix can be easily
|
||||
// implemented using expression template.
|
||||
// We have two consider very different cases:
|
||||
// 1 - diag * row-major sparse
|
||||
// => each inner vector <=> scalar * sparse vector product
|
||||
// => so we can reuse CwiseUnaryOp::InnerIterator
|
||||
// 2 - diag * col-major sparse
|
||||
// => each inner vector <=> densevector * sparse vector cwise product
|
||||
// => again, we can reuse specialization of CwiseBinaryOp::InnerIterator
|
||||
// for that particular case
|
||||
// The two other cases are symmetric.
|
||||
|
||||
namespace internal {
|
||||
|
||||
enum {
|
||||
SDP_AsScalarProduct,
|
||||
SDP_AsCwiseProduct
|
||||
};
|
||||
|
||||
template<typename SparseXprType, typename DiagonalCoeffType, int SDP_Tag>
|
||||
struct sparse_diagonal_product_evaluator;
|
||||
|
||||
template<typename Lhs, typename Rhs, int ProductTag>
|
||||
struct product_evaluator<Product<Lhs, Rhs, DefaultProduct>, ProductTag, DiagonalShape, SparseShape>
|
||||
: public sparse_diagonal_product_evaluator<Rhs, typename Lhs::DiagonalVectorType, Rhs::Flags&RowMajorBit?SDP_AsScalarProduct:SDP_AsCwiseProduct>
|
||||
{
|
||||
typedef Product<Lhs, Rhs, DefaultProduct> XprType;
|
||||
enum { CoeffReadCost = HugeCost, Flags = Rhs::Flags&RowMajorBit, Alignment = 0 }; // FIXME CoeffReadCost & Flags
|
||||
|
||||
typedef sparse_diagonal_product_evaluator<Rhs, typename Lhs::DiagonalVectorType, Rhs::Flags&RowMajorBit?SDP_AsScalarProduct:SDP_AsCwiseProduct> Base;
|
||||
explicit product_evaluator(const XprType& xpr) : Base(xpr.rhs(), xpr.lhs().diagonal()) {}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, int ProductTag>
|
||||
struct product_evaluator<Product<Lhs, Rhs, DefaultProduct>, ProductTag, SparseShape, DiagonalShape>
|
||||
: public sparse_diagonal_product_evaluator<Lhs, Transpose<const typename Rhs::DiagonalVectorType>, Lhs::Flags&RowMajorBit?SDP_AsCwiseProduct:SDP_AsScalarProduct>
|
||||
{
|
||||
typedef Product<Lhs, Rhs, DefaultProduct> XprType;
|
||||
enum { CoeffReadCost = HugeCost, Flags = Lhs::Flags&RowMajorBit, Alignment = 0 }; // FIXME CoeffReadCost & Flags
|
||||
|
||||
typedef sparse_diagonal_product_evaluator<Lhs, Transpose<const typename Rhs::DiagonalVectorType>, Lhs::Flags&RowMajorBit?SDP_AsCwiseProduct:SDP_AsScalarProduct> Base;
|
||||
explicit product_evaluator(const XprType& xpr) : Base(xpr.lhs(), xpr.rhs().diagonal().transpose()) {}
|
||||
};
|
||||
|
||||
template<typename SparseXprType, typename DiagonalCoeffType>
|
||||
struct sparse_diagonal_product_evaluator<SparseXprType, DiagonalCoeffType, SDP_AsScalarProduct>
|
||||
{
|
||||
protected:
|
||||
typedef typename evaluator<SparseXprType>::InnerIterator SparseXprInnerIterator;
|
||||
typedef typename SparseXprType::Scalar Scalar;
|
||||
|
||||
public:
|
||||
class InnerIterator : public SparseXprInnerIterator
|
||||
{
|
||||
public:
|
||||
InnerIterator(const sparse_diagonal_product_evaluator &xprEval, Index outer)
|
||||
: SparseXprInnerIterator(xprEval.m_sparseXprImpl, outer),
|
||||
m_coeff(xprEval.m_diagCoeffImpl.coeff(outer))
|
||||
{}
|
||||
|
||||
EIGEN_STRONG_INLINE Scalar value() const { return m_coeff * SparseXprInnerIterator::value(); }
|
||||
protected:
|
||||
typename DiagonalCoeffType::Scalar m_coeff;
|
||||
};
|
||||
|
||||
sparse_diagonal_product_evaluator(const SparseXprType &sparseXpr, const DiagonalCoeffType &diagCoeff)
|
||||
: m_sparseXprImpl(sparseXpr), m_diagCoeffImpl(diagCoeff)
|
||||
{}
|
||||
|
||||
Index nonZerosEstimate() const { return m_sparseXprImpl.nonZerosEstimate(); }
|
||||
|
||||
protected:
|
||||
evaluator<SparseXprType> m_sparseXprImpl;
|
||||
evaluator<DiagonalCoeffType> m_diagCoeffImpl;
|
||||
};
|
||||
|
||||
|
||||
template<typename SparseXprType, typename DiagCoeffType>
|
||||
struct sparse_diagonal_product_evaluator<SparseXprType, DiagCoeffType, SDP_AsCwiseProduct>
|
||||
{
|
||||
typedef typename SparseXprType::Scalar Scalar;
|
||||
typedef typename SparseXprType::StorageIndex StorageIndex;
|
||||
|
||||
typedef typename nested_eval<DiagCoeffType,SparseXprType::IsRowMajor ? SparseXprType::RowsAtCompileTime
|
||||
: SparseXprType::ColsAtCompileTime>::type DiagCoeffNested;
|
||||
|
||||
class InnerIterator
|
||||
{
|
||||
typedef typename evaluator<SparseXprType>::InnerIterator SparseXprIter;
|
||||
public:
|
||||
InnerIterator(const sparse_diagonal_product_evaluator &xprEval, Index outer)
|
||||
: m_sparseIter(xprEval.m_sparseXprEval, outer), m_diagCoeffNested(xprEval.m_diagCoeffNested)
|
||||
{}
|
||||
|
||||
inline Scalar value() const { return m_sparseIter.value() * m_diagCoeffNested.coeff(index()); }
|
||||
inline StorageIndex index() const { return m_sparseIter.index(); }
|
||||
inline Index outer() const { return m_sparseIter.outer(); }
|
||||
inline Index col() const { return SparseXprType::IsRowMajor ? m_sparseIter.index() : m_sparseIter.outer(); }
|
||||
inline Index row() const { return SparseXprType::IsRowMajor ? m_sparseIter.outer() : m_sparseIter.index(); }
|
||||
|
||||
EIGEN_STRONG_INLINE InnerIterator& operator++() { ++m_sparseIter; return *this; }
|
||||
inline operator bool() const { return m_sparseIter; }
|
||||
|
||||
protected:
|
||||
SparseXprIter m_sparseIter;
|
||||
DiagCoeffNested m_diagCoeffNested;
|
||||
};
|
||||
|
||||
sparse_diagonal_product_evaluator(const SparseXprType &sparseXpr, const DiagCoeffType &diagCoeff)
|
||||
: m_sparseXprEval(sparseXpr), m_diagCoeffNested(diagCoeff)
|
||||
{}
|
||||
|
||||
Index nonZerosEstimate() const { return m_sparseXprEval.nonZerosEstimate(); }
|
||||
|
||||
protected:
|
||||
evaluator<SparseXprType> m_sparseXprEval;
|
||||
DiagCoeffNested m_diagCoeffNested;
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SPARSE_DIAGONAL_PRODUCT_H
|
||||
98
examples/ThirdPartyLibs/Eigen/src/SparseCore/SparseDot.h
Normal file
98
examples/ThirdPartyLibs/Eigen/src/SparseCore/SparseDot.h
Normal file
@@ -0,0 +1,98 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SPARSE_DOT_H
|
||||
#define EIGEN_SPARSE_DOT_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
typename internal::traits<Derived>::Scalar
|
||||
SparseMatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
|
||||
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
|
||||
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
|
||||
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
||||
|
||||
eigen_assert(size() == other.size());
|
||||
eigen_assert(other.size()>0 && "you are using a non initialized vector");
|
||||
|
||||
internal::evaluator<Derived> thisEval(derived());
|
||||
typename internal::evaluator<Derived>::InnerIterator i(thisEval, 0);
|
||||
Scalar res(0);
|
||||
while (i)
|
||||
{
|
||||
res += numext::conj(i.value()) * other.coeff(i.index());
|
||||
++i;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
typename internal::traits<Derived>::Scalar
|
||||
SparseMatrixBase<Derived>::dot(const SparseMatrixBase<OtherDerived>& other) const
|
||||
{
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
|
||||
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
|
||||
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
|
||||
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
|
||||
|
||||
eigen_assert(size() == other.size());
|
||||
|
||||
internal::evaluator<Derived> thisEval(derived());
|
||||
typename internal::evaluator<Derived>::InnerIterator i(thisEval, 0);
|
||||
|
||||
internal::evaluator<OtherDerived> otherEval(other.derived());
|
||||
typename internal::evaluator<OtherDerived>::InnerIterator j(otherEval, 0);
|
||||
|
||||
Scalar res(0);
|
||||
while (i && j)
|
||||
{
|
||||
if (i.index()==j.index())
|
||||
{
|
||||
res += numext::conj(i.value()) * j.value();
|
||||
++i; ++j;
|
||||
}
|
||||
else if (i.index()<j.index())
|
||||
++i;
|
||||
else
|
||||
++j;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
|
||||
SparseMatrixBase<Derived>::squaredNorm() const
|
||||
{
|
||||
return numext::real((*this).cwiseAbs2().sum());
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
|
||||
SparseMatrixBase<Derived>::norm() const
|
||||
{
|
||||
using std::sqrt;
|
||||
return sqrt(squaredNorm());
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
|
||||
SparseMatrixBase<Derived>::blueNorm() const
|
||||
{
|
||||
return internal::blueNorm_impl(*this);
|
||||
}
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SPARSE_DOT_H
|
||||
29
examples/ThirdPartyLibs/Eigen/src/SparseCore/SparseFuzzy.h
Normal file
29
examples/ThirdPartyLibs/Eigen/src/SparseCore/SparseFuzzy.h
Normal file
@@ -0,0 +1,29 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SPARSE_FUZZY_H
|
||||
#define EIGEN_SPARSE_FUZZY_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
bool SparseMatrixBase<Derived>::isApprox(const SparseMatrixBase<OtherDerived>& other, const RealScalar &prec) const
|
||||
{
|
||||
const typename internal::nested_eval<Derived,2,PlainObject>::type actualA(derived());
|
||||
typename internal::conditional<bool(IsRowMajor)==bool(OtherDerived::IsRowMajor),
|
||||
const typename internal::nested_eval<OtherDerived,2,PlainObject>::type,
|
||||
const PlainObject>::type actualB(other.derived());
|
||||
|
||||
return (actualA - actualB).squaredNorm() <= prec * prec * numext::mini(actualA.squaredNorm(), actualB.squaredNorm());
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SPARSE_FUZZY_H
|
||||
305
examples/ThirdPartyLibs/Eigen/src/SparseCore/SparseMap.h
Normal file
305
examples/ThirdPartyLibs/Eigen/src/SparseCore/SparseMap.h
Normal file
@@ -0,0 +1,305 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SPARSE_MAP_H
|
||||
#define EIGEN_SPARSE_MAP_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename MatScalar, int MatOptions, typename MatIndex, int Options, typename StrideType>
|
||||
struct traits<Map<SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> >
|
||||
: public traits<SparseMatrix<MatScalar,MatOptions,MatIndex> >
|
||||
{
|
||||
typedef SparseMatrix<MatScalar,MatOptions,MatIndex> PlainObjectType;
|
||||
typedef traits<PlainObjectType> TraitsBase;
|
||||
enum {
|
||||
Flags = TraitsBase::Flags & (~NestByRefBit)
|
||||
};
|
||||
};
|
||||
|
||||
template<typename MatScalar, int MatOptions, typename MatIndex, int Options, typename StrideType>
|
||||
struct traits<Map<const SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> >
|
||||
: public traits<SparseMatrix<MatScalar,MatOptions,MatIndex> >
|
||||
{
|
||||
typedef SparseMatrix<MatScalar,MatOptions,MatIndex> PlainObjectType;
|
||||
typedef traits<PlainObjectType> TraitsBase;
|
||||
enum {
|
||||
Flags = TraitsBase::Flags & (~ (NestByRefBit | LvalueBit))
|
||||
};
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
template<typename Derived,
|
||||
int Level = internal::accessors_level<Derived>::has_write_access ? WriteAccessors : ReadOnlyAccessors
|
||||
> class SparseMapBase;
|
||||
|
||||
/** \ingroup SparseCore_Module
|
||||
* class SparseMapBase
|
||||
* \brief Common base class for Map and Ref instance of sparse matrix and vector.
|
||||
*/
|
||||
template<typename Derived>
|
||||
class SparseMapBase<Derived,ReadOnlyAccessors>
|
||||
: public SparseCompressedBase<Derived>
|
||||
{
|
||||
public:
|
||||
typedef SparseCompressedBase<Derived> Base;
|
||||
typedef typename Base::Scalar Scalar;
|
||||
typedef typename Base::StorageIndex StorageIndex;
|
||||
enum { IsRowMajor = Base::IsRowMajor };
|
||||
using Base::operator=;
|
||||
protected:
|
||||
|
||||
typedef typename internal::conditional<
|
||||
bool(internal::is_lvalue<Derived>::value),
|
||||
Scalar *, const Scalar *>::type ScalarPointer;
|
||||
typedef typename internal::conditional<
|
||||
bool(internal::is_lvalue<Derived>::value),
|
||||
StorageIndex *, const StorageIndex *>::type IndexPointer;
|
||||
|
||||
Index m_outerSize;
|
||||
Index m_innerSize;
|
||||
Array<StorageIndex,2,1> m_zero_nnz;
|
||||
IndexPointer m_outerIndex;
|
||||
IndexPointer m_innerIndices;
|
||||
ScalarPointer m_values;
|
||||
IndexPointer m_innerNonZeros;
|
||||
|
||||
public:
|
||||
|
||||
/** \copydoc SparseMatrixBase::rows() */
|
||||
inline Index rows() const { return IsRowMajor ? m_outerSize : m_innerSize; }
|
||||
/** \copydoc SparseMatrixBase::cols() */
|
||||
inline Index cols() const { return IsRowMajor ? m_innerSize : m_outerSize; }
|
||||
/** \copydoc SparseMatrixBase::innerSize() */
|
||||
inline Index innerSize() const { return m_innerSize; }
|
||||
/** \copydoc SparseMatrixBase::outerSize() */
|
||||
inline Index outerSize() const { return m_outerSize; }
|
||||
/** \copydoc SparseCompressedBase::nonZeros */
|
||||
inline Index nonZeros() const { return m_zero_nnz[1]; }
|
||||
|
||||
/** \copydoc SparseCompressedBase::isCompressed */
|
||||
bool isCompressed() const { return m_innerNonZeros==0; }
|
||||
|
||||
//----------------------------------------
|
||||
// direct access interface
|
||||
/** \copydoc SparseMatrix::valuePtr */
|
||||
inline const Scalar* valuePtr() const { return m_values; }
|
||||
/** \copydoc SparseMatrix::innerIndexPtr */
|
||||
inline const StorageIndex* innerIndexPtr() const { return m_innerIndices; }
|
||||
/** \copydoc SparseMatrix::outerIndexPtr */
|
||||
inline const StorageIndex* outerIndexPtr() const { return m_outerIndex; }
|
||||
/** \copydoc SparseMatrix::innerNonZeroPtr */
|
||||
inline const StorageIndex* innerNonZeroPtr() const { return m_innerNonZeros; }
|
||||
//----------------------------------------
|
||||
|
||||
/** \copydoc SparseMatrix::coeff */
|
||||
inline Scalar coeff(Index row, Index col) const
|
||||
{
|
||||
const Index outer = IsRowMajor ? row : col;
|
||||
const Index inner = IsRowMajor ? col : row;
|
||||
|
||||
Index start = m_outerIndex[outer];
|
||||
Index end = isCompressed() ? m_outerIndex[outer+1] : start + m_innerNonZeros[outer];
|
||||
if (start==end)
|
||||
return Scalar(0);
|
||||
else if (end>0 && inner==m_innerIndices[end-1])
|
||||
return m_values[end-1];
|
||||
// ^^ optimization: let's first check if it is the last coefficient
|
||||
// (very common in high level algorithms)
|
||||
|
||||
const StorageIndex* r = std::lower_bound(&m_innerIndices[start],&m_innerIndices[end-1],inner);
|
||||
const Index id = r-&m_innerIndices[0];
|
||||
return ((*r==inner) && (id<end)) ? m_values[id] : Scalar(0);
|
||||
}
|
||||
|
||||
inline SparseMapBase(Index rows, Index cols, Index nnz, IndexPointer outerIndexPtr, IndexPointer innerIndexPtr,
|
||||
ScalarPointer valuePtr, IndexPointer innerNonZerosPtr = 0)
|
||||
: m_outerSize(IsRowMajor?rows:cols), m_innerSize(IsRowMajor?cols:rows), m_zero_nnz(0,internal::convert_index<StorageIndex>(nnz)), m_outerIndex(outerIndexPtr),
|
||||
m_innerIndices(innerIndexPtr), m_values(valuePtr), m_innerNonZeros(innerNonZerosPtr)
|
||||
{}
|
||||
|
||||
// for vectors
|
||||
inline SparseMapBase(Index size, Index nnz, IndexPointer innerIndexPtr, ScalarPointer valuePtr)
|
||||
: m_outerSize(1), m_innerSize(size), m_zero_nnz(0,internal::convert_index<StorageIndex>(nnz)), m_outerIndex(m_zero_nnz.data()),
|
||||
m_innerIndices(innerIndexPtr), m_values(valuePtr), m_innerNonZeros(0)
|
||||
{}
|
||||
|
||||
/** Empty destructor */
|
||||
inline ~SparseMapBase() {}
|
||||
|
||||
protected:
|
||||
inline SparseMapBase() {}
|
||||
};
|
||||
|
||||
/** \ingroup SparseCore_Module
|
||||
* class SparseMapBase
|
||||
* \brief Common base class for writable Map and Ref instance of sparse matrix and vector.
|
||||
*/
|
||||
template<typename Derived>
|
||||
class SparseMapBase<Derived,WriteAccessors>
|
||||
: public SparseMapBase<Derived,ReadOnlyAccessors>
|
||||
{
|
||||
typedef MapBase<Derived, ReadOnlyAccessors> ReadOnlyMapBase;
|
||||
|
||||
public:
|
||||
typedef SparseMapBase<Derived, ReadOnlyAccessors> Base;
|
||||
typedef typename Base::Scalar Scalar;
|
||||
typedef typename Base::StorageIndex StorageIndex;
|
||||
enum { IsRowMajor = Base::IsRowMajor };
|
||||
|
||||
using Base::operator=;
|
||||
|
||||
public:
|
||||
|
||||
//----------------------------------------
|
||||
// direct access interface
|
||||
using Base::valuePtr;
|
||||
using Base::innerIndexPtr;
|
||||
using Base::outerIndexPtr;
|
||||
using Base::innerNonZeroPtr;
|
||||
/** \copydoc SparseMatrix::valuePtr */
|
||||
inline Scalar* valuePtr() { return Base::m_values; }
|
||||
/** \copydoc SparseMatrix::innerIndexPtr */
|
||||
inline StorageIndex* innerIndexPtr() { return Base::m_innerIndices; }
|
||||
/** \copydoc SparseMatrix::outerIndexPtr */
|
||||
inline StorageIndex* outerIndexPtr() { return Base::m_outerIndex; }
|
||||
/** \copydoc SparseMatrix::innerNonZeroPtr */
|
||||
inline StorageIndex* innerNonZeroPtr() { return Base::m_innerNonZeros; }
|
||||
//----------------------------------------
|
||||
|
||||
/** \copydoc SparseMatrix::coeffRef */
|
||||
inline Scalar& coeffRef(Index row, Index col)
|
||||
{
|
||||
const Index outer = IsRowMajor ? row : col;
|
||||
const Index inner = IsRowMajor ? col : row;
|
||||
|
||||
Index start = Base::m_outerIndex[outer];
|
||||
Index end = Base::isCompressed() ? Base::m_outerIndex[outer+1] : start + Base::m_innerNonZeros[outer];
|
||||
eigen_assert(end>=start && "you probably called coeffRef on a non finalized matrix");
|
||||
eigen_assert(end>start && "coeffRef cannot be called on a zero coefficient");
|
||||
StorageIndex* r = std::lower_bound(&Base::m_innerIndices[start],&Base::m_innerIndices[end],inner);
|
||||
const Index id = r - &Base::m_innerIndices[0];
|
||||
eigen_assert((*r==inner) && (id<end) && "coeffRef cannot be called on a zero coefficient");
|
||||
return const_cast<Scalar*>(Base::m_values)[id];
|
||||
}
|
||||
|
||||
inline SparseMapBase(Index rows, Index cols, Index nnz, StorageIndex* outerIndexPtr, StorageIndex* innerIndexPtr,
|
||||
Scalar* valuePtr, StorageIndex* innerNonZerosPtr = 0)
|
||||
: Base(rows, cols, nnz, outerIndexPtr, innerIndexPtr, valuePtr, innerNonZerosPtr)
|
||||
{}
|
||||
|
||||
// for vectors
|
||||
inline SparseMapBase(Index size, Index nnz, StorageIndex* innerIndexPtr, Scalar* valuePtr)
|
||||
: Base(size, nnz, innerIndexPtr, valuePtr)
|
||||
{}
|
||||
|
||||
/** Empty destructor */
|
||||
inline ~SparseMapBase() {}
|
||||
|
||||
protected:
|
||||
inline SparseMapBase() {}
|
||||
};
|
||||
|
||||
/** \ingroup SparseCore_Module
|
||||
*
|
||||
* \brief Specialization of class Map for SparseMatrix-like storage.
|
||||
*
|
||||
* \tparam SparseMatrixType the equivalent sparse matrix type of the referenced data, it must be a template instance of class SparseMatrix.
|
||||
*
|
||||
* \sa class Map, class SparseMatrix, class Ref<SparseMatrixType,Options>
|
||||
*/
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
template<typename MatScalar, int MatOptions, typename MatIndex, int Options, typename StrideType>
|
||||
class Map<SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType>
|
||||
: public SparseMapBase<Map<SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> >
|
||||
#else
|
||||
template<typename SparseMatrixType>
|
||||
class Map<SparseMatrixType>
|
||||
: public SparseMapBase<Derived,WriteAccessors>
|
||||
#endif
|
||||
{
|
||||
public:
|
||||
typedef SparseMapBase<Map> Base;
|
||||
EIGEN_SPARSE_PUBLIC_INTERFACE(Map)
|
||||
enum { IsRowMajor = Base::IsRowMajor };
|
||||
|
||||
public:
|
||||
|
||||
/** Constructs a read-write Map to a sparse matrix of size \a rows x \a cols, containing \a nnz non-zero coefficients,
|
||||
* stored as a sparse format as defined by the pointers \a outerIndexPtr, \a innerIndexPtr, and \a valuePtr.
|
||||
* If the optional parameter \a innerNonZerosPtr is the null pointer, then a standard compressed format is assumed.
|
||||
*
|
||||
* This constructor is available only if \c SparseMatrixType is non-const.
|
||||
*
|
||||
* More details on the expected storage schemes are given in the \ref TutorialSparse "manual pages".
|
||||
*/
|
||||
inline Map(Index rows, Index cols, Index nnz, StorageIndex* outerIndexPtr,
|
||||
StorageIndex* innerIndexPtr, Scalar* valuePtr, StorageIndex* innerNonZerosPtr = 0)
|
||||
: Base(rows, cols, nnz, outerIndexPtr, innerIndexPtr, valuePtr, innerNonZerosPtr)
|
||||
{}
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
/** Empty destructor */
|
||||
inline ~Map() {}
|
||||
};
|
||||
|
||||
template<typename MatScalar, int MatOptions, typename MatIndex, int Options, typename StrideType>
|
||||
class Map<const SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType>
|
||||
: public SparseMapBase<Map<const SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> >
|
||||
{
|
||||
public:
|
||||
typedef SparseMapBase<Map> Base;
|
||||
EIGEN_SPARSE_PUBLIC_INTERFACE(Map)
|
||||
enum { IsRowMajor = Base::IsRowMajor };
|
||||
|
||||
public:
|
||||
#endif
|
||||
/** This is the const version of the above constructor.
|
||||
*
|
||||
* This constructor is available only if \c SparseMatrixType is const, e.g.:
|
||||
* \code Map<const SparseMatrix<double> > \endcode
|
||||
*/
|
||||
inline Map(Index rows, Index cols, Index nnz, const StorageIndex* outerIndexPtr,
|
||||
const StorageIndex* innerIndexPtr, const Scalar* valuePtr, const StorageIndex* innerNonZerosPtr = 0)
|
||||
: Base(rows, cols, nnz, outerIndexPtr, innerIndexPtr, valuePtr, innerNonZerosPtr)
|
||||
{}
|
||||
|
||||
/** Empty destructor */
|
||||
inline ~Map() {}
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename MatScalar, int MatOptions, typename MatIndex, int Options, typename StrideType>
|
||||
struct evaluator<Map<SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> >
|
||||
: evaluator<SparseCompressedBase<Map<SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> > >
|
||||
{
|
||||
typedef evaluator<SparseCompressedBase<Map<SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> > > Base;
|
||||
typedef Map<SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> XprType;
|
||||
evaluator() : Base() {}
|
||||
explicit evaluator(const XprType &mat) : Base(mat) {}
|
||||
};
|
||||
|
||||
template<typename MatScalar, int MatOptions, typename MatIndex, int Options, typename StrideType>
|
||||
struct evaluator<Map<const SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> >
|
||||
: evaluator<SparseCompressedBase<Map<const SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> > >
|
||||
{
|
||||
typedef evaluator<SparseCompressedBase<Map<const SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> > > Base;
|
||||
typedef Map<const SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> XprType;
|
||||
evaluator() : Base() {}
|
||||
explicit evaluator(const XprType &mat) : Base(mat) {}
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SPARSE_MAP_H
|
||||
1403
examples/ThirdPartyLibs/Eigen/src/SparseCore/SparseMatrix.h
Normal file
1403
examples/ThirdPartyLibs/Eigen/src/SparseCore/SparseMatrix.h
Normal file
File diff suppressed because it is too large
Load Diff
405
examples/ThirdPartyLibs/Eigen/src/SparseCore/SparseMatrixBase.h
Normal file
405
examples/ThirdPartyLibs/Eigen/src/SparseCore/SparseMatrixBase.h
Normal file
@@ -0,0 +1,405 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SPARSEMATRIXBASE_H
|
||||
#define EIGEN_SPARSEMATRIXBASE_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \ingroup SparseCore_Module
|
||||
*
|
||||
* \class SparseMatrixBase
|
||||
*
|
||||
* \brief Base class of any sparse matrices or sparse expressions
|
||||
*
|
||||
* \tparam Derived is the derived type, e.g. a sparse matrix type, or an expression, etc.
|
||||
*
|
||||
* This class can be extended with the help of the plugin mechanism described on the page
|
||||
* \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_SPARSEMATRIXBASE_PLUGIN.
|
||||
*/
|
||||
template<typename Derived> class SparseMatrixBase
|
||||
: public EigenBase<Derived>
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename internal::traits<Derived>::Scalar Scalar;
|
||||
|
||||
/** The numeric type of the expression' coefficients, e.g. float, double, int or std::complex<float>, etc.
|
||||
*
|
||||
* It is an alias for the Scalar type */
|
||||
typedef Scalar value_type;
|
||||
|
||||
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
|
||||
typedef typename internal::traits<Derived>::StorageKind StorageKind;
|
||||
|
||||
/** The integer type used to \b store indices within a SparseMatrix.
|
||||
* For a \c SparseMatrix<Scalar,Options,IndexType> it an alias of the third template parameter \c IndexType. */
|
||||
typedef typename internal::traits<Derived>::StorageIndex StorageIndex;
|
||||
|
||||
typedef typename internal::add_const_on_value_type_if_arithmetic<
|
||||
typename internal::packet_traits<Scalar>::type
|
||||
>::type PacketReturnType;
|
||||
|
||||
typedef SparseMatrixBase StorageBaseType;
|
||||
|
||||
typedef Matrix<StorageIndex,Dynamic,1> IndexVector;
|
||||
typedef Matrix<Scalar,Dynamic,1> ScalarVector;
|
||||
|
||||
template<typename OtherDerived>
|
||||
Derived& operator=(const EigenBase<OtherDerived> &other);
|
||||
|
||||
enum {
|
||||
|
||||
RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
|
||||
/**< The number of rows at compile-time. This is just a copy of the value provided
|
||||
* by the \a Derived type. If a value is not known at compile-time,
|
||||
* it is set to the \a Dynamic constant.
|
||||
* \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */
|
||||
|
||||
ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
|
||||
/**< The number of columns at compile-time. This is just a copy of the value provided
|
||||
* by the \a Derived type. If a value is not known at compile-time,
|
||||
* it is set to the \a Dynamic constant.
|
||||
* \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */
|
||||
|
||||
|
||||
SizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::RowsAtCompileTime,
|
||||
internal::traits<Derived>::ColsAtCompileTime>::ret),
|
||||
/**< This is equal to the number of coefficients, i.e. the number of
|
||||
* rows times the number of columns, or to \a Dynamic if this is not
|
||||
* known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */
|
||||
|
||||
MaxRowsAtCompileTime = RowsAtCompileTime,
|
||||
MaxColsAtCompileTime = ColsAtCompileTime,
|
||||
|
||||
MaxSizeAtCompileTime = (internal::size_at_compile_time<MaxRowsAtCompileTime,
|
||||
MaxColsAtCompileTime>::ret),
|
||||
|
||||
IsVectorAtCompileTime = RowsAtCompileTime == 1 || ColsAtCompileTime == 1,
|
||||
/**< This is set to true if either the number of rows or the number of
|
||||
* columns is known at compile-time to be equal to 1. Indeed, in that case,
|
||||
* we are dealing with a column-vector (if there is only one column) or with
|
||||
* a row-vector (if there is only one row). */
|
||||
|
||||
Flags = internal::traits<Derived>::Flags,
|
||||
/**< This stores expression \ref flags flags which may or may not be inherited by new expressions
|
||||
* constructed from this one. See the \ref flags "list of flags".
|
||||
*/
|
||||
|
||||
IsRowMajor = Flags&RowMajorBit ? 1 : 0,
|
||||
|
||||
InnerSizeAtCompileTime = int(IsVectorAtCompileTime) ? int(SizeAtCompileTime)
|
||||
: int(IsRowMajor) ? int(ColsAtCompileTime) : int(RowsAtCompileTime),
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
_HasDirectAccess = (int(Flags)&DirectAccessBit) ? 1 : 0 // workaround sunCC
|
||||
#endif
|
||||
};
|
||||
|
||||
/** \internal the return type of MatrixBase::adjoint() */
|
||||
typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
|
||||
CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, Eigen::Transpose<const Derived> >,
|
||||
Transpose<const Derived>
|
||||
>::type AdjointReturnType;
|
||||
typedef Transpose<Derived> TransposeReturnType;
|
||||
typedef typename internal::add_const<Transpose<const Derived> >::type ConstTransposeReturnType;
|
||||
|
||||
// FIXME storage order do not match evaluator storage order
|
||||
typedef SparseMatrix<Scalar, Flags&RowMajorBit ? RowMajor : ColMajor, StorageIndex> PlainObject;
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
/** This is the "real scalar" type; if the \a Scalar type is already real numbers
|
||||
* (e.g. int, float or double) then \a RealScalar is just the same as \a Scalar. If
|
||||
* \a Scalar is \a std::complex<T> then RealScalar is \a T.
|
||||
*
|
||||
* \sa class NumTraits
|
||||
*/
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
|
||||
/** \internal the return type of coeff()
|
||||
*/
|
||||
typedef typename internal::conditional<_HasDirectAccess, const Scalar&, Scalar>::type CoeffReturnType;
|
||||
|
||||
/** \internal Represents a matrix with all coefficients equal to one another*/
|
||||
typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,Matrix<Scalar,Dynamic,Dynamic> > ConstantReturnType;
|
||||
|
||||
/** type of the equivalent dense matrix */
|
||||
typedef Matrix<Scalar,RowsAtCompileTime,ColsAtCompileTime> DenseMatrixType;
|
||||
/** type of the equivalent square matrix */
|
||||
typedef Matrix<Scalar,EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime),
|
||||
EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime)> SquareMatrixType;
|
||||
|
||||
inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
|
||||
inline Derived& derived() { return *static_cast<Derived*>(this); }
|
||||
inline Derived& const_cast_derived() const
|
||||
{ return *static_cast<Derived*>(const_cast<SparseMatrixBase*>(this)); }
|
||||
|
||||
typedef EigenBase<Derived> Base;
|
||||
|
||||
#endif // not EIGEN_PARSED_BY_DOXYGEN
|
||||
|
||||
#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::SparseMatrixBase
|
||||
#ifdef EIGEN_PARSED_BY_DOXYGEN
|
||||
#define EIGEN_DOC_UNARY_ADDONS(METHOD,OP) /** <p>This method does not change the sparsity of \c *this: the OP is applied to explicitly stored coefficients only. \sa SparseCompressedBase::coeffs() </p> */
|
||||
#define EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL /** <p> \warning This method returns a read-only expression for any sparse matrices. \sa \ref TutorialSparse_SubMatrices "Sparse block operations" </p> */
|
||||
#define EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(COND) /** <p> \warning This method returns a read-write expression for COND sparse matrices only. Otherwise, the returned expression is read-only. \sa \ref TutorialSparse_SubMatrices "Sparse block operations" </p> */
|
||||
#else
|
||||
#define EIGEN_DOC_UNARY_ADDONS(X,Y)
|
||||
#define EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL
|
||||
#define EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(COND)
|
||||
#endif
|
||||
# include "../plugins/CommonCwiseUnaryOps.h"
|
||||
# include "../plugins/CommonCwiseBinaryOps.h"
|
||||
# include "../plugins/MatrixCwiseUnaryOps.h"
|
||||
# include "../plugins/MatrixCwiseBinaryOps.h"
|
||||
# include "../plugins/BlockMethods.h"
|
||||
# ifdef EIGEN_SPARSEMATRIXBASE_PLUGIN
|
||||
# include EIGEN_SPARSEMATRIXBASE_PLUGIN
|
||||
# endif
|
||||
#undef EIGEN_CURRENT_STORAGE_BASE_CLASS
|
||||
#undef EIGEN_DOC_UNARY_ADDONS
|
||||
#undef EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL
|
||||
#undef EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF
|
||||
|
||||
/** \returns the number of rows. \sa cols() */
|
||||
inline Index rows() const { return derived().rows(); }
|
||||
/** \returns the number of columns. \sa rows() */
|
||||
inline Index cols() const { return derived().cols(); }
|
||||
/** \returns the number of coefficients, which is \a rows()*cols().
|
||||
* \sa rows(), cols(). */
|
||||
inline Index size() const { return rows() * cols(); }
|
||||
/** \returns true if either the number of rows or the number of columns is equal to 1.
|
||||
* In other words, this function returns
|
||||
* \code rows()==1 || cols()==1 \endcode
|
||||
* \sa rows(), cols(), IsVectorAtCompileTime. */
|
||||
inline bool isVector() const { return rows()==1 || cols()==1; }
|
||||
/** \returns the size of the storage major dimension,
|
||||
* i.e., the number of columns for a columns major matrix, and the number of rows otherwise */
|
||||
Index outerSize() const { return (int(Flags)&RowMajorBit) ? this->rows() : this->cols(); }
|
||||
/** \returns the size of the inner dimension according to the storage order,
|
||||
* i.e., the number of rows for a columns major matrix, and the number of cols otherwise */
|
||||
Index innerSize() const { return (int(Flags)&RowMajorBit) ? this->cols() : this->rows(); }
|
||||
|
||||
bool isRValue() const { return m_isRValue; }
|
||||
Derived& markAsRValue() { m_isRValue = true; return derived(); }
|
||||
|
||||
SparseMatrixBase() : m_isRValue(false) { /* TODO check flags */ }
|
||||
|
||||
|
||||
template<typename OtherDerived>
|
||||
Derived& operator=(const ReturnByValue<OtherDerived>& other);
|
||||
|
||||
template<typename OtherDerived>
|
||||
inline Derived& operator=(const SparseMatrixBase<OtherDerived>& other);
|
||||
|
||||
inline Derived& operator=(const Derived& other);
|
||||
|
||||
protected:
|
||||
|
||||
template<typename OtherDerived>
|
||||
inline Derived& assign(const OtherDerived& other);
|
||||
|
||||
template<typename OtherDerived>
|
||||
inline void assignGeneric(const OtherDerived& other);
|
||||
|
||||
public:
|
||||
|
||||
friend std::ostream & operator << (std::ostream & s, const SparseMatrixBase& m)
|
||||
{
|
||||
typedef typename Derived::Nested Nested;
|
||||
typedef typename internal::remove_all<Nested>::type NestedCleaned;
|
||||
|
||||
if (Flags&RowMajorBit)
|
||||
{
|
||||
Nested nm(m.derived());
|
||||
internal::evaluator<NestedCleaned> thisEval(nm);
|
||||
for (Index row=0; row<nm.outerSize(); ++row)
|
||||
{
|
||||
Index col = 0;
|
||||
for (typename internal::evaluator<NestedCleaned>::InnerIterator it(thisEval, row); it; ++it)
|
||||
{
|
||||
for ( ; col<it.index(); ++col)
|
||||
s << "0 ";
|
||||
s << it.value() << " ";
|
||||
++col;
|
||||
}
|
||||
for ( ; col<m.cols(); ++col)
|
||||
s << "0 ";
|
||||
s << std::endl;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
Nested nm(m.derived());
|
||||
internal::evaluator<NestedCleaned> thisEval(nm);
|
||||
if (m.cols() == 1) {
|
||||
Index row = 0;
|
||||
for (typename internal::evaluator<NestedCleaned>::InnerIterator it(thisEval, 0); it; ++it)
|
||||
{
|
||||
for ( ; row<it.index(); ++row)
|
||||
s << "0" << std::endl;
|
||||
s << it.value() << std::endl;
|
||||
++row;
|
||||
}
|
||||
for ( ; row<m.rows(); ++row)
|
||||
s << "0" << std::endl;
|
||||
}
|
||||
else
|
||||
{
|
||||
SparseMatrix<Scalar, RowMajorBit, StorageIndex> trans = m;
|
||||
s << static_cast<const SparseMatrixBase<SparseMatrix<Scalar, RowMajorBit, StorageIndex> >&>(trans);
|
||||
}
|
||||
}
|
||||
return s;
|
||||
}
|
||||
|
||||
template<typename OtherDerived>
|
||||
Derived& operator+=(const SparseMatrixBase<OtherDerived>& other);
|
||||
template<typename OtherDerived>
|
||||
Derived& operator-=(const SparseMatrixBase<OtherDerived>& other);
|
||||
|
||||
template<typename OtherDerived>
|
||||
Derived& operator+=(const DiagonalBase<OtherDerived>& other);
|
||||
template<typename OtherDerived>
|
||||
Derived& operator-=(const DiagonalBase<OtherDerived>& other);
|
||||
|
||||
template<typename OtherDerived>
|
||||
Derived& operator+=(const EigenBase<OtherDerived> &other);
|
||||
template<typename OtherDerived>
|
||||
Derived& operator-=(const EigenBase<OtherDerived> &other);
|
||||
|
||||
Derived& operator*=(const Scalar& other);
|
||||
Derived& operator/=(const Scalar& other);
|
||||
|
||||
template<typename OtherDerived> struct CwiseProductDenseReturnType {
|
||||
typedef CwiseBinaryOp<internal::scalar_product_op<typename ScalarBinaryOpTraits<
|
||||
typename internal::traits<Derived>::Scalar,
|
||||
typename internal::traits<OtherDerived>::Scalar
|
||||
>::ReturnType>,
|
||||
const Derived,
|
||||
const OtherDerived
|
||||
> Type;
|
||||
};
|
||||
|
||||
template<typename OtherDerived>
|
||||
EIGEN_STRONG_INLINE const typename CwiseProductDenseReturnType<OtherDerived>::Type
|
||||
cwiseProduct(const MatrixBase<OtherDerived> &other) const;
|
||||
|
||||
// sparse * diagonal
|
||||
template<typename OtherDerived>
|
||||
const Product<Derived,OtherDerived>
|
||||
operator*(const DiagonalBase<OtherDerived> &other) const
|
||||
{ return Product<Derived,OtherDerived>(derived(), other.derived()); }
|
||||
|
||||
// diagonal * sparse
|
||||
template<typename OtherDerived> friend
|
||||
const Product<OtherDerived,Derived>
|
||||
operator*(const DiagonalBase<OtherDerived> &lhs, const SparseMatrixBase& rhs)
|
||||
{ return Product<OtherDerived,Derived>(lhs.derived(), rhs.derived()); }
|
||||
|
||||
// sparse * sparse
|
||||
template<typename OtherDerived>
|
||||
const Product<Derived,OtherDerived,AliasFreeProduct>
|
||||
operator*(const SparseMatrixBase<OtherDerived> &other) const;
|
||||
|
||||
// sparse * dense
|
||||
template<typename OtherDerived>
|
||||
const Product<Derived,OtherDerived>
|
||||
operator*(const MatrixBase<OtherDerived> &other) const
|
||||
{ return Product<Derived,OtherDerived>(derived(), other.derived()); }
|
||||
|
||||
// dense * sparse
|
||||
template<typename OtherDerived> friend
|
||||
const Product<OtherDerived,Derived>
|
||||
operator*(const MatrixBase<OtherDerived> &lhs, const SparseMatrixBase& rhs)
|
||||
{ return Product<OtherDerived,Derived>(lhs.derived(), rhs.derived()); }
|
||||
|
||||
/** \returns an expression of P H P^-1 where H is the matrix represented by \c *this */
|
||||
SparseSymmetricPermutationProduct<Derived,Upper|Lower> twistedBy(const PermutationMatrix<Dynamic,Dynamic,StorageIndex>& perm) const
|
||||
{
|
||||
return SparseSymmetricPermutationProduct<Derived,Upper|Lower>(derived(), perm);
|
||||
}
|
||||
|
||||
template<typename OtherDerived>
|
||||
Derived& operator*=(const SparseMatrixBase<OtherDerived>& other);
|
||||
|
||||
template<int Mode>
|
||||
inline const TriangularView<const Derived, Mode> triangularView() const;
|
||||
|
||||
template<unsigned int UpLo> struct SelfAdjointViewReturnType { typedef SparseSelfAdjointView<Derived, UpLo> Type; };
|
||||
template<unsigned int UpLo> struct ConstSelfAdjointViewReturnType { typedef const SparseSelfAdjointView<const Derived, UpLo> Type; };
|
||||
|
||||
template<unsigned int UpLo> inline
|
||||
typename ConstSelfAdjointViewReturnType<UpLo>::Type selfadjointView() const;
|
||||
template<unsigned int UpLo> inline
|
||||
typename SelfAdjointViewReturnType<UpLo>::Type selfadjointView();
|
||||
|
||||
template<typename OtherDerived> Scalar dot(const MatrixBase<OtherDerived>& other) const;
|
||||
template<typename OtherDerived> Scalar dot(const SparseMatrixBase<OtherDerived>& other) const;
|
||||
RealScalar squaredNorm() const;
|
||||
RealScalar norm() const;
|
||||
RealScalar blueNorm() const;
|
||||
|
||||
TransposeReturnType transpose() { return TransposeReturnType(derived()); }
|
||||
const ConstTransposeReturnType transpose() const { return ConstTransposeReturnType(derived()); }
|
||||
const AdjointReturnType adjoint() const { return AdjointReturnType(transpose()); }
|
||||
|
||||
// inner-vector
|
||||
typedef Block<Derived,IsRowMajor?1:Dynamic,IsRowMajor?Dynamic:1,true> InnerVectorReturnType;
|
||||
typedef Block<const Derived,IsRowMajor?1:Dynamic,IsRowMajor?Dynamic:1,true> ConstInnerVectorReturnType;
|
||||
InnerVectorReturnType innerVector(Index outer);
|
||||
const ConstInnerVectorReturnType innerVector(Index outer) const;
|
||||
|
||||
// set of inner-vectors
|
||||
typedef Block<Derived,Dynamic,Dynamic,true> InnerVectorsReturnType;
|
||||
typedef Block<const Derived,Dynamic,Dynamic,true> ConstInnerVectorsReturnType;
|
||||
InnerVectorsReturnType innerVectors(Index outerStart, Index outerSize);
|
||||
const ConstInnerVectorsReturnType innerVectors(Index outerStart, Index outerSize) const;
|
||||
|
||||
DenseMatrixType toDense() const
|
||||
{
|
||||
return DenseMatrixType(derived());
|
||||
}
|
||||
|
||||
template<typename OtherDerived>
|
||||
bool isApprox(const SparseMatrixBase<OtherDerived>& other,
|
||||
const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
|
||||
|
||||
template<typename OtherDerived>
|
||||
bool isApprox(const MatrixBase<OtherDerived>& other,
|
||||
const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const
|
||||
{ return toDense().isApprox(other,prec); }
|
||||
|
||||
/** \returns the matrix or vector obtained by evaluating this expression.
|
||||
*
|
||||
* Notice that in the case of a plain matrix or vector (not an expression) this function just returns
|
||||
* a const reference, in order to avoid a useless copy.
|
||||
*/
|
||||
inline const typename internal::eval<Derived>::type eval() const
|
||||
{ return typename internal::eval<Derived>::type(derived()); }
|
||||
|
||||
Scalar sum() const;
|
||||
|
||||
inline const SparseView<Derived>
|
||||
pruned(const Scalar& reference = Scalar(0), const RealScalar& epsilon = NumTraits<Scalar>::dummy_precision()) const;
|
||||
|
||||
protected:
|
||||
|
||||
bool m_isRValue;
|
||||
|
||||
static inline StorageIndex convert_index(const Index idx) {
|
||||
return internal::convert_index<StorageIndex>(idx);
|
||||
}
|
||||
private:
|
||||
template<typename Dest> void evalTo(Dest &) const;
|
||||
};
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SPARSEMATRIXBASE_H
|
||||
178
examples/ThirdPartyLibs/Eigen/src/SparseCore/SparsePermutation.h
Normal file
178
examples/ThirdPartyLibs/Eigen/src/SparseCore/SparsePermutation.h
Normal file
@@ -0,0 +1,178 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SPARSE_PERMUTATION_H
|
||||
#define EIGEN_SPARSE_PERMUTATION_H
|
||||
|
||||
// This file implements sparse * permutation products
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename ExpressionType, int Side, bool Transposed>
|
||||
struct permutation_matrix_product<ExpressionType, Side, Transposed, SparseShape>
|
||||
{
|
||||
typedef typename nested_eval<ExpressionType, 1>::type MatrixType;
|
||||
typedef typename remove_all<MatrixType>::type MatrixTypeCleaned;
|
||||
|
||||
typedef typename MatrixTypeCleaned::Scalar Scalar;
|
||||
typedef typename MatrixTypeCleaned::StorageIndex StorageIndex;
|
||||
|
||||
enum {
|
||||
SrcStorageOrder = MatrixTypeCleaned::Flags&RowMajorBit ? RowMajor : ColMajor,
|
||||
MoveOuter = SrcStorageOrder==RowMajor ? Side==OnTheLeft : Side==OnTheRight
|
||||
};
|
||||
|
||||
typedef typename internal::conditional<MoveOuter,
|
||||
SparseMatrix<Scalar,SrcStorageOrder,StorageIndex>,
|
||||
SparseMatrix<Scalar,int(SrcStorageOrder)==RowMajor?ColMajor:RowMajor,StorageIndex> >::type ReturnType;
|
||||
|
||||
template<typename Dest,typename PermutationType>
|
||||
static inline void run(Dest& dst, const PermutationType& perm, const ExpressionType& xpr)
|
||||
{
|
||||
MatrixType mat(xpr);
|
||||
if(MoveOuter)
|
||||
{
|
||||
SparseMatrix<Scalar,SrcStorageOrder,StorageIndex> tmp(mat.rows(), mat.cols());
|
||||
Matrix<StorageIndex,Dynamic,1> sizes(mat.outerSize());
|
||||
for(Index j=0; j<mat.outerSize(); ++j)
|
||||
{
|
||||
Index jp = perm.indices().coeff(j);
|
||||
sizes[((Side==OnTheLeft) ^ Transposed) ? jp : j] = StorageIndex(mat.innerVector(((Side==OnTheRight) ^ Transposed) ? jp : j).nonZeros());
|
||||
}
|
||||
tmp.reserve(sizes);
|
||||
for(Index j=0; j<mat.outerSize(); ++j)
|
||||
{
|
||||
Index jp = perm.indices().coeff(j);
|
||||
Index jsrc = ((Side==OnTheRight) ^ Transposed) ? jp : j;
|
||||
Index jdst = ((Side==OnTheLeft) ^ Transposed) ? jp : j;
|
||||
for(typename MatrixTypeCleaned::InnerIterator it(mat,jsrc); it; ++it)
|
||||
tmp.insertByOuterInner(jdst,it.index()) = it.value();
|
||||
}
|
||||
dst = tmp;
|
||||
}
|
||||
else
|
||||
{
|
||||
SparseMatrix<Scalar,int(SrcStorageOrder)==RowMajor?ColMajor:RowMajor,StorageIndex> tmp(mat.rows(), mat.cols());
|
||||
Matrix<StorageIndex,Dynamic,1> sizes(tmp.outerSize());
|
||||
sizes.setZero();
|
||||
PermutationMatrix<Dynamic,Dynamic,StorageIndex> perm_cpy;
|
||||
if((Side==OnTheLeft) ^ Transposed)
|
||||
perm_cpy = perm;
|
||||
else
|
||||
perm_cpy = perm.transpose();
|
||||
|
||||
for(Index j=0; j<mat.outerSize(); ++j)
|
||||
for(typename MatrixTypeCleaned::InnerIterator it(mat,j); it; ++it)
|
||||
sizes[perm_cpy.indices().coeff(it.index())]++;
|
||||
tmp.reserve(sizes);
|
||||
for(Index j=0; j<mat.outerSize(); ++j)
|
||||
for(typename MatrixTypeCleaned::InnerIterator it(mat,j); it; ++it)
|
||||
tmp.insertByOuterInner(perm_cpy.indices().coeff(it.index()),j) = it.value();
|
||||
dst = tmp;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
|
||||
template <int ProductTag> struct product_promote_storage_type<Sparse, PermutationStorage, ProductTag> { typedef Sparse ret; };
|
||||
template <int ProductTag> struct product_promote_storage_type<PermutationStorage, Sparse, ProductTag> { typedef Sparse ret; };
|
||||
|
||||
// TODO, the following two overloads are only needed to define the right temporary type through
|
||||
// typename traits<permutation_sparse_matrix_product<Rhs,Lhs,OnTheRight,false> >::ReturnType
|
||||
// whereas it should be correctly handled by traits<Product<> >::PlainObject
|
||||
|
||||
template<typename Lhs, typename Rhs, int ProductTag>
|
||||
struct product_evaluator<Product<Lhs, Rhs, AliasFreeProduct>, ProductTag, PermutationShape, SparseShape>
|
||||
: public evaluator<typename permutation_matrix_product<Rhs,OnTheLeft,false,SparseShape>::ReturnType>
|
||||
{
|
||||
typedef Product<Lhs, Rhs, AliasFreeProduct> XprType;
|
||||
typedef typename permutation_matrix_product<Rhs,OnTheLeft,false,SparseShape>::ReturnType PlainObject;
|
||||
typedef evaluator<PlainObject> Base;
|
||||
|
||||
enum {
|
||||
Flags = Base::Flags | EvalBeforeNestingBit
|
||||
};
|
||||
|
||||
explicit product_evaluator(const XprType& xpr)
|
||||
: m_result(xpr.rows(), xpr.cols())
|
||||
{
|
||||
::new (static_cast<Base*>(this)) Base(m_result);
|
||||
generic_product_impl<Lhs, Rhs, PermutationShape, SparseShape, ProductTag>::evalTo(m_result, xpr.lhs(), xpr.rhs());
|
||||
}
|
||||
|
||||
protected:
|
||||
PlainObject m_result;
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, int ProductTag>
|
||||
struct product_evaluator<Product<Lhs, Rhs, AliasFreeProduct>, ProductTag, SparseShape, PermutationShape >
|
||||
: public evaluator<typename permutation_matrix_product<Lhs,OnTheRight,false,SparseShape>::ReturnType>
|
||||
{
|
||||
typedef Product<Lhs, Rhs, AliasFreeProduct> XprType;
|
||||
typedef typename permutation_matrix_product<Lhs,OnTheRight,false,SparseShape>::ReturnType PlainObject;
|
||||
typedef evaluator<PlainObject> Base;
|
||||
|
||||
enum {
|
||||
Flags = Base::Flags | EvalBeforeNestingBit
|
||||
};
|
||||
|
||||
explicit product_evaluator(const XprType& xpr)
|
||||
: m_result(xpr.rows(), xpr.cols())
|
||||
{
|
||||
::new (static_cast<Base*>(this)) Base(m_result);
|
||||
generic_product_impl<Lhs, Rhs, SparseShape, PermutationShape, ProductTag>::evalTo(m_result, xpr.lhs(), xpr.rhs());
|
||||
}
|
||||
|
||||
protected:
|
||||
PlainObject m_result;
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/** \returns the matrix with the permutation applied to the columns
|
||||
*/
|
||||
template<typename SparseDerived, typename PermDerived>
|
||||
inline const Product<SparseDerived, PermDerived, AliasFreeProduct>
|
||||
operator*(const SparseMatrixBase<SparseDerived>& matrix, const PermutationBase<PermDerived>& perm)
|
||||
{ return Product<SparseDerived, PermDerived, AliasFreeProduct>(matrix.derived(), perm.derived()); }
|
||||
|
||||
/** \returns the matrix with the permutation applied to the rows
|
||||
*/
|
||||
template<typename SparseDerived, typename PermDerived>
|
||||
inline const Product<PermDerived, SparseDerived, AliasFreeProduct>
|
||||
operator*( const PermutationBase<PermDerived>& perm, const SparseMatrixBase<SparseDerived>& matrix)
|
||||
{ return Product<PermDerived, SparseDerived, AliasFreeProduct>(perm.derived(), matrix.derived()); }
|
||||
|
||||
|
||||
/** \returns the matrix with the inverse permutation applied to the columns.
|
||||
*/
|
||||
template<typename SparseDerived, typename PermutationType>
|
||||
inline const Product<SparseDerived, Inverse<PermutationType>, AliasFreeProduct>
|
||||
operator*(const SparseMatrixBase<SparseDerived>& matrix, const InverseImpl<PermutationType, PermutationStorage>& tperm)
|
||||
{
|
||||
return Product<SparseDerived, Inverse<PermutationType>, AliasFreeProduct>(matrix.derived(), tperm.derived());
|
||||
}
|
||||
|
||||
/** \returns the matrix with the inverse permutation applied to the rows.
|
||||
*/
|
||||
template<typename SparseDerived, typename PermutationType>
|
||||
inline const Product<Inverse<PermutationType>, SparseDerived, AliasFreeProduct>
|
||||
operator*(const InverseImpl<PermutationType,PermutationStorage>& tperm, const SparseMatrixBase<SparseDerived>& matrix)
|
||||
{
|
||||
return Product<Inverse<PermutationType>, SparseDerived, AliasFreeProduct>(tperm.derived(), matrix.derived());
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SPARSE_SELFADJOINTVIEW_H
|
||||
169
examples/ThirdPartyLibs/Eigen/src/SparseCore/SparseProduct.h
Normal file
169
examples/ThirdPartyLibs/Eigen/src/SparseCore/SparseProduct.h
Normal file
@@ -0,0 +1,169 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SPARSEPRODUCT_H
|
||||
#define EIGEN_SPARSEPRODUCT_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \returns an expression of the product of two sparse matrices.
|
||||
* By default a conservative product preserving the symbolic non zeros is performed.
|
||||
* The automatic pruning of the small values can be achieved by calling the pruned() function
|
||||
* in which case a totally different product algorithm is employed:
|
||||
* \code
|
||||
* C = (A*B).pruned(); // supress numerical zeros (exact)
|
||||
* C = (A*B).pruned(ref);
|
||||
* C = (A*B).pruned(ref,epsilon);
|
||||
* \endcode
|
||||
* where \c ref is a meaningful non zero reference value.
|
||||
* */
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
inline const Product<Derived,OtherDerived,AliasFreeProduct>
|
||||
SparseMatrixBase<Derived>::operator*(const SparseMatrixBase<OtherDerived> &other) const
|
||||
{
|
||||
return Product<Derived,OtherDerived,AliasFreeProduct>(derived(), other.derived());
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
|
||||
// sparse * sparse
|
||||
template<typename Lhs, typename Rhs, int ProductType>
|
||||
struct generic_product_impl<Lhs, Rhs, SparseShape, SparseShape, ProductType>
|
||||
{
|
||||
template<typename Dest>
|
||||
static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
|
||||
{
|
||||
evalTo(dst, lhs, rhs, typename evaluator_traits<Dest>::Shape());
|
||||
}
|
||||
|
||||
// dense += sparse * sparse
|
||||
template<typename Dest,typename ActualLhs>
|
||||
static void addTo(Dest& dst, const ActualLhs& lhs, const Rhs& rhs, typename enable_if<is_same<typename evaluator_traits<Dest>::Shape,DenseShape>::value,int*>::type* = 0)
|
||||
{
|
||||
typedef typename nested_eval<ActualLhs,Dynamic>::type LhsNested;
|
||||
typedef typename nested_eval<Rhs,Dynamic>::type RhsNested;
|
||||
LhsNested lhsNested(lhs);
|
||||
RhsNested rhsNested(rhs);
|
||||
internal::sparse_sparse_to_dense_product_selector<typename remove_all<LhsNested>::type,
|
||||
typename remove_all<RhsNested>::type, Dest>::run(lhsNested,rhsNested,dst);
|
||||
}
|
||||
|
||||
// dense -= sparse * sparse
|
||||
template<typename Dest>
|
||||
static void subTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, typename enable_if<is_same<typename evaluator_traits<Dest>::Shape,DenseShape>::value,int*>::type* = 0)
|
||||
{
|
||||
addTo(dst, -lhs, rhs);
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
// sparse = sparse * sparse
|
||||
template<typename Dest>
|
||||
static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, SparseShape)
|
||||
{
|
||||
typedef typename nested_eval<Lhs,Dynamic>::type LhsNested;
|
||||
typedef typename nested_eval<Rhs,Dynamic>::type RhsNested;
|
||||
LhsNested lhsNested(lhs);
|
||||
RhsNested rhsNested(rhs);
|
||||
internal::conservative_sparse_sparse_product_selector<typename remove_all<LhsNested>::type,
|
||||
typename remove_all<RhsNested>::type, Dest>::run(lhsNested,rhsNested,dst);
|
||||
}
|
||||
|
||||
// dense = sparse * sparse
|
||||
template<typename Dest>
|
||||
static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, DenseShape)
|
||||
{
|
||||
dst.setZero();
|
||||
addTo(dst, lhs, rhs);
|
||||
}
|
||||
};
|
||||
|
||||
// sparse * sparse-triangular
|
||||
template<typename Lhs, typename Rhs, int ProductType>
|
||||
struct generic_product_impl<Lhs, Rhs, SparseShape, SparseTriangularShape, ProductType>
|
||||
: public generic_product_impl<Lhs, Rhs, SparseShape, SparseShape, ProductType>
|
||||
{};
|
||||
|
||||
// sparse-triangular * sparse
|
||||
template<typename Lhs, typename Rhs, int ProductType>
|
||||
struct generic_product_impl<Lhs, Rhs, SparseTriangularShape, SparseShape, ProductType>
|
||||
: public generic_product_impl<Lhs, Rhs, SparseShape, SparseShape, ProductType>
|
||||
{};
|
||||
|
||||
// dense = sparse-product (can be sparse*sparse, sparse*perm, etc.)
|
||||
template< typename DstXprType, typename Lhs, typename Rhs>
|
||||
struct Assignment<DstXprType, Product<Lhs,Rhs,AliasFreeProduct>, internal::assign_op<typename DstXprType::Scalar,typename Product<Lhs,Rhs,AliasFreeProduct>::Scalar>, Sparse2Dense>
|
||||
{
|
||||
typedef Product<Lhs,Rhs,AliasFreeProduct> SrcXprType;
|
||||
static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &)
|
||||
{
|
||||
Index dstRows = src.rows();
|
||||
Index dstCols = src.cols();
|
||||
if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
|
||||
dst.resize(dstRows, dstCols);
|
||||
|
||||
generic_product_impl<Lhs, Rhs>::evalTo(dst,src.lhs(),src.rhs());
|
||||
}
|
||||
};
|
||||
|
||||
// dense += sparse-product (can be sparse*sparse, sparse*perm, etc.)
|
||||
template< typename DstXprType, typename Lhs, typename Rhs>
|
||||
struct Assignment<DstXprType, Product<Lhs,Rhs,AliasFreeProduct>, internal::add_assign_op<typename DstXprType::Scalar,typename Product<Lhs,Rhs,AliasFreeProduct>::Scalar>, Sparse2Dense>
|
||||
{
|
||||
typedef Product<Lhs,Rhs,AliasFreeProduct> SrcXprType;
|
||||
static void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &)
|
||||
{
|
||||
generic_product_impl<Lhs, Rhs>::addTo(dst,src.lhs(),src.rhs());
|
||||
}
|
||||
};
|
||||
|
||||
// dense -= sparse-product (can be sparse*sparse, sparse*perm, etc.)
|
||||
template< typename DstXprType, typename Lhs, typename Rhs>
|
||||
struct Assignment<DstXprType, Product<Lhs,Rhs,AliasFreeProduct>, internal::sub_assign_op<typename DstXprType::Scalar,typename Product<Lhs,Rhs,AliasFreeProduct>::Scalar>, Sparse2Dense>
|
||||
{
|
||||
typedef Product<Lhs,Rhs,AliasFreeProduct> SrcXprType;
|
||||
static void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> &)
|
||||
{
|
||||
generic_product_impl<Lhs, Rhs>::subTo(dst,src.lhs(),src.rhs());
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, int Options>
|
||||
struct unary_evaluator<SparseView<Product<Lhs, Rhs, Options> >, IteratorBased>
|
||||
: public evaluator<typename Product<Lhs, Rhs, DefaultProduct>::PlainObject>
|
||||
{
|
||||
typedef SparseView<Product<Lhs, Rhs, Options> > XprType;
|
||||
typedef typename XprType::PlainObject PlainObject;
|
||||
typedef evaluator<PlainObject> Base;
|
||||
|
||||
explicit unary_evaluator(const XprType& xpr)
|
||||
: m_result(xpr.rows(), xpr.cols())
|
||||
{
|
||||
using std::abs;
|
||||
::new (static_cast<Base*>(this)) Base(m_result);
|
||||
typedef typename nested_eval<Lhs,Dynamic>::type LhsNested;
|
||||
typedef typename nested_eval<Rhs,Dynamic>::type RhsNested;
|
||||
LhsNested lhsNested(xpr.nestedExpression().lhs());
|
||||
RhsNested rhsNested(xpr.nestedExpression().rhs());
|
||||
|
||||
internal::sparse_sparse_product_with_pruning_selector<typename remove_all<LhsNested>::type,
|
||||
typename remove_all<RhsNested>::type, PlainObject>::run(lhsNested,rhsNested,m_result,
|
||||
abs(xpr.reference())*xpr.epsilon());
|
||||
}
|
||||
|
||||
protected:
|
||||
PlainObject m_result;
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SPARSEPRODUCT_H
|
||||
49
examples/ThirdPartyLibs/Eigen/src/SparseCore/SparseRedux.h
Normal file
49
examples/ThirdPartyLibs/Eigen/src/SparseCore/SparseRedux.h
Normal file
@@ -0,0 +1,49 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SPARSEREDUX_H
|
||||
#define EIGEN_SPARSEREDUX_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
template<typename Derived>
|
||||
typename internal::traits<Derived>::Scalar
|
||||
SparseMatrixBase<Derived>::sum() const
|
||||
{
|
||||
eigen_assert(rows()>0 && cols()>0 && "you are using a non initialized matrix");
|
||||
Scalar res(0);
|
||||
internal::evaluator<Derived> thisEval(derived());
|
||||
for (Index j=0; j<outerSize(); ++j)
|
||||
for (typename internal::evaluator<Derived>::InnerIterator iter(thisEval,j); iter; ++iter)
|
||||
res += iter.value();
|
||||
return res;
|
||||
}
|
||||
|
||||
template<typename _Scalar, int _Options, typename _Index>
|
||||
typename internal::traits<SparseMatrix<_Scalar,_Options,_Index> >::Scalar
|
||||
SparseMatrix<_Scalar,_Options,_Index>::sum() const
|
||||
{
|
||||
eigen_assert(rows()>0 && cols()>0 && "you are using a non initialized matrix");
|
||||
if(this->isCompressed())
|
||||
return Matrix<Scalar,1,Dynamic>::Map(m_data.valuePtr(), m_data.size()).sum();
|
||||
else
|
||||
return Base::sum();
|
||||
}
|
||||
|
||||
template<typename _Scalar, int _Options, typename _Index>
|
||||
typename internal::traits<SparseVector<_Scalar,_Options, _Index> >::Scalar
|
||||
SparseVector<_Scalar,_Options,_Index>::sum() const
|
||||
{
|
||||
eigen_assert(rows()>0 && cols()>0 && "you are using a non initialized matrix");
|
||||
return Matrix<Scalar,1,Dynamic>::Map(m_data.valuePtr(), m_data.size()).sum();
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SPARSEREDUX_H
|
||||
397
examples/ThirdPartyLibs/Eigen/src/SparseCore/SparseRef.h
Normal file
397
examples/ThirdPartyLibs/Eigen/src/SparseCore/SparseRef.h
Normal file
@@ -0,0 +1,397 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SPARSE_REF_H
|
||||
#define EIGEN_SPARSE_REF_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
enum {
|
||||
StandardCompressedFormat = 2 /**< used by Ref<SparseMatrix> to specify whether the input storage must be in standard compressed form */
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Derived> class SparseRefBase;
|
||||
|
||||
template<typename MatScalar, int MatOptions, typename MatIndex, int _Options, typename _StrideType>
|
||||
struct traits<Ref<SparseMatrix<MatScalar,MatOptions,MatIndex>, _Options, _StrideType> >
|
||||
: public traits<SparseMatrix<MatScalar,MatOptions,MatIndex> >
|
||||
{
|
||||
typedef SparseMatrix<MatScalar,MatOptions,MatIndex> PlainObjectType;
|
||||
enum {
|
||||
Options = _Options,
|
||||
Flags = traits<PlainObjectType>::Flags | CompressedAccessBit | NestByRefBit
|
||||
};
|
||||
|
||||
template<typename Derived> struct match {
|
||||
enum {
|
||||
StorageOrderMatch = PlainObjectType::IsVectorAtCompileTime || Derived::IsVectorAtCompileTime || ((PlainObjectType::Flags&RowMajorBit)==(Derived::Flags&RowMajorBit)),
|
||||
MatchAtCompileTime = (Derived::Flags&CompressedAccessBit) && StorageOrderMatch
|
||||
};
|
||||
typedef typename internal::conditional<MatchAtCompileTime,internal::true_type,internal::false_type>::type type;
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
template<typename MatScalar, int MatOptions, typename MatIndex, int _Options, typename _StrideType>
|
||||
struct traits<Ref<const SparseMatrix<MatScalar,MatOptions,MatIndex>, _Options, _StrideType> >
|
||||
: public traits<Ref<SparseMatrix<MatScalar,MatOptions,MatIndex>, _Options, _StrideType> >
|
||||
{
|
||||
enum {
|
||||
Flags = (traits<SparseMatrix<MatScalar,MatOptions,MatIndex> >::Flags | CompressedAccessBit | NestByRefBit) & ~LvalueBit
|
||||
};
|
||||
};
|
||||
|
||||
template<typename MatScalar, int MatOptions, typename MatIndex, int _Options, typename _StrideType>
|
||||
struct traits<Ref<SparseVector<MatScalar,MatOptions,MatIndex>, _Options, _StrideType> >
|
||||
: public traits<SparseVector<MatScalar,MatOptions,MatIndex> >
|
||||
{
|
||||
typedef SparseVector<MatScalar,MatOptions,MatIndex> PlainObjectType;
|
||||
enum {
|
||||
Options = _Options,
|
||||
Flags = traits<PlainObjectType>::Flags | CompressedAccessBit | NestByRefBit
|
||||
};
|
||||
|
||||
template<typename Derived> struct match {
|
||||
enum {
|
||||
MatchAtCompileTime = (Derived::Flags&CompressedAccessBit) && Derived::IsVectorAtCompileTime
|
||||
};
|
||||
typedef typename internal::conditional<MatchAtCompileTime,internal::true_type,internal::false_type>::type type;
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
template<typename MatScalar, int MatOptions, typename MatIndex, int _Options, typename _StrideType>
|
||||
struct traits<Ref<const SparseVector<MatScalar,MatOptions,MatIndex>, _Options, _StrideType> >
|
||||
: public traits<Ref<SparseVector<MatScalar,MatOptions,MatIndex>, _Options, _StrideType> >
|
||||
{
|
||||
enum {
|
||||
Flags = (traits<SparseVector<MatScalar,MatOptions,MatIndex> >::Flags | CompressedAccessBit | NestByRefBit) & ~LvalueBit
|
||||
};
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
struct traits<SparseRefBase<Derived> > : public traits<Derived> {};
|
||||
|
||||
template<typename Derived> class SparseRefBase
|
||||
: public SparseMapBase<Derived>
|
||||
{
|
||||
public:
|
||||
|
||||
typedef SparseMapBase<Derived> Base;
|
||||
EIGEN_SPARSE_PUBLIC_INTERFACE(SparseRefBase)
|
||||
|
||||
SparseRefBase()
|
||||
: Base(RowsAtCompileTime==Dynamic?0:RowsAtCompileTime,ColsAtCompileTime==Dynamic?0:ColsAtCompileTime, 0, 0, 0, 0, 0)
|
||||
{}
|
||||
|
||||
protected:
|
||||
|
||||
template<typename Expression>
|
||||
void construct(Expression& expr)
|
||||
{
|
||||
if(expr.outerIndexPtr()==0)
|
||||
::new (static_cast<Base*>(this)) Base(expr.size(), expr.nonZeros(), expr.innerIndexPtr(), expr.valuePtr());
|
||||
else
|
||||
::new (static_cast<Base*>(this)) Base(expr.rows(), expr.cols(), expr.nonZeros(), expr.outerIndexPtr(), expr.innerIndexPtr(), expr.valuePtr(), expr.innerNonZeroPtr());
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace internal
|
||||
|
||||
|
||||
/**
|
||||
* \ingroup SparseCore_Module
|
||||
*
|
||||
* \brief A sparse matrix expression referencing an existing sparse expression
|
||||
*
|
||||
* \tparam SparseMatrixType the equivalent sparse matrix type of the referenced data, it must be a template instance of class SparseMatrix.
|
||||
* \tparam Options specifies whether the a standard compressed format is required \c Options is \c #StandardCompressedFormat, or \c 0.
|
||||
* The default is \c 0.
|
||||
*
|
||||
* \sa class Ref
|
||||
*/
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
template<typename MatScalar, int MatOptions, typename MatIndex, int Options, typename StrideType>
|
||||
class Ref<SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType >
|
||||
: public internal::SparseRefBase<Ref<SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType > >
|
||||
#else
|
||||
template<typename SparseMatrixType, int Options>
|
||||
class Ref<SparseMatrixType, Options>
|
||||
: public SparseMapBase<Derived,WriteAccessors> // yes, that's weird to use Derived here, but that works!
|
||||
#endif
|
||||
{
|
||||
typedef SparseMatrix<MatScalar,MatOptions,MatIndex> PlainObjectType;
|
||||
typedef internal::traits<Ref> Traits;
|
||||
template<int OtherOptions>
|
||||
inline Ref(const SparseMatrix<MatScalar,OtherOptions,MatIndex>& expr);
|
||||
template<int OtherOptions>
|
||||
inline Ref(const MappedSparseMatrix<MatScalar,OtherOptions,MatIndex>& expr);
|
||||
public:
|
||||
|
||||
typedef internal::SparseRefBase<Ref> Base;
|
||||
EIGEN_SPARSE_PUBLIC_INTERFACE(Ref)
|
||||
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
template<int OtherOptions>
|
||||
inline Ref(SparseMatrix<MatScalar,OtherOptions,MatIndex>& expr)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(bool(Traits::template match<SparseMatrix<MatScalar,OtherOptions,MatIndex> >::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH);
|
||||
eigen_assert( ((Options & int(StandardCompressedFormat))==0) || (expr.isCompressed()) );
|
||||
Base::construct(expr.derived());
|
||||
}
|
||||
|
||||
template<int OtherOptions>
|
||||
inline Ref(MappedSparseMatrix<MatScalar,OtherOptions,MatIndex>& expr)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(bool(Traits::template match<SparseMatrix<MatScalar,OtherOptions,MatIndex> >::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH);
|
||||
eigen_assert( ((Options & int(StandardCompressedFormat))==0) || (expr.isCompressed()) );
|
||||
Base::construct(expr.derived());
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
inline Ref(const SparseCompressedBase<Derived>& expr)
|
||||
#else
|
||||
/** Implicit constructor from any sparse expression (2D matrix or 1D vector) */
|
||||
template<typename Derived>
|
||||
inline Ref(SparseCompressedBase<Derived>& expr)
|
||||
#endif
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(bool(internal::is_lvalue<Derived>::value), THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY);
|
||||
EIGEN_STATIC_ASSERT(bool(Traits::template match<Derived>::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH);
|
||||
eigen_assert( ((Options & int(StandardCompressedFormat))==0) || (expr.isCompressed()) );
|
||||
Base::construct(expr.const_cast_derived());
|
||||
}
|
||||
};
|
||||
|
||||
// this is the const ref version
|
||||
template<typename MatScalar, int MatOptions, typename MatIndex, int Options, typename StrideType>
|
||||
class Ref<const SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType>
|
||||
: public internal::SparseRefBase<Ref<const SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> >
|
||||
{
|
||||
typedef SparseMatrix<MatScalar,MatOptions,MatIndex> TPlainObjectType;
|
||||
typedef internal::traits<Ref> Traits;
|
||||
public:
|
||||
|
||||
typedef internal::SparseRefBase<Ref> Base;
|
||||
EIGEN_SPARSE_PUBLIC_INTERFACE(Ref)
|
||||
|
||||
template<typename Derived>
|
||||
inline Ref(const SparseMatrixBase<Derived>& expr) : m_hasCopy(false)
|
||||
{
|
||||
construct(expr.derived(), typename Traits::template match<Derived>::type());
|
||||
}
|
||||
|
||||
inline Ref(const Ref& other) : Base(other), m_hasCopy(false) {
|
||||
// copy constructor shall not copy the m_object, to avoid unnecessary malloc and copy
|
||||
}
|
||||
|
||||
template<typename OtherRef>
|
||||
inline Ref(const RefBase<OtherRef>& other) : m_hasCopy(false) {
|
||||
construct(other.derived(), typename Traits::template match<OtherRef>::type());
|
||||
}
|
||||
|
||||
~Ref() {
|
||||
if(m_hasCopy) {
|
||||
TPlainObjectType* obj = reinterpret_cast<TPlainObjectType*>(m_object_bytes);
|
||||
obj->~TPlainObjectType();
|
||||
}
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
template<typename Expression>
|
||||
void construct(const Expression& expr,internal::true_type)
|
||||
{
|
||||
if((Options & int(StandardCompressedFormat)) && (!expr.isCompressed()))
|
||||
{
|
||||
TPlainObjectType* obj = reinterpret_cast<TPlainObjectType*>(m_object_bytes);
|
||||
::new (obj) TPlainObjectType(expr);
|
||||
m_hasCopy = true;
|
||||
Base::construct(*obj);
|
||||
}
|
||||
else
|
||||
{
|
||||
Base::construct(expr);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename Expression>
|
||||
void construct(const Expression& expr, internal::false_type)
|
||||
{
|
||||
TPlainObjectType* obj = reinterpret_cast<TPlainObjectType*>(m_object_bytes);
|
||||
::new (obj) TPlainObjectType(expr);
|
||||
m_hasCopy = true;
|
||||
Base::construct(*obj);
|
||||
}
|
||||
|
||||
protected:
|
||||
char m_object_bytes[sizeof(TPlainObjectType)];
|
||||
bool m_hasCopy;
|
||||
};
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* \ingroup SparseCore_Module
|
||||
*
|
||||
* \brief A sparse vector expression referencing an existing sparse vector expression
|
||||
*
|
||||
* \tparam SparseVectorType the equivalent sparse vector type of the referenced data, it must be a template instance of class SparseVector.
|
||||
*
|
||||
* \sa class Ref
|
||||
*/
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
template<typename MatScalar, int MatOptions, typename MatIndex, int Options, typename StrideType>
|
||||
class Ref<SparseVector<MatScalar,MatOptions,MatIndex>, Options, StrideType >
|
||||
: public internal::SparseRefBase<Ref<SparseVector<MatScalar,MatOptions,MatIndex>, Options, StrideType > >
|
||||
#else
|
||||
template<typename SparseVectorType>
|
||||
class Ref<SparseVectorType>
|
||||
: public SparseMapBase<Derived,WriteAccessors>
|
||||
#endif
|
||||
{
|
||||
typedef SparseVector<MatScalar,MatOptions,MatIndex> PlainObjectType;
|
||||
typedef internal::traits<Ref> Traits;
|
||||
template<int OtherOptions>
|
||||
inline Ref(const SparseVector<MatScalar,OtherOptions,MatIndex>& expr);
|
||||
public:
|
||||
|
||||
typedef internal::SparseRefBase<Ref> Base;
|
||||
EIGEN_SPARSE_PUBLIC_INTERFACE(Ref)
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
template<int OtherOptions>
|
||||
inline Ref(SparseVector<MatScalar,OtherOptions,MatIndex>& expr)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(bool(Traits::template match<SparseVector<MatScalar,OtherOptions,MatIndex> >::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH);
|
||||
Base::construct(expr.derived());
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
inline Ref(const SparseCompressedBase<Derived>& expr)
|
||||
#else
|
||||
/** Implicit constructor from any 1D sparse vector expression */
|
||||
template<typename Derived>
|
||||
inline Ref(SparseCompressedBase<Derived>& expr)
|
||||
#endif
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(bool(internal::is_lvalue<Derived>::value), THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY);
|
||||
EIGEN_STATIC_ASSERT(bool(Traits::template match<Derived>::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH);
|
||||
Base::construct(expr.const_cast_derived());
|
||||
}
|
||||
};
|
||||
|
||||
// this is the const ref version
|
||||
template<typename MatScalar, int MatOptions, typename MatIndex, int Options, typename StrideType>
|
||||
class Ref<const SparseVector<MatScalar,MatOptions,MatIndex>, Options, StrideType>
|
||||
: public internal::SparseRefBase<Ref<const SparseVector<MatScalar,MatOptions,MatIndex>, Options, StrideType> >
|
||||
{
|
||||
typedef SparseVector<MatScalar,MatOptions,MatIndex> TPlainObjectType;
|
||||
typedef internal::traits<Ref> Traits;
|
||||
public:
|
||||
|
||||
typedef internal::SparseRefBase<Ref> Base;
|
||||
EIGEN_SPARSE_PUBLIC_INTERFACE(Ref)
|
||||
|
||||
template<typename Derived>
|
||||
inline Ref(const SparseMatrixBase<Derived>& expr) : m_hasCopy(false)
|
||||
{
|
||||
construct(expr.derived(), typename Traits::template match<Derived>::type());
|
||||
}
|
||||
|
||||
inline Ref(const Ref& other) : Base(other), m_hasCopy(false) {
|
||||
// copy constructor shall not copy the m_object, to avoid unnecessary malloc and copy
|
||||
}
|
||||
|
||||
template<typename OtherRef>
|
||||
inline Ref(const RefBase<OtherRef>& other) : m_hasCopy(false) {
|
||||
construct(other.derived(), typename Traits::template match<OtherRef>::type());
|
||||
}
|
||||
|
||||
~Ref() {
|
||||
if(m_hasCopy) {
|
||||
TPlainObjectType* obj = reinterpret_cast<TPlainObjectType*>(m_object_bytes);
|
||||
obj->~TPlainObjectType();
|
||||
}
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
template<typename Expression>
|
||||
void construct(const Expression& expr,internal::true_type)
|
||||
{
|
||||
Base::construct(expr);
|
||||
}
|
||||
|
||||
template<typename Expression>
|
||||
void construct(const Expression& expr, internal::false_type)
|
||||
{
|
||||
TPlainObjectType* obj = reinterpret_cast<TPlainObjectType*>(m_object_bytes);
|
||||
::new (obj) TPlainObjectType(expr);
|
||||
m_hasCopy = true;
|
||||
Base::construct(*obj);
|
||||
}
|
||||
|
||||
protected:
|
||||
char m_object_bytes[sizeof(TPlainObjectType)];
|
||||
bool m_hasCopy;
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
// FIXME shall we introduce a general evaluatior_ref that we can specialize for any sparse object once, and thus remove this copy-pasta thing...
|
||||
|
||||
template<typename MatScalar, int MatOptions, typename MatIndex, int Options, typename StrideType>
|
||||
struct evaluator<Ref<SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> >
|
||||
: evaluator<SparseCompressedBase<Ref<SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> > >
|
||||
{
|
||||
typedef evaluator<SparseCompressedBase<Ref<SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> > > Base;
|
||||
typedef Ref<SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> XprType;
|
||||
evaluator() : Base() {}
|
||||
explicit evaluator(const XprType &mat) : Base(mat) {}
|
||||
};
|
||||
|
||||
template<typename MatScalar, int MatOptions, typename MatIndex, int Options, typename StrideType>
|
||||
struct evaluator<Ref<const SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> >
|
||||
: evaluator<SparseCompressedBase<Ref<const SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> > >
|
||||
{
|
||||
typedef evaluator<SparseCompressedBase<Ref<const SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> > > Base;
|
||||
typedef Ref<const SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> XprType;
|
||||
evaluator() : Base() {}
|
||||
explicit evaluator(const XprType &mat) : Base(mat) {}
|
||||
};
|
||||
|
||||
template<typename MatScalar, int MatOptions, typename MatIndex, int Options, typename StrideType>
|
||||
struct evaluator<Ref<SparseVector<MatScalar,MatOptions,MatIndex>, Options, StrideType> >
|
||||
: evaluator<SparseCompressedBase<Ref<SparseVector<MatScalar,MatOptions,MatIndex>, Options, StrideType> > >
|
||||
{
|
||||
typedef evaluator<SparseCompressedBase<Ref<SparseVector<MatScalar,MatOptions,MatIndex>, Options, StrideType> > > Base;
|
||||
typedef Ref<SparseVector<MatScalar,MatOptions,MatIndex>, Options, StrideType> XprType;
|
||||
evaluator() : Base() {}
|
||||
explicit evaluator(const XprType &mat) : Base(mat) {}
|
||||
};
|
||||
|
||||
template<typename MatScalar, int MatOptions, typename MatIndex, int Options, typename StrideType>
|
||||
struct evaluator<Ref<const SparseVector<MatScalar,MatOptions,MatIndex>, Options, StrideType> >
|
||||
: evaluator<SparseCompressedBase<Ref<const SparseVector<MatScalar,MatOptions,MatIndex>, Options, StrideType> > >
|
||||
{
|
||||
typedef evaluator<SparseCompressedBase<Ref<const SparseVector<MatScalar,MatOptions,MatIndex>, Options, StrideType> > > Base;
|
||||
typedef Ref<const SparseVector<MatScalar,MatOptions,MatIndex>, Options, StrideType> XprType;
|
||||
evaluator() : Base() {}
|
||||
explicit evaluator(const XprType &mat) : Base(mat) {}
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SPARSE_REF_H
|
||||
@@ -0,0 +1,656 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SPARSE_SELFADJOINTVIEW_H
|
||||
#define EIGEN_SPARSE_SELFADJOINTVIEW_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \ingroup SparseCore_Module
|
||||
* \class SparseSelfAdjointView
|
||||
*
|
||||
* \brief Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix.
|
||||
*
|
||||
* \param MatrixType the type of the dense matrix storing the coefficients
|
||||
* \param Mode can be either \c #Lower or \c #Upper
|
||||
*
|
||||
* This class is an expression of a sefladjoint matrix from a triangular part of a matrix
|
||||
* with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView()
|
||||
* and most of the time this is the only way that it is used.
|
||||
*
|
||||
* \sa SparseMatrixBase::selfadjointView()
|
||||
*/
|
||||
namespace internal {
|
||||
|
||||
template<typename MatrixType, unsigned int Mode>
|
||||
struct traits<SparseSelfAdjointView<MatrixType,Mode> > : traits<MatrixType> {
|
||||
};
|
||||
|
||||
template<int SrcMode,int DstMode,typename MatrixType,int DestOrder>
|
||||
void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm = 0);
|
||||
|
||||
template<int Mode,typename MatrixType,int DestOrder>
|
||||
void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm = 0);
|
||||
|
||||
}
|
||||
|
||||
template<typename MatrixType, unsigned int _Mode> class SparseSelfAdjointView
|
||||
: public EigenBase<SparseSelfAdjointView<MatrixType,_Mode> >
|
||||
{
|
||||
public:
|
||||
|
||||
enum {
|
||||
Mode = _Mode,
|
||||
TransposeMode = ((Mode & Upper) ? Lower : 0) | ((Mode & Lower) ? Upper : 0),
|
||||
RowsAtCompileTime = internal::traits<SparseSelfAdjointView>::RowsAtCompileTime,
|
||||
ColsAtCompileTime = internal::traits<SparseSelfAdjointView>::ColsAtCompileTime
|
||||
};
|
||||
|
||||
typedef EigenBase<SparseSelfAdjointView> Base;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::StorageIndex StorageIndex;
|
||||
typedef Matrix<StorageIndex,Dynamic,1> VectorI;
|
||||
typedef typename internal::ref_selector<MatrixType>::non_const_type MatrixTypeNested;
|
||||
typedef typename internal::remove_all<MatrixTypeNested>::type _MatrixTypeNested;
|
||||
|
||||
explicit inline SparseSelfAdjointView(MatrixType& matrix) : m_matrix(matrix)
|
||||
{
|
||||
eigen_assert(rows()==cols() && "SelfAdjointView is only for squared matrices");
|
||||
}
|
||||
|
||||
inline Index rows() const { return m_matrix.rows(); }
|
||||
inline Index cols() const { return m_matrix.cols(); }
|
||||
|
||||
/** \internal \returns a reference to the nested matrix */
|
||||
const _MatrixTypeNested& matrix() const { return m_matrix; }
|
||||
typename internal::remove_reference<MatrixTypeNested>::type& matrix() { return m_matrix; }
|
||||
|
||||
/** \returns an expression of the matrix product between a sparse self-adjoint matrix \c *this and a sparse matrix \a rhs.
|
||||
*
|
||||
* Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product.
|
||||
* Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product.
|
||||
*/
|
||||
template<typename OtherDerived>
|
||||
Product<SparseSelfAdjointView, OtherDerived>
|
||||
operator*(const SparseMatrixBase<OtherDerived>& rhs) const
|
||||
{
|
||||
return Product<SparseSelfAdjointView, OtherDerived>(*this, rhs.derived());
|
||||
}
|
||||
|
||||
/** \returns an expression of the matrix product between a sparse matrix \a lhs and a sparse self-adjoint matrix \a rhs.
|
||||
*
|
||||
* Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product.
|
||||
* Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product.
|
||||
*/
|
||||
template<typename OtherDerived> friend
|
||||
Product<OtherDerived, SparseSelfAdjointView>
|
||||
operator*(const SparseMatrixBase<OtherDerived>& lhs, const SparseSelfAdjointView& rhs)
|
||||
{
|
||||
return Product<OtherDerived, SparseSelfAdjointView>(lhs.derived(), rhs);
|
||||
}
|
||||
|
||||
/** Efficient sparse self-adjoint matrix times dense vector/matrix product */
|
||||
template<typename OtherDerived>
|
||||
Product<SparseSelfAdjointView,OtherDerived>
|
||||
operator*(const MatrixBase<OtherDerived>& rhs) const
|
||||
{
|
||||
return Product<SparseSelfAdjointView,OtherDerived>(*this, rhs.derived());
|
||||
}
|
||||
|
||||
/** Efficient dense vector/matrix times sparse self-adjoint matrix product */
|
||||
template<typename OtherDerived> friend
|
||||
Product<OtherDerived,SparseSelfAdjointView>
|
||||
operator*(const MatrixBase<OtherDerived>& lhs, const SparseSelfAdjointView& rhs)
|
||||
{
|
||||
return Product<OtherDerived,SparseSelfAdjointView>(lhs.derived(), rhs);
|
||||
}
|
||||
|
||||
/** Perform a symmetric rank K update of the selfadjoint matrix \c *this:
|
||||
* \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix.
|
||||
*
|
||||
* \returns a reference to \c *this
|
||||
*
|
||||
* To perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply
|
||||
* call this function with u.adjoint().
|
||||
*/
|
||||
template<typename DerivedU>
|
||||
SparseSelfAdjointView& rankUpdate(const SparseMatrixBase<DerivedU>& u, const Scalar& alpha = Scalar(1));
|
||||
|
||||
/** \returns an expression of P H P^-1 */
|
||||
// TODO implement twists in a more evaluator friendly fashion
|
||||
SparseSymmetricPermutationProduct<_MatrixTypeNested,Mode> twistedBy(const PermutationMatrix<Dynamic,Dynamic,StorageIndex>& perm) const
|
||||
{
|
||||
return SparseSymmetricPermutationProduct<_MatrixTypeNested,Mode>(m_matrix, perm);
|
||||
}
|
||||
|
||||
template<typename SrcMatrixType,int SrcMode>
|
||||
SparseSelfAdjointView& operator=(const SparseSymmetricPermutationProduct<SrcMatrixType,SrcMode>& permutedMatrix)
|
||||
{
|
||||
internal::call_assignment_no_alias_no_transpose(*this, permutedMatrix);
|
||||
return *this;
|
||||
}
|
||||
|
||||
SparseSelfAdjointView& operator=(const SparseSelfAdjointView& src)
|
||||
{
|
||||
PermutationMatrix<Dynamic,Dynamic,StorageIndex> pnull;
|
||||
return *this = src.twistedBy(pnull);
|
||||
}
|
||||
|
||||
template<typename SrcMatrixType,unsigned int SrcMode>
|
||||
SparseSelfAdjointView& operator=(const SparseSelfAdjointView<SrcMatrixType,SrcMode>& src)
|
||||
{
|
||||
PermutationMatrix<Dynamic,Dynamic,StorageIndex> pnull;
|
||||
return *this = src.twistedBy(pnull);
|
||||
}
|
||||
|
||||
void resize(Index rows, Index cols)
|
||||
{
|
||||
EIGEN_ONLY_USED_FOR_DEBUG(rows);
|
||||
EIGEN_ONLY_USED_FOR_DEBUG(cols);
|
||||
eigen_assert(rows == this->rows() && cols == this->cols()
|
||||
&& "SparseSelfadjointView::resize() does not actually allow to resize.");
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
MatrixTypeNested m_matrix;
|
||||
//mutable VectorI m_countPerRow;
|
||||
//mutable VectorI m_countPerCol;
|
||||
private:
|
||||
template<typename Dest> void evalTo(Dest &) const;
|
||||
};
|
||||
|
||||
/***************************************************************************
|
||||
* Implementation of SparseMatrixBase methods
|
||||
***************************************************************************/
|
||||
|
||||
template<typename Derived>
|
||||
template<unsigned int UpLo>
|
||||
typename SparseMatrixBase<Derived>::template ConstSelfAdjointViewReturnType<UpLo>::Type SparseMatrixBase<Derived>::selfadjointView() const
|
||||
{
|
||||
return SparseSelfAdjointView<const Derived, UpLo>(derived());
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
template<unsigned int UpLo>
|
||||
typename SparseMatrixBase<Derived>::template SelfAdjointViewReturnType<UpLo>::Type SparseMatrixBase<Derived>::selfadjointView()
|
||||
{
|
||||
return SparseSelfAdjointView<Derived, UpLo>(derived());
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* Implementation of SparseSelfAdjointView methods
|
||||
***************************************************************************/
|
||||
|
||||
template<typename MatrixType, unsigned int Mode>
|
||||
template<typename DerivedU>
|
||||
SparseSelfAdjointView<MatrixType,Mode>&
|
||||
SparseSelfAdjointView<MatrixType,Mode>::rankUpdate(const SparseMatrixBase<DerivedU>& u, const Scalar& alpha)
|
||||
{
|
||||
SparseMatrix<Scalar,(MatrixType::Flags&RowMajorBit)?RowMajor:ColMajor> tmp = u * u.adjoint();
|
||||
if(alpha==Scalar(0))
|
||||
m_matrix = tmp.template triangularView<Mode>();
|
||||
else
|
||||
m_matrix += alpha * tmp.template triangularView<Mode>();
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
|
||||
// TODO currently a selfadjoint expression has the form SelfAdjointView<.,.>
|
||||
// in the future selfadjoint-ness should be defined by the expression traits
|
||||
// such that Transpose<SelfAdjointView<.,.> > is valid. (currently TriangularBase::transpose() is overloaded to make it work)
|
||||
template<typename MatrixType, unsigned int Mode>
|
||||
struct evaluator_traits<SparseSelfAdjointView<MatrixType,Mode> >
|
||||
{
|
||||
typedef typename storage_kind_to_evaluator_kind<typename MatrixType::StorageKind>::Kind Kind;
|
||||
typedef SparseSelfAdjointShape Shape;
|
||||
};
|
||||
|
||||
struct SparseSelfAdjoint2Sparse {};
|
||||
|
||||
template<> struct AssignmentKind<SparseShape,SparseSelfAdjointShape> { typedef SparseSelfAdjoint2Sparse Kind; };
|
||||
template<> struct AssignmentKind<SparseSelfAdjointShape,SparseShape> { typedef Sparse2Sparse Kind; };
|
||||
|
||||
template< typename DstXprType, typename SrcXprType, typename Functor>
|
||||
struct Assignment<DstXprType, SrcXprType, Functor, SparseSelfAdjoint2Sparse>
|
||||
{
|
||||
typedef typename DstXprType::StorageIndex StorageIndex;
|
||||
typedef internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> AssignOpType;
|
||||
|
||||
template<typename DestScalar,int StorageOrder>
|
||||
static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src, const AssignOpType&/*func*/)
|
||||
{
|
||||
internal::permute_symm_to_fullsymm<SrcXprType::Mode>(src.matrix(), dst);
|
||||
}
|
||||
|
||||
// FIXME: the handling of += and -= in sparse matrices should be cleanup so that next two overloads could be reduced to:
|
||||
template<typename DestScalar,int StorageOrder,typename AssignFunc>
|
||||
static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src, const AssignFunc& func)
|
||||
{
|
||||
SparseMatrix<DestScalar,StorageOrder,StorageIndex> tmp(src.rows(),src.cols());
|
||||
run(tmp, src, AssignOpType());
|
||||
call_assignment_no_alias_no_transpose(dst, tmp, func);
|
||||
}
|
||||
|
||||
template<typename DestScalar,int StorageOrder>
|
||||
static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src,
|
||||
const internal::add_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>& /* func */)
|
||||
{
|
||||
SparseMatrix<DestScalar,StorageOrder,StorageIndex> tmp(src.rows(),src.cols());
|
||||
run(tmp, src, AssignOpType());
|
||||
dst += tmp;
|
||||
}
|
||||
|
||||
template<typename DestScalar,int StorageOrder>
|
||||
static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src,
|
||||
const internal::sub_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>& /* func */)
|
||||
{
|
||||
SparseMatrix<DestScalar,StorageOrder,StorageIndex> tmp(src.rows(),src.cols());
|
||||
run(tmp, src, AssignOpType());
|
||||
dst -= tmp;
|
||||
}
|
||||
|
||||
template<typename DestScalar>
|
||||
static void run(DynamicSparseMatrix<DestScalar,ColMajor,StorageIndex>& dst, const SrcXprType &src, const AssignOpType&/*func*/)
|
||||
{
|
||||
// TODO directly evaluate into dst;
|
||||
SparseMatrix<DestScalar,ColMajor,StorageIndex> tmp(dst.rows(),dst.cols());
|
||||
internal::permute_symm_to_fullsymm<SrcXprType::Mode>(src.matrix(), tmp);
|
||||
dst = tmp;
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/***************************************************************************
|
||||
* Implementation of sparse self-adjoint time dense matrix
|
||||
***************************************************************************/
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<int Mode, typename SparseLhsType, typename DenseRhsType, typename DenseResType, typename AlphaType>
|
||||
inline void sparse_selfadjoint_time_dense_product(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const AlphaType& alpha)
|
||||
{
|
||||
EIGEN_ONLY_USED_FOR_DEBUG(alpha);
|
||||
|
||||
typedef typename internal::nested_eval<SparseLhsType,DenseRhsType::MaxColsAtCompileTime>::type SparseLhsTypeNested;
|
||||
typedef typename internal::remove_all<SparseLhsTypeNested>::type SparseLhsTypeNestedCleaned;
|
||||
typedef evaluator<SparseLhsTypeNestedCleaned> LhsEval;
|
||||
typedef typename LhsEval::InnerIterator LhsIterator;
|
||||
typedef typename SparseLhsType::Scalar LhsScalar;
|
||||
|
||||
enum {
|
||||
LhsIsRowMajor = (LhsEval::Flags&RowMajorBit)==RowMajorBit,
|
||||
ProcessFirstHalf =
|
||||
((Mode&(Upper|Lower))==(Upper|Lower))
|
||||
|| ( (Mode&Upper) && !LhsIsRowMajor)
|
||||
|| ( (Mode&Lower) && LhsIsRowMajor),
|
||||
ProcessSecondHalf = !ProcessFirstHalf
|
||||
};
|
||||
|
||||
SparseLhsTypeNested lhs_nested(lhs);
|
||||
LhsEval lhsEval(lhs_nested);
|
||||
|
||||
// work on one column at once
|
||||
for (Index k=0; k<rhs.cols(); ++k)
|
||||
{
|
||||
for (Index j=0; j<lhs.outerSize(); ++j)
|
||||
{
|
||||
LhsIterator i(lhsEval,j);
|
||||
// handle diagonal coeff
|
||||
if (ProcessSecondHalf)
|
||||
{
|
||||
while (i && i.index()<j) ++i;
|
||||
if(i && i.index()==j)
|
||||
{
|
||||
res(j,k) += alpha * i.value() * rhs(j,k);
|
||||
++i;
|
||||
}
|
||||
}
|
||||
|
||||
// premultiplied rhs for scatters
|
||||
typename ScalarBinaryOpTraits<AlphaType, typename DenseRhsType::Scalar>::ReturnType rhs_j(alpha*rhs(j,k));
|
||||
// accumulator for partial scalar product
|
||||
typename DenseResType::Scalar res_j(0);
|
||||
for(; (ProcessFirstHalf ? i && i.index() < j : i) ; ++i)
|
||||
{
|
||||
LhsScalar lhs_ij = i.value();
|
||||
if(!LhsIsRowMajor) lhs_ij = numext::conj(lhs_ij);
|
||||
res_j += lhs_ij * rhs(i.index(),k);
|
||||
res(i.index(),k) += numext::conj(lhs_ij) * rhs_j;
|
||||
}
|
||||
res(j,k) += alpha * res_j;
|
||||
|
||||
// handle diagonal coeff
|
||||
if (ProcessFirstHalf && i && (i.index()==j))
|
||||
res(j,k) += alpha * i.value() * rhs(j,k);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template<typename LhsView, typename Rhs, int ProductType>
|
||||
struct generic_product_impl<LhsView, Rhs, SparseSelfAdjointShape, DenseShape, ProductType>
|
||||
: generic_product_impl_base<LhsView, Rhs, generic_product_impl<LhsView, Rhs, SparseSelfAdjointShape, DenseShape, ProductType> >
|
||||
{
|
||||
template<typename Dest>
|
||||
static void scaleAndAddTo(Dest& dst, const LhsView& lhsView, const Rhs& rhs, const typename Dest::Scalar& alpha)
|
||||
{
|
||||
typedef typename LhsView::_MatrixTypeNested Lhs;
|
||||
typedef typename nested_eval<Lhs,Dynamic>::type LhsNested;
|
||||
typedef typename nested_eval<Rhs,Dynamic>::type RhsNested;
|
||||
LhsNested lhsNested(lhsView.matrix());
|
||||
RhsNested rhsNested(rhs);
|
||||
|
||||
internal::sparse_selfadjoint_time_dense_product<LhsView::Mode>(lhsNested, rhsNested, dst, alpha);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename RhsView, int ProductType>
|
||||
struct generic_product_impl<Lhs, RhsView, DenseShape, SparseSelfAdjointShape, ProductType>
|
||||
: generic_product_impl_base<Lhs, RhsView, generic_product_impl<Lhs, RhsView, DenseShape, SparseSelfAdjointShape, ProductType> >
|
||||
{
|
||||
template<typename Dest>
|
||||
static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const RhsView& rhsView, const typename Dest::Scalar& alpha)
|
||||
{
|
||||
typedef typename RhsView::_MatrixTypeNested Rhs;
|
||||
typedef typename nested_eval<Lhs,Dynamic>::type LhsNested;
|
||||
typedef typename nested_eval<Rhs,Dynamic>::type RhsNested;
|
||||
LhsNested lhsNested(lhs);
|
||||
RhsNested rhsNested(rhsView.matrix());
|
||||
|
||||
// transpose everything
|
||||
Transpose<Dest> dstT(dst);
|
||||
internal::sparse_selfadjoint_time_dense_product<RhsView::TransposeMode>(rhsNested.transpose(), lhsNested.transpose(), dstT, alpha);
|
||||
}
|
||||
};
|
||||
|
||||
// NOTE: these two overloads are needed to evaluate the sparse selfadjoint view into a full sparse matrix
|
||||
// TODO: maybe the copy could be handled by generic_product_impl so that these overloads would not be needed anymore
|
||||
|
||||
template<typename LhsView, typename Rhs, int ProductTag>
|
||||
struct product_evaluator<Product<LhsView, Rhs, DefaultProduct>, ProductTag, SparseSelfAdjointShape, SparseShape>
|
||||
: public evaluator<typename Product<typename Rhs::PlainObject, Rhs, DefaultProduct>::PlainObject>
|
||||
{
|
||||
typedef Product<LhsView, Rhs, DefaultProduct> XprType;
|
||||
typedef typename XprType::PlainObject PlainObject;
|
||||
typedef evaluator<PlainObject> Base;
|
||||
|
||||
product_evaluator(const XprType& xpr)
|
||||
: m_lhs(xpr.lhs()), m_result(xpr.rows(), xpr.cols())
|
||||
{
|
||||
::new (static_cast<Base*>(this)) Base(m_result);
|
||||
generic_product_impl<typename Rhs::PlainObject, Rhs, SparseShape, SparseShape, ProductTag>::evalTo(m_result, m_lhs, xpr.rhs());
|
||||
}
|
||||
|
||||
protected:
|
||||
typename Rhs::PlainObject m_lhs;
|
||||
PlainObject m_result;
|
||||
};
|
||||
|
||||
template<typename Lhs, typename RhsView, int ProductTag>
|
||||
struct product_evaluator<Product<Lhs, RhsView, DefaultProduct>, ProductTag, SparseShape, SparseSelfAdjointShape>
|
||||
: public evaluator<typename Product<Lhs, typename Lhs::PlainObject, DefaultProduct>::PlainObject>
|
||||
{
|
||||
typedef Product<Lhs, RhsView, DefaultProduct> XprType;
|
||||
typedef typename XprType::PlainObject PlainObject;
|
||||
typedef evaluator<PlainObject> Base;
|
||||
|
||||
product_evaluator(const XprType& xpr)
|
||||
: m_rhs(xpr.rhs()), m_result(xpr.rows(), xpr.cols())
|
||||
{
|
||||
::new (static_cast<Base*>(this)) Base(m_result);
|
||||
generic_product_impl<Lhs, typename Lhs::PlainObject, SparseShape, SparseShape, ProductTag>::evalTo(m_result, xpr.lhs(), m_rhs);
|
||||
}
|
||||
|
||||
protected:
|
||||
typename Lhs::PlainObject m_rhs;
|
||||
PlainObject m_result;
|
||||
};
|
||||
|
||||
} // namespace internal
|
||||
|
||||
/***************************************************************************
|
||||
* Implementation of symmetric copies and permutations
|
||||
***************************************************************************/
|
||||
namespace internal {
|
||||
|
||||
template<int Mode,typename MatrixType,int DestOrder>
|
||||
void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm)
|
||||
{
|
||||
typedef typename MatrixType::StorageIndex StorageIndex;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef SparseMatrix<Scalar,DestOrder,StorageIndex> Dest;
|
||||
typedef Matrix<StorageIndex,Dynamic,1> VectorI;
|
||||
typedef evaluator<MatrixType> MatEval;
|
||||
typedef typename evaluator<MatrixType>::InnerIterator MatIterator;
|
||||
|
||||
MatEval matEval(mat);
|
||||
Dest& dest(_dest.derived());
|
||||
enum {
|
||||
StorageOrderMatch = int(Dest::IsRowMajor) == int(MatrixType::IsRowMajor)
|
||||
};
|
||||
|
||||
Index size = mat.rows();
|
||||
VectorI count;
|
||||
count.resize(size);
|
||||
count.setZero();
|
||||
dest.resize(size,size);
|
||||
for(Index j = 0; j<size; ++j)
|
||||
{
|
||||
Index jp = perm ? perm[j] : j;
|
||||
for(MatIterator it(matEval,j); it; ++it)
|
||||
{
|
||||
Index i = it.index();
|
||||
Index r = it.row();
|
||||
Index c = it.col();
|
||||
Index ip = perm ? perm[i] : i;
|
||||
if(Mode==(Upper|Lower))
|
||||
count[StorageOrderMatch ? jp : ip]++;
|
||||
else if(r==c)
|
||||
count[ip]++;
|
||||
else if(( Mode==Lower && r>c) || ( Mode==Upper && r<c))
|
||||
{
|
||||
count[ip]++;
|
||||
count[jp]++;
|
||||
}
|
||||
}
|
||||
}
|
||||
Index nnz = count.sum();
|
||||
|
||||
// reserve space
|
||||
dest.resizeNonZeros(nnz);
|
||||
dest.outerIndexPtr()[0] = 0;
|
||||
for(Index j=0; j<size; ++j)
|
||||
dest.outerIndexPtr()[j+1] = dest.outerIndexPtr()[j] + count[j];
|
||||
for(Index j=0; j<size; ++j)
|
||||
count[j] = dest.outerIndexPtr()[j];
|
||||
|
||||
// copy data
|
||||
for(StorageIndex j = 0; j<size; ++j)
|
||||
{
|
||||
for(MatIterator it(matEval,j); it; ++it)
|
||||
{
|
||||
StorageIndex i = internal::convert_index<StorageIndex>(it.index());
|
||||
Index r = it.row();
|
||||
Index c = it.col();
|
||||
|
||||
StorageIndex jp = perm ? perm[j] : j;
|
||||
StorageIndex ip = perm ? perm[i] : i;
|
||||
|
||||
if(Mode==(Upper|Lower))
|
||||
{
|
||||
Index k = count[StorageOrderMatch ? jp : ip]++;
|
||||
dest.innerIndexPtr()[k] = StorageOrderMatch ? ip : jp;
|
||||
dest.valuePtr()[k] = it.value();
|
||||
}
|
||||
else if(r==c)
|
||||
{
|
||||
Index k = count[ip]++;
|
||||
dest.innerIndexPtr()[k] = ip;
|
||||
dest.valuePtr()[k] = it.value();
|
||||
}
|
||||
else if(( (Mode&Lower)==Lower && r>c) || ( (Mode&Upper)==Upper && r<c))
|
||||
{
|
||||
if(!StorageOrderMatch)
|
||||
std::swap(ip,jp);
|
||||
Index k = count[jp]++;
|
||||
dest.innerIndexPtr()[k] = ip;
|
||||
dest.valuePtr()[k] = it.value();
|
||||
k = count[ip]++;
|
||||
dest.innerIndexPtr()[k] = jp;
|
||||
dest.valuePtr()[k] = numext::conj(it.value());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<int _SrcMode,int _DstMode,typename MatrixType,int DstOrder>
|
||||
void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DstOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm)
|
||||
{
|
||||
typedef typename MatrixType::StorageIndex StorageIndex;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
SparseMatrix<Scalar,DstOrder,StorageIndex>& dest(_dest.derived());
|
||||
typedef Matrix<StorageIndex,Dynamic,1> VectorI;
|
||||
typedef evaluator<MatrixType> MatEval;
|
||||
typedef typename evaluator<MatrixType>::InnerIterator MatIterator;
|
||||
|
||||
enum {
|
||||
SrcOrder = MatrixType::IsRowMajor ? RowMajor : ColMajor,
|
||||
StorageOrderMatch = int(SrcOrder) == int(DstOrder),
|
||||
DstMode = DstOrder==RowMajor ? (_DstMode==Upper ? Lower : Upper) : _DstMode,
|
||||
SrcMode = SrcOrder==RowMajor ? (_SrcMode==Upper ? Lower : Upper) : _SrcMode
|
||||
};
|
||||
|
||||
MatEval matEval(mat);
|
||||
|
||||
Index size = mat.rows();
|
||||
VectorI count(size);
|
||||
count.setZero();
|
||||
dest.resize(size,size);
|
||||
for(StorageIndex j = 0; j<size; ++j)
|
||||
{
|
||||
StorageIndex jp = perm ? perm[j] : j;
|
||||
for(MatIterator it(matEval,j); it; ++it)
|
||||
{
|
||||
StorageIndex i = it.index();
|
||||
if((int(SrcMode)==int(Lower) && i<j) || (int(SrcMode)==int(Upper) && i>j))
|
||||
continue;
|
||||
|
||||
StorageIndex ip = perm ? perm[i] : i;
|
||||
count[int(DstMode)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++;
|
||||
}
|
||||
}
|
||||
dest.outerIndexPtr()[0] = 0;
|
||||
for(Index j=0; j<size; ++j)
|
||||
dest.outerIndexPtr()[j+1] = dest.outerIndexPtr()[j] + count[j];
|
||||
dest.resizeNonZeros(dest.outerIndexPtr()[size]);
|
||||
for(Index j=0; j<size; ++j)
|
||||
count[j] = dest.outerIndexPtr()[j];
|
||||
|
||||
for(StorageIndex j = 0; j<size; ++j)
|
||||
{
|
||||
|
||||
for(MatIterator it(matEval,j); it; ++it)
|
||||
{
|
||||
StorageIndex i = it.index();
|
||||
if((int(SrcMode)==int(Lower) && i<j) || (int(SrcMode)==int(Upper) && i>j))
|
||||
continue;
|
||||
|
||||
StorageIndex jp = perm ? perm[j] : j;
|
||||
StorageIndex ip = perm? perm[i] : i;
|
||||
|
||||
Index k = count[int(DstMode)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++;
|
||||
dest.innerIndexPtr()[k] = int(DstMode)==int(Lower) ? (std::max)(ip,jp) : (std::min)(ip,jp);
|
||||
|
||||
if(!StorageOrderMatch) std::swap(ip,jp);
|
||||
if( ((int(DstMode)==int(Lower) && ip<jp) || (int(DstMode)==int(Upper) && ip>jp)))
|
||||
dest.valuePtr()[k] = numext::conj(it.value());
|
||||
else
|
||||
dest.valuePtr()[k] = it.value();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// TODO implement twists in a more evaluator friendly fashion
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename MatrixType, int Mode>
|
||||
struct traits<SparseSymmetricPermutationProduct<MatrixType,Mode> > : traits<MatrixType> {
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
template<typename MatrixType,int Mode>
|
||||
class SparseSymmetricPermutationProduct
|
||||
: public EigenBase<SparseSymmetricPermutationProduct<MatrixType,Mode> >
|
||||
{
|
||||
public:
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::StorageIndex StorageIndex;
|
||||
enum {
|
||||
RowsAtCompileTime = internal::traits<SparseSymmetricPermutationProduct>::RowsAtCompileTime,
|
||||
ColsAtCompileTime = internal::traits<SparseSymmetricPermutationProduct>::ColsAtCompileTime
|
||||
};
|
||||
protected:
|
||||
typedef PermutationMatrix<Dynamic,Dynamic,StorageIndex> Perm;
|
||||
public:
|
||||
typedef Matrix<StorageIndex,Dynamic,1> VectorI;
|
||||
typedef typename MatrixType::Nested MatrixTypeNested;
|
||||
typedef typename internal::remove_all<MatrixTypeNested>::type NestedExpression;
|
||||
|
||||
SparseSymmetricPermutationProduct(const MatrixType& mat, const Perm& perm)
|
||||
: m_matrix(mat), m_perm(perm)
|
||||
{}
|
||||
|
||||
inline Index rows() const { return m_matrix.rows(); }
|
||||
inline Index cols() const { return m_matrix.cols(); }
|
||||
|
||||
const NestedExpression& matrix() const { return m_matrix; }
|
||||
const Perm& perm() const { return m_perm; }
|
||||
|
||||
protected:
|
||||
MatrixTypeNested m_matrix;
|
||||
const Perm& m_perm;
|
||||
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename DstXprType, typename MatrixType, int Mode, typename Scalar>
|
||||
struct Assignment<DstXprType, SparseSymmetricPermutationProduct<MatrixType,Mode>, internal::assign_op<Scalar,typename MatrixType::Scalar>, Sparse2Sparse>
|
||||
{
|
||||
typedef SparseSymmetricPermutationProduct<MatrixType,Mode> SrcXprType;
|
||||
typedef typename DstXprType::StorageIndex DstIndex;
|
||||
template<int Options>
|
||||
static void run(SparseMatrix<Scalar,Options,DstIndex> &dst, const SrcXprType &src, const internal::assign_op<Scalar,typename MatrixType::Scalar> &)
|
||||
{
|
||||
// internal::permute_symm_to_fullsymm<Mode>(m_matrix,_dest,m_perm.indices().data());
|
||||
SparseMatrix<Scalar,(Options&RowMajor)==RowMajor ? ColMajor : RowMajor, DstIndex> tmp;
|
||||
internal::permute_symm_to_fullsymm<Mode>(src.matrix(),tmp,src.perm().indices().data());
|
||||
dst = tmp;
|
||||
}
|
||||
|
||||
template<typename DestType,unsigned int DestMode>
|
||||
static void run(SparseSelfAdjointView<DestType,DestMode>& dst, const SrcXprType &src, const internal::assign_op<Scalar,typename MatrixType::Scalar> &)
|
||||
{
|
||||
internal::permute_symm_to_symm<Mode,DestMode>(src.matrix(),dst.matrix(),src.perm().indices().data());
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SPARSE_SELFADJOINTVIEW_H
|
||||
124
examples/ThirdPartyLibs/Eigen/src/SparseCore/SparseSolverBase.h
Normal file
124
examples/ThirdPartyLibs/Eigen/src/SparseCore/SparseSolverBase.h
Normal file
@@ -0,0 +1,124 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SPARSESOLVERBASE_H
|
||||
#define EIGEN_SPARSESOLVERBASE_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
/** \internal
|
||||
* Helper functions to solve with a sparse right-hand-side and result.
|
||||
* The rhs is decomposed into small vertical panels which are solved through dense temporaries.
|
||||
*/
|
||||
template<typename Decomposition, typename Rhs, typename Dest>
|
||||
typename enable_if<Rhs::ColsAtCompileTime!=1 && Dest::ColsAtCompileTime!=1>::type
|
||||
solve_sparse_through_dense_panels(const Decomposition &dec, const Rhs& rhs, Dest &dest)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
|
||||
typedef typename Dest::Scalar DestScalar;
|
||||
// we process the sparse rhs per block of NbColsAtOnce columns temporarily stored into a dense matrix.
|
||||
static const Index NbColsAtOnce = 4;
|
||||
Index rhsCols = rhs.cols();
|
||||
Index size = rhs.rows();
|
||||
// the temporary matrices do not need more columns than NbColsAtOnce:
|
||||
Index tmpCols = (std::min)(rhsCols, NbColsAtOnce);
|
||||
Eigen::Matrix<DestScalar,Dynamic,Dynamic> tmp(size,tmpCols);
|
||||
Eigen::Matrix<DestScalar,Dynamic,Dynamic> tmpX(size,tmpCols);
|
||||
for(Index k=0; k<rhsCols; k+=NbColsAtOnce)
|
||||
{
|
||||
Index actualCols = std::min<Index>(rhsCols-k, NbColsAtOnce);
|
||||
tmp.leftCols(actualCols) = rhs.middleCols(k,actualCols);
|
||||
tmpX.leftCols(actualCols) = dec.solve(tmp.leftCols(actualCols));
|
||||
dest.middleCols(k,actualCols) = tmpX.leftCols(actualCols).sparseView();
|
||||
}
|
||||
}
|
||||
|
||||
// Overload for vector as rhs
|
||||
template<typename Decomposition, typename Rhs, typename Dest>
|
||||
typename enable_if<Rhs::ColsAtCompileTime==1 || Dest::ColsAtCompileTime==1>::type
|
||||
solve_sparse_through_dense_panels(const Decomposition &dec, const Rhs& rhs, Dest &dest)
|
||||
{
|
||||
typedef typename Dest::Scalar DestScalar;
|
||||
Index size = rhs.rows();
|
||||
Eigen::Matrix<DestScalar,Dynamic,1> rhs_dense(rhs);
|
||||
Eigen::Matrix<DestScalar,Dynamic,1> dest_dense(size);
|
||||
dest_dense = dec.solve(rhs_dense);
|
||||
dest = dest_dense.sparseView();
|
||||
}
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/** \class SparseSolverBase
|
||||
* \ingroup SparseCore_Module
|
||||
* \brief A base class for sparse solvers
|
||||
*
|
||||
* \tparam Derived the actual type of the solver.
|
||||
*
|
||||
*/
|
||||
template<typename Derived>
|
||||
class SparseSolverBase : internal::noncopyable
|
||||
{
|
||||
public:
|
||||
|
||||
/** Default constructor */
|
||||
SparseSolverBase()
|
||||
: m_isInitialized(false)
|
||||
{}
|
||||
|
||||
~SparseSolverBase()
|
||||
{}
|
||||
|
||||
Derived& derived() { return *static_cast<Derived*>(this); }
|
||||
const Derived& derived() const { return *static_cast<const Derived*>(this); }
|
||||
|
||||
/** \returns an expression of the solution x of \f$ A x = b \f$ using the current decomposition of A.
|
||||
*
|
||||
* \sa compute()
|
||||
*/
|
||||
template<typename Rhs>
|
||||
inline const Solve<Derived, Rhs>
|
||||
solve(const MatrixBase<Rhs>& b) const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "Solver is not initialized.");
|
||||
eigen_assert(derived().rows()==b.rows() && "solve(): invalid number of rows of the right hand side matrix b");
|
||||
return Solve<Derived, Rhs>(derived(), b.derived());
|
||||
}
|
||||
|
||||
/** \returns an expression of the solution x of \f$ A x = b \f$ using the current decomposition of A.
|
||||
*
|
||||
* \sa compute()
|
||||
*/
|
||||
template<typename Rhs>
|
||||
inline const Solve<Derived, Rhs>
|
||||
solve(const SparseMatrixBase<Rhs>& b) const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "Solver is not initialized.");
|
||||
eigen_assert(derived().rows()==b.rows() && "solve(): invalid number of rows of the right hand side matrix b");
|
||||
return Solve<Derived, Rhs>(derived(), b.derived());
|
||||
}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
/** \internal default implementation of solving with a sparse rhs */
|
||||
template<typename Rhs,typename Dest>
|
||||
void _solve_impl(const SparseMatrixBase<Rhs> &b, SparseMatrixBase<Dest> &dest) const
|
||||
{
|
||||
internal::solve_sparse_through_dense_panels(derived(), b.derived(), dest.derived());
|
||||
}
|
||||
#endif // EIGEN_PARSED_BY_DOXYGEN
|
||||
|
||||
protected:
|
||||
|
||||
mutable bool m_isInitialized;
|
||||
};
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SPARSESOLVERBASE_H
|
||||
@@ -0,0 +1,198 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SPARSESPARSEPRODUCTWITHPRUNING_H
|
||||
#define EIGEN_SPARSESPARSEPRODUCTWITHPRUNING_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
|
||||
// perform a pseudo in-place sparse * sparse product assuming all matrices are col major
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
static void sparse_sparse_product_with_pruning_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res, const typename ResultType::RealScalar& tolerance)
|
||||
{
|
||||
// return sparse_sparse_product_with_pruning_impl2(lhs,rhs,res);
|
||||
|
||||
typedef typename remove_all<Rhs>::type::Scalar RhsScalar;
|
||||
typedef typename remove_all<ResultType>::type::Scalar ResScalar;
|
||||
typedef typename remove_all<Lhs>::type::StorageIndex StorageIndex;
|
||||
|
||||
// make sure to call innerSize/outerSize since we fake the storage order.
|
||||
Index rows = lhs.innerSize();
|
||||
Index cols = rhs.outerSize();
|
||||
//Index size = lhs.outerSize();
|
||||
eigen_assert(lhs.outerSize() == rhs.innerSize());
|
||||
|
||||
// allocate a temporary buffer
|
||||
AmbiVector<ResScalar,StorageIndex> tempVector(rows);
|
||||
|
||||
// mimics a resizeByInnerOuter:
|
||||
if(ResultType::IsRowMajor)
|
||||
res.resize(cols, rows);
|
||||
else
|
||||
res.resize(rows, cols);
|
||||
|
||||
evaluator<Lhs> lhsEval(lhs);
|
||||
evaluator<Rhs> rhsEval(rhs);
|
||||
|
||||
// estimate the number of non zero entries
|
||||
// given a rhs column containing Y non zeros, we assume that the respective Y columns
|
||||
// of the lhs differs in average of one non zeros, thus the number of non zeros for
|
||||
// the product of a rhs column with the lhs is X+Y where X is the average number of non zero
|
||||
// per column of the lhs.
|
||||
// Therefore, we have nnz(lhs*rhs) = nnz(lhs) + nnz(rhs)
|
||||
Index estimated_nnz_prod = lhsEval.nonZerosEstimate() + rhsEval.nonZerosEstimate();
|
||||
|
||||
res.reserve(estimated_nnz_prod);
|
||||
double ratioColRes = double(estimated_nnz_prod)/(double(lhs.rows())*double(rhs.cols()));
|
||||
for (Index j=0; j<cols; ++j)
|
||||
{
|
||||
// FIXME:
|
||||
//double ratioColRes = (double(rhs.innerVector(j).nonZeros()) + double(lhs.nonZeros())/double(lhs.cols()))/double(lhs.rows());
|
||||
// let's do a more accurate determination of the nnz ratio for the current column j of res
|
||||
tempVector.init(ratioColRes);
|
||||
tempVector.setZero();
|
||||
for (typename evaluator<Rhs>::InnerIterator rhsIt(rhsEval, j); rhsIt; ++rhsIt)
|
||||
{
|
||||
// FIXME should be written like this: tmp += rhsIt.value() * lhs.col(rhsIt.index())
|
||||
tempVector.restart();
|
||||
RhsScalar x = rhsIt.value();
|
||||
for (typename evaluator<Lhs>::InnerIterator lhsIt(lhsEval, rhsIt.index()); lhsIt; ++lhsIt)
|
||||
{
|
||||
tempVector.coeffRef(lhsIt.index()) += lhsIt.value() * x;
|
||||
}
|
||||
}
|
||||
res.startVec(j);
|
||||
for (typename AmbiVector<ResScalar,StorageIndex>::Iterator it(tempVector,tolerance); it; ++it)
|
||||
res.insertBackByOuterInner(j,it.index()) = it.value();
|
||||
}
|
||||
res.finalize();
|
||||
}
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType,
|
||||
int LhsStorageOrder = traits<Lhs>::Flags&RowMajorBit,
|
||||
int RhsStorageOrder = traits<Rhs>::Flags&RowMajorBit,
|
||||
int ResStorageOrder = traits<ResultType>::Flags&RowMajorBit>
|
||||
struct sparse_sparse_product_with_pruning_selector;
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor>
|
||||
{
|
||||
typedef typename ResultType::RealScalar RealScalar;
|
||||
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
|
||||
{
|
||||
typename remove_all<ResultType>::type _res(res.rows(), res.cols());
|
||||
internal::sparse_sparse_product_with_pruning_impl<Lhs,Rhs,ResultType>(lhs, rhs, _res, tolerance);
|
||||
res.swap(_res);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,RowMajor>
|
||||
{
|
||||
typedef typename ResultType::RealScalar RealScalar;
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
|
||||
{
|
||||
// we need a col-major matrix to hold the result
|
||||
typedef SparseMatrix<typename ResultType::Scalar,ColMajor,typename ResultType::StorageIndex> SparseTemporaryType;
|
||||
SparseTemporaryType _res(res.rows(), res.cols());
|
||||
internal::sparse_sparse_product_with_pruning_impl<Lhs,Rhs,SparseTemporaryType>(lhs, rhs, _res, tolerance);
|
||||
res = _res;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,RowMajor>
|
||||
{
|
||||
typedef typename ResultType::RealScalar RealScalar;
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
|
||||
{
|
||||
// let's transpose the product to get a column x column product
|
||||
typename remove_all<ResultType>::type _res(res.rows(), res.cols());
|
||||
internal::sparse_sparse_product_with_pruning_impl<Rhs,Lhs,ResultType>(rhs, lhs, _res, tolerance);
|
||||
res.swap(_res);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,ColMajor>
|
||||
{
|
||||
typedef typename ResultType::RealScalar RealScalar;
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
|
||||
{
|
||||
typedef SparseMatrix<typename Lhs::Scalar,ColMajor,typename Lhs::StorageIndex> ColMajorMatrixLhs;
|
||||
typedef SparseMatrix<typename Rhs::Scalar,ColMajor,typename Lhs::StorageIndex> ColMajorMatrixRhs;
|
||||
ColMajorMatrixLhs colLhs(lhs);
|
||||
ColMajorMatrixRhs colRhs(rhs);
|
||||
internal::sparse_sparse_product_with_pruning_impl<ColMajorMatrixLhs,ColMajorMatrixRhs,ResultType>(colLhs, colRhs, res, tolerance);
|
||||
|
||||
// let's transpose the product to get a column x column product
|
||||
// typedef SparseMatrix<typename ResultType::Scalar> SparseTemporaryType;
|
||||
// SparseTemporaryType _res(res.cols(), res.rows());
|
||||
// sparse_sparse_product_with_pruning_impl<Rhs,Lhs,SparseTemporaryType>(rhs, lhs, _res);
|
||||
// res = _res.transpose();
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,ColMajor,RowMajor,RowMajor>
|
||||
{
|
||||
typedef typename ResultType::RealScalar RealScalar;
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
|
||||
{
|
||||
typedef SparseMatrix<typename Lhs::Scalar,RowMajor,typename Lhs::StorageIndex> RowMajorMatrixLhs;
|
||||
RowMajorMatrixLhs rowLhs(lhs);
|
||||
sparse_sparse_product_with_pruning_selector<RowMajorMatrixLhs,Rhs,ResultType,RowMajor,RowMajor>(rowLhs,rhs,res,tolerance);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,RowMajor,ColMajor,RowMajor>
|
||||
{
|
||||
typedef typename ResultType::RealScalar RealScalar;
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
|
||||
{
|
||||
typedef SparseMatrix<typename Rhs::Scalar,RowMajor,typename Lhs::StorageIndex> RowMajorMatrixRhs;
|
||||
RowMajorMatrixRhs rowRhs(rhs);
|
||||
sparse_sparse_product_with_pruning_selector<Lhs,RowMajorMatrixRhs,ResultType,RowMajor,RowMajor,RowMajor>(lhs,rowRhs,res,tolerance);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,ColMajor,RowMajor,ColMajor>
|
||||
{
|
||||
typedef typename ResultType::RealScalar RealScalar;
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
|
||||
{
|
||||
typedef SparseMatrix<typename Rhs::Scalar,ColMajor,typename Lhs::StorageIndex> ColMajorMatrixRhs;
|
||||
ColMajorMatrixRhs colRhs(rhs);
|
||||
internal::sparse_sparse_product_with_pruning_impl<Lhs,ColMajorMatrixRhs,ResultType>(lhs, colRhs, res, tolerance);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Lhs, typename Rhs, typename ResultType>
|
||||
struct sparse_sparse_product_with_pruning_selector<Lhs,Rhs,ResultType,RowMajor,ColMajor,ColMajor>
|
||||
{
|
||||
typedef typename ResultType::RealScalar RealScalar;
|
||||
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res, const RealScalar& tolerance)
|
||||
{
|
||||
typedef SparseMatrix<typename Lhs::Scalar,ColMajor,typename Lhs::StorageIndex> ColMajorMatrixLhs;
|
||||
ColMajorMatrixLhs colLhs(lhs);
|
||||
internal::sparse_sparse_product_with_pruning_impl<ColMajorMatrixLhs,Rhs,ResultType>(colLhs, rhs, res, tolerance);
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SPARSESPARSEPRODUCTWITHPRUNING_H
|
||||
@@ -0,0 +1,92 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SPARSETRANSPOSE_H
|
||||
#define EIGEN_SPARSETRANSPOSE_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
template<typename MatrixType,int CompressedAccess=int(MatrixType::Flags&CompressedAccessBit)>
|
||||
class SparseTransposeImpl
|
||||
: public SparseMatrixBase<Transpose<MatrixType> >
|
||||
{};
|
||||
|
||||
template<typename MatrixType>
|
||||
class SparseTransposeImpl<MatrixType,CompressedAccessBit>
|
||||
: public SparseCompressedBase<Transpose<MatrixType> >
|
||||
{
|
||||
typedef SparseCompressedBase<Transpose<MatrixType> > Base;
|
||||
public:
|
||||
using Base::derived;
|
||||
typedef typename Base::Scalar Scalar;
|
||||
typedef typename Base::StorageIndex StorageIndex;
|
||||
|
||||
inline Index nonZeros() const { return derived().nestedExpression().nonZeros(); }
|
||||
|
||||
inline const Scalar* valuePtr() const { return derived().nestedExpression().valuePtr(); }
|
||||
inline const StorageIndex* innerIndexPtr() const { return derived().nestedExpression().innerIndexPtr(); }
|
||||
inline const StorageIndex* outerIndexPtr() const { return derived().nestedExpression().outerIndexPtr(); }
|
||||
inline const StorageIndex* innerNonZeroPtr() const { return derived().nestedExpression().innerNonZeroPtr(); }
|
||||
|
||||
inline Scalar* valuePtr() { return derived().nestedExpression().valuePtr(); }
|
||||
inline StorageIndex* innerIndexPtr() { return derived().nestedExpression().innerIndexPtr(); }
|
||||
inline StorageIndex* outerIndexPtr() { return derived().nestedExpression().outerIndexPtr(); }
|
||||
inline StorageIndex* innerNonZeroPtr() { return derived().nestedExpression().innerNonZeroPtr(); }
|
||||
};
|
||||
}
|
||||
|
||||
template<typename MatrixType> class TransposeImpl<MatrixType,Sparse>
|
||||
: public internal::SparseTransposeImpl<MatrixType>
|
||||
{
|
||||
protected:
|
||||
typedef internal::SparseTransposeImpl<MatrixType> Base;
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename ArgType>
|
||||
struct unary_evaluator<Transpose<ArgType>, IteratorBased>
|
||||
: public evaluator_base<Transpose<ArgType> >
|
||||
{
|
||||
typedef typename evaluator<ArgType>::InnerIterator EvalIterator;
|
||||
public:
|
||||
typedef Transpose<ArgType> XprType;
|
||||
|
||||
inline Index nonZerosEstimate() const {
|
||||
return m_argImpl.nonZerosEstimate();
|
||||
}
|
||||
|
||||
class InnerIterator : public EvalIterator
|
||||
{
|
||||
public:
|
||||
EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& unaryOp, Index outer)
|
||||
: EvalIterator(unaryOp.m_argImpl,outer)
|
||||
{}
|
||||
|
||||
Index row() const { return EvalIterator::col(); }
|
||||
Index col() const { return EvalIterator::row(); }
|
||||
};
|
||||
|
||||
enum {
|
||||
CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
|
||||
Flags = XprType::Flags
|
||||
};
|
||||
|
||||
explicit unary_evaluator(const XprType& op) :m_argImpl(op.nestedExpression()) {}
|
||||
|
||||
protected:
|
||||
evaluator<ArgType> m_argImpl;
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SPARSETRANSPOSE_H
|
||||
@@ -0,0 +1,189 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SPARSE_TRIANGULARVIEW_H
|
||||
#define EIGEN_SPARSE_TRIANGULARVIEW_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \ingroup SparseCore_Module
|
||||
*
|
||||
* \brief Base class for a triangular part in a \b sparse matrix
|
||||
*
|
||||
* This class is an abstract base class of class TriangularView, and objects of type TriangularViewImpl cannot be instantiated.
|
||||
* It extends class TriangularView with additional methods which are available for sparse expressions only.
|
||||
*
|
||||
* \sa class TriangularView, SparseMatrixBase::triangularView()
|
||||
*/
|
||||
template<typename MatrixType, unsigned int Mode> class TriangularViewImpl<MatrixType,Mode,Sparse>
|
||||
: public SparseMatrixBase<TriangularView<MatrixType,Mode> >
|
||||
{
|
||||
enum { SkipFirst = ((Mode&Lower) && !(MatrixType::Flags&RowMajorBit))
|
||||
|| ((Mode&Upper) && (MatrixType::Flags&RowMajorBit)),
|
||||
SkipLast = !SkipFirst,
|
||||
SkipDiag = (Mode&ZeroDiag) ? 1 : 0,
|
||||
HasUnitDiag = (Mode&UnitDiag) ? 1 : 0
|
||||
};
|
||||
|
||||
typedef TriangularView<MatrixType,Mode> TriangularViewType;
|
||||
|
||||
protected:
|
||||
// dummy solve function to make TriangularView happy.
|
||||
void solve() const;
|
||||
|
||||
typedef SparseMatrixBase<TriangularViewType> Base;
|
||||
public:
|
||||
|
||||
EIGEN_SPARSE_PUBLIC_INTERFACE(TriangularViewType)
|
||||
|
||||
typedef typename MatrixType::Nested MatrixTypeNested;
|
||||
typedef typename internal::remove_reference<MatrixTypeNested>::type MatrixTypeNestedNonRef;
|
||||
typedef typename internal::remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned;
|
||||
|
||||
template<typename RhsType, typename DstType>
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE void _solve_impl(const RhsType &rhs, DstType &dst) const {
|
||||
if(!(internal::is_same<RhsType,DstType>::value && internal::extract_data(dst) == internal::extract_data(rhs)))
|
||||
dst = rhs;
|
||||
this->solveInPlace(dst);
|
||||
}
|
||||
|
||||
/** Applies the inverse of \c *this to the dense vector or matrix \a other, "in-place" */
|
||||
template<typename OtherDerived> void solveInPlace(MatrixBase<OtherDerived>& other) const;
|
||||
|
||||
/** Applies the inverse of \c *this to the sparse vector or matrix \a other, "in-place" */
|
||||
template<typename OtherDerived> void solveInPlace(SparseMatrixBase<OtherDerived>& other) const;
|
||||
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename ArgType, unsigned int Mode>
|
||||
struct unary_evaluator<TriangularView<ArgType,Mode>, IteratorBased>
|
||||
: evaluator_base<TriangularView<ArgType,Mode> >
|
||||
{
|
||||
typedef TriangularView<ArgType,Mode> XprType;
|
||||
|
||||
protected:
|
||||
|
||||
typedef typename XprType::Scalar Scalar;
|
||||
typedef typename XprType::StorageIndex StorageIndex;
|
||||
typedef typename evaluator<ArgType>::InnerIterator EvalIterator;
|
||||
|
||||
enum { SkipFirst = ((Mode&Lower) && !(ArgType::Flags&RowMajorBit))
|
||||
|| ((Mode&Upper) && (ArgType::Flags&RowMajorBit)),
|
||||
SkipLast = !SkipFirst,
|
||||
SkipDiag = (Mode&ZeroDiag) ? 1 : 0,
|
||||
HasUnitDiag = (Mode&UnitDiag) ? 1 : 0
|
||||
};
|
||||
|
||||
public:
|
||||
|
||||
enum {
|
||||
CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
|
||||
Flags = XprType::Flags
|
||||
};
|
||||
|
||||
explicit unary_evaluator(const XprType &xpr) : m_argImpl(xpr.nestedExpression()), m_arg(xpr.nestedExpression()) {}
|
||||
|
||||
inline Index nonZerosEstimate() const {
|
||||
return m_argImpl.nonZerosEstimate();
|
||||
}
|
||||
|
||||
class InnerIterator : public EvalIterator
|
||||
{
|
||||
typedef EvalIterator Base;
|
||||
public:
|
||||
|
||||
EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& xprEval, Index outer)
|
||||
: Base(xprEval.m_argImpl,outer), m_returnOne(false), m_containsDiag(Base::outer()<xprEval.m_arg.innerSize())
|
||||
{
|
||||
if(SkipFirst)
|
||||
{
|
||||
while((*this) && ((HasUnitDiag||SkipDiag) ? this->index()<=outer : this->index()<outer))
|
||||
Base::operator++();
|
||||
if(HasUnitDiag)
|
||||
m_returnOne = m_containsDiag;
|
||||
}
|
||||
else if(HasUnitDiag && ((!Base::operator bool()) || Base::index()>=Base::outer()))
|
||||
{
|
||||
if((!SkipFirst) && Base::operator bool())
|
||||
Base::operator++();
|
||||
m_returnOne = m_containsDiag;
|
||||
}
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE InnerIterator& operator++()
|
||||
{
|
||||
if(HasUnitDiag && m_returnOne)
|
||||
m_returnOne = false;
|
||||
else
|
||||
{
|
||||
Base::operator++();
|
||||
if(HasUnitDiag && (!SkipFirst) && ((!Base::operator bool()) || Base::index()>=Base::outer()))
|
||||
{
|
||||
if((!SkipFirst) && Base::operator bool())
|
||||
Base::operator++();
|
||||
m_returnOne = m_containsDiag;
|
||||
}
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE operator bool() const
|
||||
{
|
||||
if(HasUnitDiag && m_returnOne)
|
||||
return true;
|
||||
if(SkipFirst) return Base::operator bool();
|
||||
else
|
||||
{
|
||||
if (SkipDiag) return (Base::operator bool() && this->index() < this->outer());
|
||||
else return (Base::operator bool() && this->index() <= this->outer());
|
||||
}
|
||||
}
|
||||
|
||||
// inline Index row() const { return (ArgType::Flags&RowMajorBit ? Base::outer() : this->index()); }
|
||||
// inline Index col() const { return (ArgType::Flags&RowMajorBit ? this->index() : Base::outer()); }
|
||||
inline StorageIndex index() const
|
||||
{
|
||||
if(HasUnitDiag && m_returnOne) return internal::convert_index<StorageIndex>(Base::outer());
|
||||
else return Base::index();
|
||||
}
|
||||
inline Scalar value() const
|
||||
{
|
||||
if(HasUnitDiag && m_returnOne) return Scalar(1);
|
||||
else return Base::value();
|
||||
}
|
||||
|
||||
protected:
|
||||
bool m_returnOne;
|
||||
bool m_containsDiag;
|
||||
private:
|
||||
Scalar& valueRef();
|
||||
};
|
||||
|
||||
protected:
|
||||
evaluator<ArgType> m_argImpl;
|
||||
const ArgType& m_arg;
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
template<typename Derived>
|
||||
template<int Mode>
|
||||
inline const TriangularView<const Derived, Mode>
|
||||
SparseMatrixBase<Derived>::triangularView() const
|
||||
{
|
||||
return TriangularView<const Derived, Mode>(derived());
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SPARSE_TRIANGULARVIEW_H
|
||||
178
examples/ThirdPartyLibs/Eigen/src/SparseCore/SparseUtil.h
Normal file
178
examples/ThirdPartyLibs/Eigen/src/SparseCore/SparseUtil.h
Normal file
@@ -0,0 +1,178 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SPARSEUTIL_H
|
||||
#define EIGEN_SPARSEUTIL_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
#ifdef NDEBUG
|
||||
#define EIGEN_DBG_SPARSE(X)
|
||||
#else
|
||||
#define EIGEN_DBG_SPARSE(X) X
|
||||
#endif
|
||||
|
||||
#define EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(Derived, Op) \
|
||||
template<typename OtherDerived> \
|
||||
EIGEN_STRONG_INLINE Derived& operator Op(const Eigen::SparseMatrixBase<OtherDerived>& other) \
|
||||
{ \
|
||||
return Base::operator Op(other.derived()); \
|
||||
} \
|
||||
EIGEN_STRONG_INLINE Derived& operator Op(const Derived& other) \
|
||||
{ \
|
||||
return Base::operator Op(other); \
|
||||
}
|
||||
|
||||
#define EIGEN_SPARSE_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Derived, Op) \
|
||||
template<typename Other> \
|
||||
EIGEN_STRONG_INLINE Derived& operator Op(const Other& scalar) \
|
||||
{ \
|
||||
return Base::operator Op(scalar); \
|
||||
}
|
||||
|
||||
#define EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATORS(Derived) \
|
||||
EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(Derived, =)
|
||||
|
||||
|
||||
#define EIGEN_SPARSE_PUBLIC_INTERFACE(Derived) \
|
||||
EIGEN_GENERIC_PUBLIC_INTERFACE(Derived)
|
||||
|
||||
|
||||
const int CoherentAccessPattern = 0x1;
|
||||
const int InnerRandomAccessPattern = 0x2 | CoherentAccessPattern;
|
||||
const int OuterRandomAccessPattern = 0x4 | CoherentAccessPattern;
|
||||
const int RandomAccessPattern = 0x8 | OuterRandomAccessPattern | InnerRandomAccessPattern;
|
||||
|
||||
template<typename _Scalar, int _Flags = 0, typename _StorageIndex = int> class SparseMatrix;
|
||||
template<typename _Scalar, int _Flags = 0, typename _StorageIndex = int> class DynamicSparseMatrix;
|
||||
template<typename _Scalar, int _Flags = 0, typename _StorageIndex = int> class SparseVector;
|
||||
template<typename _Scalar, int _Flags = 0, typename _StorageIndex = int> class MappedSparseMatrix;
|
||||
|
||||
template<typename MatrixType, unsigned int UpLo> class SparseSelfAdjointView;
|
||||
template<typename Lhs, typename Rhs> class SparseDiagonalProduct;
|
||||
template<typename MatrixType> class SparseView;
|
||||
|
||||
template<typename Lhs, typename Rhs> class SparseSparseProduct;
|
||||
template<typename Lhs, typename Rhs> class SparseTimeDenseProduct;
|
||||
template<typename Lhs, typename Rhs> class DenseTimeSparseProduct;
|
||||
template<typename Lhs, typename Rhs, bool Transpose> class SparseDenseOuterProduct;
|
||||
|
||||
template<typename Lhs, typename Rhs> struct SparseSparseProductReturnType;
|
||||
template<typename Lhs, typename Rhs,
|
||||
int InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(internal::traits<Lhs>::ColsAtCompileTime,internal::traits<Rhs>::RowsAtCompileTime)> struct DenseSparseProductReturnType;
|
||||
|
||||
template<typename Lhs, typename Rhs,
|
||||
int InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(internal::traits<Lhs>::ColsAtCompileTime,internal::traits<Rhs>::RowsAtCompileTime)> struct SparseDenseProductReturnType;
|
||||
template<typename MatrixType,int UpLo> class SparseSymmetricPermutationProduct;
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename T,int Rows,int Cols,int Flags> struct sparse_eval;
|
||||
|
||||
template<typename T> struct eval<T,Sparse>
|
||||
: sparse_eval<T, traits<T>::RowsAtCompileTime,traits<T>::ColsAtCompileTime,traits<T>::Flags>
|
||||
{};
|
||||
|
||||
template<typename T,int Cols,int Flags> struct sparse_eval<T,1,Cols,Flags> {
|
||||
typedef typename traits<T>::Scalar _Scalar;
|
||||
typedef typename traits<T>::StorageIndex _StorageIndex;
|
||||
public:
|
||||
typedef SparseVector<_Scalar, RowMajor, _StorageIndex> type;
|
||||
};
|
||||
|
||||
template<typename T,int Rows,int Flags> struct sparse_eval<T,Rows,1,Flags> {
|
||||
typedef typename traits<T>::Scalar _Scalar;
|
||||
typedef typename traits<T>::StorageIndex _StorageIndex;
|
||||
public:
|
||||
typedef SparseVector<_Scalar, ColMajor, _StorageIndex> type;
|
||||
};
|
||||
|
||||
// TODO this seems almost identical to plain_matrix_type<T, Sparse>
|
||||
template<typename T,int Rows,int Cols,int Flags> struct sparse_eval {
|
||||
typedef typename traits<T>::Scalar _Scalar;
|
||||
typedef typename traits<T>::StorageIndex _StorageIndex;
|
||||
enum { _Options = ((Flags&RowMajorBit)==RowMajorBit) ? RowMajor : ColMajor };
|
||||
public:
|
||||
typedef SparseMatrix<_Scalar, _Options, _StorageIndex> type;
|
||||
};
|
||||
|
||||
template<typename T,int Flags> struct sparse_eval<T,1,1,Flags> {
|
||||
typedef typename traits<T>::Scalar _Scalar;
|
||||
public:
|
||||
typedef Matrix<_Scalar, 1, 1> type;
|
||||
};
|
||||
|
||||
template<typename T> struct plain_matrix_type<T,Sparse>
|
||||
{
|
||||
typedef typename traits<T>::Scalar _Scalar;
|
||||
typedef typename traits<T>::StorageIndex _StorageIndex;
|
||||
enum { _Options = ((evaluator<T>::Flags&RowMajorBit)==RowMajorBit) ? RowMajor : ColMajor };
|
||||
public:
|
||||
typedef SparseMatrix<_Scalar, _Options, _StorageIndex> type;
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
struct plain_object_eval<T,Sparse>
|
||||
: sparse_eval<T, traits<T>::RowsAtCompileTime,traits<T>::ColsAtCompileTime, evaluator<T>::Flags>
|
||||
{};
|
||||
|
||||
template<typename Decomposition, typename RhsType>
|
||||
struct solve_traits<Decomposition,RhsType,Sparse>
|
||||
{
|
||||
typedef typename sparse_eval<RhsType, RhsType::RowsAtCompileTime, RhsType::ColsAtCompileTime,traits<RhsType>::Flags>::type PlainObject;
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
struct generic_xpr_base<Derived, MatrixXpr, Sparse>
|
||||
{
|
||||
typedef SparseMatrixBase<Derived> type;
|
||||
};
|
||||
|
||||
struct SparseTriangularShape { static std::string debugName() { return "SparseTriangularShape"; } };
|
||||
struct SparseSelfAdjointShape { static std::string debugName() { return "SparseSelfAdjointShape"; } };
|
||||
|
||||
template<> struct glue_shapes<SparseShape,SelfAdjointShape> { typedef SparseSelfAdjointShape type; };
|
||||
template<> struct glue_shapes<SparseShape,TriangularShape > { typedef SparseTriangularShape type; };
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/** \ingroup SparseCore_Module
|
||||
*
|
||||
* \class Triplet
|
||||
*
|
||||
* \brief A small structure to hold a non zero as a triplet (i,j,value).
|
||||
*
|
||||
* \sa SparseMatrix::setFromTriplets()
|
||||
*/
|
||||
template<typename Scalar, typename StorageIndex=typename SparseMatrix<Scalar>::StorageIndex >
|
||||
class Triplet
|
||||
{
|
||||
public:
|
||||
Triplet() : m_row(0), m_col(0), m_value(0) {}
|
||||
|
||||
Triplet(const StorageIndex& i, const StorageIndex& j, const Scalar& v = Scalar(0))
|
||||
: m_row(i), m_col(j), m_value(v)
|
||||
{}
|
||||
|
||||
/** \returns the row index of the element */
|
||||
const StorageIndex& row() const { return m_row; }
|
||||
|
||||
/** \returns the column index of the element */
|
||||
const StorageIndex& col() const { return m_col; }
|
||||
|
||||
/** \returns the value of the element */
|
||||
const Scalar& value() const { return m_value; }
|
||||
protected:
|
||||
StorageIndex m_row, m_col;
|
||||
Scalar m_value;
|
||||
};
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SPARSEUTIL_H
|
||||
478
examples/ThirdPartyLibs/Eigen/src/SparseCore/SparseVector.h
Normal file
478
examples/ThirdPartyLibs/Eigen/src/SparseCore/SparseVector.h
Normal file
@@ -0,0 +1,478 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SPARSEVECTOR_H
|
||||
#define EIGEN_SPARSEVECTOR_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \ingroup SparseCore_Module
|
||||
* \class SparseVector
|
||||
*
|
||||
* \brief a sparse vector class
|
||||
*
|
||||
* \tparam _Scalar the scalar type, i.e. the type of the coefficients
|
||||
*
|
||||
* See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme.
|
||||
*
|
||||
* This class can be extended with the help of the plugin mechanism described on the page
|
||||
* \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_SPARSEVECTOR_PLUGIN.
|
||||
*/
|
||||
|
||||
namespace internal {
|
||||
template<typename _Scalar, int _Options, typename _StorageIndex>
|
||||
struct traits<SparseVector<_Scalar, _Options, _StorageIndex> >
|
||||
{
|
||||
typedef _Scalar Scalar;
|
||||
typedef _StorageIndex StorageIndex;
|
||||
typedef Sparse StorageKind;
|
||||
typedef MatrixXpr XprKind;
|
||||
enum {
|
||||
IsColVector = (_Options & RowMajorBit) ? 0 : 1,
|
||||
|
||||
RowsAtCompileTime = IsColVector ? Dynamic : 1,
|
||||
ColsAtCompileTime = IsColVector ? 1 : Dynamic,
|
||||
MaxRowsAtCompileTime = RowsAtCompileTime,
|
||||
MaxColsAtCompileTime = ColsAtCompileTime,
|
||||
Flags = _Options | NestByRefBit | LvalueBit | (IsColVector ? 0 : RowMajorBit) | CompressedAccessBit,
|
||||
SupportedAccessPatterns = InnerRandomAccessPattern
|
||||
};
|
||||
};
|
||||
|
||||
// Sparse-Vector-Assignment kinds:
|
||||
enum {
|
||||
SVA_RuntimeSwitch,
|
||||
SVA_Inner,
|
||||
SVA_Outer
|
||||
};
|
||||
|
||||
template< typename Dest, typename Src,
|
||||
int AssignmentKind = !bool(Src::IsVectorAtCompileTime) ? SVA_RuntimeSwitch
|
||||
: Src::InnerSizeAtCompileTime==1 ? SVA_Outer
|
||||
: SVA_Inner>
|
||||
struct sparse_vector_assign_selector;
|
||||
|
||||
}
|
||||
|
||||
template<typename _Scalar, int _Options, typename _StorageIndex>
|
||||
class SparseVector
|
||||
: public SparseCompressedBase<SparseVector<_Scalar, _Options, _StorageIndex> >
|
||||
{
|
||||
typedef SparseCompressedBase<SparseVector> Base;
|
||||
using Base::convert_index;
|
||||
public:
|
||||
EIGEN_SPARSE_PUBLIC_INTERFACE(SparseVector)
|
||||
EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, +=)
|
||||
EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, -=)
|
||||
|
||||
typedef internal::CompressedStorage<Scalar,StorageIndex> Storage;
|
||||
enum { IsColVector = internal::traits<SparseVector>::IsColVector };
|
||||
|
||||
enum {
|
||||
Options = _Options
|
||||
};
|
||||
|
||||
EIGEN_STRONG_INLINE Index rows() const { return IsColVector ? m_size : 1; }
|
||||
EIGEN_STRONG_INLINE Index cols() const { return IsColVector ? 1 : m_size; }
|
||||
EIGEN_STRONG_INLINE Index innerSize() const { return m_size; }
|
||||
EIGEN_STRONG_INLINE Index outerSize() const { return 1; }
|
||||
|
||||
EIGEN_STRONG_INLINE const Scalar* valuePtr() const { return m_data.valuePtr(); }
|
||||
EIGEN_STRONG_INLINE Scalar* valuePtr() { return m_data.valuePtr(); }
|
||||
|
||||
EIGEN_STRONG_INLINE const StorageIndex* innerIndexPtr() const { return m_data.indexPtr(); }
|
||||
EIGEN_STRONG_INLINE StorageIndex* innerIndexPtr() { return m_data.indexPtr(); }
|
||||
|
||||
inline const StorageIndex* outerIndexPtr() const { return 0; }
|
||||
inline StorageIndex* outerIndexPtr() { return 0; }
|
||||
inline const StorageIndex* innerNonZeroPtr() const { return 0; }
|
||||
inline StorageIndex* innerNonZeroPtr() { return 0; }
|
||||
|
||||
/** \internal */
|
||||
inline Storage& data() { return m_data; }
|
||||
/** \internal */
|
||||
inline const Storage& data() const { return m_data; }
|
||||
|
||||
inline Scalar coeff(Index row, Index col) const
|
||||
{
|
||||
eigen_assert(IsColVector ? (col==0 && row>=0 && row<m_size) : (row==0 && col>=0 && col<m_size));
|
||||
return coeff(IsColVector ? row : col);
|
||||
}
|
||||
inline Scalar coeff(Index i) const
|
||||
{
|
||||
eigen_assert(i>=0 && i<m_size);
|
||||
return m_data.at(StorageIndex(i));
|
||||
}
|
||||
|
||||
inline Scalar& coeffRef(Index row, Index col)
|
||||
{
|
||||
eigen_assert(IsColVector ? (col==0 && row>=0 && row<m_size) : (row==0 && col>=0 && col<m_size));
|
||||
return coeffRef(IsColVector ? row : col);
|
||||
}
|
||||
|
||||
/** \returns a reference to the coefficient value at given index \a i
|
||||
* This operation involes a log(rho*size) binary search. If the coefficient does not
|
||||
* exist yet, then a sorted insertion into a sequential buffer is performed.
|
||||
*
|
||||
* This insertion might be very costly if the number of nonzeros above \a i is large.
|
||||
*/
|
||||
inline Scalar& coeffRef(Index i)
|
||||
{
|
||||
eigen_assert(i>=0 && i<m_size);
|
||||
|
||||
return m_data.atWithInsertion(StorageIndex(i));
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
typedef typename Base::InnerIterator InnerIterator;
|
||||
typedef typename Base::ReverseInnerIterator ReverseInnerIterator;
|
||||
|
||||
inline void setZero() { m_data.clear(); }
|
||||
|
||||
/** \returns the number of non zero coefficients */
|
||||
inline Index nonZeros() const { return m_data.size(); }
|
||||
|
||||
inline void startVec(Index outer)
|
||||
{
|
||||
EIGEN_UNUSED_VARIABLE(outer);
|
||||
eigen_assert(outer==0);
|
||||
}
|
||||
|
||||
inline Scalar& insertBackByOuterInner(Index outer, Index inner)
|
||||
{
|
||||
EIGEN_UNUSED_VARIABLE(outer);
|
||||
eigen_assert(outer==0);
|
||||
return insertBack(inner);
|
||||
}
|
||||
inline Scalar& insertBack(Index i)
|
||||
{
|
||||
m_data.append(0, i);
|
||||
return m_data.value(m_data.size()-1);
|
||||
}
|
||||
|
||||
Scalar& insertBackByOuterInnerUnordered(Index outer, Index inner)
|
||||
{
|
||||
EIGEN_UNUSED_VARIABLE(outer);
|
||||
eigen_assert(outer==0);
|
||||
return insertBackUnordered(inner);
|
||||
}
|
||||
inline Scalar& insertBackUnordered(Index i)
|
||||
{
|
||||
m_data.append(0, i);
|
||||
return m_data.value(m_data.size()-1);
|
||||
}
|
||||
|
||||
inline Scalar& insert(Index row, Index col)
|
||||
{
|
||||
eigen_assert(IsColVector ? (col==0 && row>=0 && row<m_size) : (row==0 && col>=0 && col<m_size));
|
||||
|
||||
Index inner = IsColVector ? row : col;
|
||||
Index outer = IsColVector ? col : row;
|
||||
EIGEN_ONLY_USED_FOR_DEBUG(outer);
|
||||
eigen_assert(outer==0);
|
||||
return insert(inner);
|
||||
}
|
||||
Scalar& insert(Index i)
|
||||
{
|
||||
eigen_assert(i>=0 && i<m_size);
|
||||
|
||||
Index startId = 0;
|
||||
Index p = Index(m_data.size()) - 1;
|
||||
// TODO smart realloc
|
||||
m_data.resize(p+2,1);
|
||||
|
||||
while ( (p >= startId) && (m_data.index(p) > i) )
|
||||
{
|
||||
m_data.index(p+1) = m_data.index(p);
|
||||
m_data.value(p+1) = m_data.value(p);
|
||||
--p;
|
||||
}
|
||||
m_data.index(p+1) = convert_index(i);
|
||||
m_data.value(p+1) = 0;
|
||||
return m_data.value(p+1);
|
||||
}
|
||||
|
||||
/**
|
||||
*/
|
||||
inline void reserve(Index reserveSize) { m_data.reserve(reserveSize); }
|
||||
|
||||
|
||||
inline void finalize() {}
|
||||
|
||||
/** \copydoc SparseMatrix::prune(const Scalar&,const RealScalar&) */
|
||||
void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision())
|
||||
{
|
||||
m_data.prune(reference,epsilon);
|
||||
}
|
||||
|
||||
/** Resizes the sparse vector to \a rows x \a cols
|
||||
*
|
||||
* This method is provided for compatibility with matrices.
|
||||
* For a column vector, \a cols must be equal to 1.
|
||||
* For a row vector, \a rows must be equal to 1.
|
||||
*
|
||||
* \sa resize(Index)
|
||||
*/
|
||||
void resize(Index rows, Index cols)
|
||||
{
|
||||
eigen_assert((IsColVector ? cols : rows)==1 && "Outer dimension must equal 1");
|
||||
resize(IsColVector ? rows : cols);
|
||||
}
|
||||
|
||||
/** Resizes the sparse vector to \a newSize
|
||||
* This method deletes all entries, thus leaving an empty sparse vector
|
||||
*
|
||||
* \sa conservativeResize(), setZero() */
|
||||
void resize(Index newSize)
|
||||
{
|
||||
m_size = newSize;
|
||||
m_data.clear();
|
||||
}
|
||||
|
||||
/** Resizes the sparse vector to \a newSize, while leaving old values untouched.
|
||||
*
|
||||
* If the size of the vector is decreased, then the storage of the out-of bounds coefficients is kept and reserved.
|
||||
* Call .data().squeeze() to free extra memory.
|
||||
*
|
||||
* \sa reserve(), setZero()
|
||||
*/
|
||||
void conservativeResize(Index newSize)
|
||||
{
|
||||
if (newSize < m_size)
|
||||
{
|
||||
Index i = 0;
|
||||
while (i<m_data.size() && m_data.index(i)<newSize) ++i;
|
||||
m_data.resize(i);
|
||||
}
|
||||
m_size = newSize;
|
||||
}
|
||||
|
||||
void resizeNonZeros(Index size) { m_data.resize(size); }
|
||||
|
||||
inline SparseVector() : m_size(0) { check_template_parameters(); resize(0); }
|
||||
|
||||
explicit inline SparseVector(Index size) : m_size(0) { check_template_parameters(); resize(size); }
|
||||
|
||||
inline SparseVector(Index rows, Index cols) : m_size(0) { check_template_parameters(); resize(rows,cols); }
|
||||
|
||||
template<typename OtherDerived>
|
||||
inline SparseVector(const SparseMatrixBase<OtherDerived>& other)
|
||||
: m_size(0)
|
||||
{
|
||||
#ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
|
||||
EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
|
||||
#endif
|
||||
check_template_parameters();
|
||||
*this = other.derived();
|
||||
}
|
||||
|
||||
inline SparseVector(const SparseVector& other)
|
||||
: Base(other), m_size(0)
|
||||
{
|
||||
check_template_parameters();
|
||||
*this = other.derived();
|
||||
}
|
||||
|
||||
/** Swaps the values of \c *this and \a other.
|
||||
* Overloaded for performance: this version performs a \em shallow swap by swaping pointers and attributes only.
|
||||
* \sa SparseMatrixBase::swap()
|
||||
*/
|
||||
inline void swap(SparseVector& other)
|
||||
{
|
||||
std::swap(m_size, other.m_size);
|
||||
m_data.swap(other.m_data);
|
||||
}
|
||||
|
||||
template<int OtherOptions>
|
||||
inline void swap(SparseMatrix<Scalar,OtherOptions,StorageIndex>& other)
|
||||
{
|
||||
eigen_assert(other.outerSize()==1);
|
||||
std::swap(m_size, other.m_innerSize);
|
||||
m_data.swap(other.m_data);
|
||||
}
|
||||
|
||||
inline SparseVector& operator=(const SparseVector& other)
|
||||
{
|
||||
if (other.isRValue())
|
||||
{
|
||||
swap(other.const_cast_derived());
|
||||
}
|
||||
else
|
||||
{
|
||||
resize(other.size());
|
||||
m_data = other.m_data;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename OtherDerived>
|
||||
inline SparseVector& operator=(const SparseMatrixBase<OtherDerived>& other)
|
||||
{
|
||||
SparseVector tmp(other.size());
|
||||
internal::sparse_vector_assign_selector<SparseVector,OtherDerived>::run(tmp,other.derived());
|
||||
this->swap(tmp);
|
||||
return *this;
|
||||
}
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
template<typename Lhs, typename Rhs>
|
||||
inline SparseVector& operator=(const SparseSparseProduct<Lhs,Rhs>& product)
|
||||
{
|
||||
return Base::operator=(product);
|
||||
}
|
||||
#endif
|
||||
|
||||
friend std::ostream & operator << (std::ostream & s, const SparseVector& m)
|
||||
{
|
||||
for (Index i=0; i<m.nonZeros(); ++i)
|
||||
s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") ";
|
||||
s << std::endl;
|
||||
return s;
|
||||
}
|
||||
|
||||
/** Destructor */
|
||||
inline ~SparseVector() {}
|
||||
|
||||
/** Overloaded for performance */
|
||||
Scalar sum() const;
|
||||
|
||||
public:
|
||||
|
||||
/** \internal \deprecated use setZero() and reserve() */
|
||||
EIGEN_DEPRECATED void startFill(Index reserve)
|
||||
{
|
||||
setZero();
|
||||
m_data.reserve(reserve);
|
||||
}
|
||||
|
||||
/** \internal \deprecated use insertBack(Index,Index) */
|
||||
EIGEN_DEPRECATED Scalar& fill(Index r, Index c)
|
||||
{
|
||||
eigen_assert(r==0 || c==0);
|
||||
return fill(IsColVector ? r : c);
|
||||
}
|
||||
|
||||
/** \internal \deprecated use insertBack(Index) */
|
||||
EIGEN_DEPRECATED Scalar& fill(Index i)
|
||||
{
|
||||
m_data.append(0, i);
|
||||
return m_data.value(m_data.size()-1);
|
||||
}
|
||||
|
||||
/** \internal \deprecated use insert(Index,Index) */
|
||||
EIGEN_DEPRECATED Scalar& fillrand(Index r, Index c)
|
||||
{
|
||||
eigen_assert(r==0 || c==0);
|
||||
return fillrand(IsColVector ? r : c);
|
||||
}
|
||||
|
||||
/** \internal \deprecated use insert(Index) */
|
||||
EIGEN_DEPRECATED Scalar& fillrand(Index i)
|
||||
{
|
||||
return insert(i);
|
||||
}
|
||||
|
||||
/** \internal \deprecated use finalize() */
|
||||
EIGEN_DEPRECATED void endFill() {}
|
||||
|
||||
// These two functions were here in the 3.1 release, so let's keep them in case some code rely on them.
|
||||
/** \internal \deprecated use data() */
|
||||
EIGEN_DEPRECATED Storage& _data() { return m_data; }
|
||||
/** \internal \deprecated use data() */
|
||||
EIGEN_DEPRECATED const Storage& _data() const { return m_data; }
|
||||
|
||||
# ifdef EIGEN_SPARSEVECTOR_PLUGIN
|
||||
# include EIGEN_SPARSEVECTOR_PLUGIN
|
||||
# endif
|
||||
|
||||
protected:
|
||||
|
||||
static void check_template_parameters()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(NumTraits<StorageIndex>::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE);
|
||||
EIGEN_STATIC_ASSERT((_Options&(ColMajor|RowMajor))==Options,INVALID_MATRIX_TEMPLATE_PARAMETERS);
|
||||
}
|
||||
|
||||
Storage m_data;
|
||||
Index m_size;
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename _Scalar, int _Options, typename _Index>
|
||||
struct evaluator<SparseVector<_Scalar,_Options,_Index> >
|
||||
: evaluator_base<SparseVector<_Scalar,_Options,_Index> >
|
||||
{
|
||||
typedef SparseVector<_Scalar,_Options,_Index> SparseVectorType;
|
||||
typedef evaluator_base<SparseVectorType> Base;
|
||||
typedef typename SparseVectorType::InnerIterator InnerIterator;
|
||||
typedef typename SparseVectorType::ReverseInnerIterator ReverseInnerIterator;
|
||||
|
||||
enum {
|
||||
CoeffReadCost = NumTraits<_Scalar>::ReadCost,
|
||||
Flags = SparseVectorType::Flags
|
||||
};
|
||||
|
||||
evaluator() : Base() {}
|
||||
|
||||
explicit evaluator(const SparseVectorType &mat) : m_matrix(&mat)
|
||||
{
|
||||
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
|
||||
}
|
||||
|
||||
inline Index nonZerosEstimate() const {
|
||||
return m_matrix->nonZeros();
|
||||
}
|
||||
|
||||
operator SparseVectorType&() { return m_matrix->const_cast_derived(); }
|
||||
operator const SparseVectorType&() const { return *m_matrix; }
|
||||
|
||||
const SparseVectorType *m_matrix;
|
||||
};
|
||||
|
||||
template< typename Dest, typename Src>
|
||||
struct sparse_vector_assign_selector<Dest,Src,SVA_Inner> {
|
||||
static void run(Dest& dst, const Src& src) {
|
||||
eigen_internal_assert(src.innerSize()==src.size());
|
||||
typedef internal::evaluator<Src> SrcEvaluatorType;
|
||||
SrcEvaluatorType srcEval(src);
|
||||
for(typename SrcEvaluatorType::InnerIterator it(srcEval, 0); it; ++it)
|
||||
dst.insert(it.index()) = it.value();
|
||||
}
|
||||
};
|
||||
|
||||
template< typename Dest, typename Src>
|
||||
struct sparse_vector_assign_selector<Dest,Src,SVA_Outer> {
|
||||
static void run(Dest& dst, const Src& src) {
|
||||
eigen_internal_assert(src.outerSize()==src.size());
|
||||
typedef internal::evaluator<Src> SrcEvaluatorType;
|
||||
SrcEvaluatorType srcEval(src);
|
||||
for(Index i=0; i<src.size(); ++i)
|
||||
{
|
||||
typename SrcEvaluatorType::InnerIterator it(srcEval, i);
|
||||
if(it)
|
||||
dst.insert(i) = it.value();
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template< typename Dest, typename Src>
|
||||
struct sparse_vector_assign_selector<Dest,Src,SVA_RuntimeSwitch> {
|
||||
static void run(Dest& dst, const Src& src) {
|
||||
if(src.outerSize()==1) sparse_vector_assign_selector<Dest,Src,SVA_Inner>::run(dst, src);
|
||||
else sparse_vector_assign_selector<Dest,Src,SVA_Outer>::run(dst, src);
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SPARSEVECTOR_H
|
||||
253
examples/ThirdPartyLibs/Eigen/src/SparseCore/SparseView.h
Normal file
253
examples/ThirdPartyLibs/Eigen/src/SparseCore/SparseView.h
Normal file
@@ -0,0 +1,253 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2010 Daniel Lowengrub <lowdanie@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SPARSEVIEW_H
|
||||
#define EIGEN_SPARSEVIEW_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename MatrixType>
|
||||
struct traits<SparseView<MatrixType> > : traits<MatrixType>
|
||||
{
|
||||
typedef typename MatrixType::StorageIndex StorageIndex;
|
||||
typedef Sparse StorageKind;
|
||||
enum {
|
||||
Flags = int(traits<MatrixType>::Flags) & (RowMajorBit)
|
||||
};
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/** \ingroup SparseCore_Module
|
||||
* \class SparseView
|
||||
*
|
||||
* \brief Expression of a dense or sparse matrix with zero or too small values removed
|
||||
*
|
||||
* \tparam MatrixType the type of the object of which we are removing the small entries
|
||||
*
|
||||
* This class represents an expression of a given dense or sparse matrix with
|
||||
* entries smaller than \c reference * \c epsilon are removed.
|
||||
* It is the return type of MatrixBase::sparseView() and SparseMatrixBase::pruned()
|
||||
* and most of the time this is the only way it is used.
|
||||
*
|
||||
* \sa MatrixBase::sparseView(), SparseMatrixBase::pruned()
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
class SparseView : public SparseMatrixBase<SparseView<MatrixType> >
|
||||
{
|
||||
typedef typename MatrixType::Nested MatrixTypeNested;
|
||||
typedef typename internal::remove_all<MatrixTypeNested>::type _MatrixTypeNested;
|
||||
typedef SparseMatrixBase<SparseView > Base;
|
||||
public:
|
||||
EIGEN_SPARSE_PUBLIC_INTERFACE(SparseView)
|
||||
typedef typename internal::remove_all<MatrixType>::type NestedExpression;
|
||||
|
||||
explicit SparseView(const MatrixType& mat, const Scalar& reference = Scalar(0),
|
||||
const RealScalar &epsilon = NumTraits<Scalar>::dummy_precision())
|
||||
: m_matrix(mat), m_reference(reference), m_epsilon(epsilon) {}
|
||||
|
||||
inline Index rows() const { return m_matrix.rows(); }
|
||||
inline Index cols() const { return m_matrix.cols(); }
|
||||
|
||||
inline Index innerSize() const { return m_matrix.innerSize(); }
|
||||
inline Index outerSize() const { return m_matrix.outerSize(); }
|
||||
|
||||
/** \returns the nested expression */
|
||||
const typename internal::remove_all<MatrixTypeNested>::type&
|
||||
nestedExpression() const { return m_matrix; }
|
||||
|
||||
Scalar reference() const { return m_reference; }
|
||||
RealScalar epsilon() const { return m_epsilon; }
|
||||
|
||||
protected:
|
||||
MatrixTypeNested m_matrix;
|
||||
Scalar m_reference;
|
||||
RealScalar m_epsilon;
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
// TODO find a way to unify the two following variants
|
||||
// This is tricky because implementing an inner iterator on top of an IndexBased evaluator is
|
||||
// not easy because the evaluators do not expose the sizes of the underlying expression.
|
||||
|
||||
template<typename ArgType>
|
||||
struct unary_evaluator<SparseView<ArgType>, IteratorBased>
|
||||
: public evaluator_base<SparseView<ArgType> >
|
||||
{
|
||||
typedef typename evaluator<ArgType>::InnerIterator EvalIterator;
|
||||
public:
|
||||
typedef SparseView<ArgType> XprType;
|
||||
|
||||
class InnerIterator : public EvalIterator
|
||||
{
|
||||
typedef typename XprType::Scalar Scalar;
|
||||
public:
|
||||
|
||||
EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& sve, Index outer)
|
||||
: EvalIterator(sve.m_argImpl,outer), m_view(sve.m_view)
|
||||
{
|
||||
incrementToNonZero();
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE InnerIterator& operator++()
|
||||
{
|
||||
EvalIterator::operator++();
|
||||
incrementToNonZero();
|
||||
return *this;
|
||||
}
|
||||
|
||||
using EvalIterator::value;
|
||||
|
||||
protected:
|
||||
const XprType &m_view;
|
||||
|
||||
private:
|
||||
void incrementToNonZero()
|
||||
{
|
||||
while((bool(*this)) && internal::isMuchSmallerThan(value(), m_view.reference(), m_view.epsilon()))
|
||||
{
|
||||
EvalIterator::operator++();
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
enum {
|
||||
CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
|
||||
Flags = XprType::Flags
|
||||
};
|
||||
|
||||
explicit unary_evaluator(const XprType& xpr) : m_argImpl(xpr.nestedExpression()), m_view(xpr) {}
|
||||
|
||||
protected:
|
||||
evaluator<ArgType> m_argImpl;
|
||||
const XprType &m_view;
|
||||
};
|
||||
|
||||
template<typename ArgType>
|
||||
struct unary_evaluator<SparseView<ArgType>, IndexBased>
|
||||
: public evaluator_base<SparseView<ArgType> >
|
||||
{
|
||||
public:
|
||||
typedef SparseView<ArgType> XprType;
|
||||
protected:
|
||||
enum { IsRowMajor = (XprType::Flags&RowMajorBit)==RowMajorBit };
|
||||
typedef typename XprType::Scalar Scalar;
|
||||
typedef typename XprType::StorageIndex StorageIndex;
|
||||
public:
|
||||
|
||||
class InnerIterator
|
||||
{
|
||||
public:
|
||||
|
||||
EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& sve, Index outer)
|
||||
: m_sve(sve), m_inner(0), m_outer(outer), m_end(sve.m_view.innerSize())
|
||||
{
|
||||
incrementToNonZero();
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE InnerIterator& operator++()
|
||||
{
|
||||
m_inner++;
|
||||
incrementToNonZero();
|
||||
return *this;
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE Scalar value() const
|
||||
{
|
||||
return (IsRowMajor) ? m_sve.m_argImpl.coeff(m_outer, m_inner)
|
||||
: m_sve.m_argImpl.coeff(m_inner, m_outer);
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE StorageIndex index() const { return m_inner; }
|
||||
inline Index row() const { return IsRowMajor ? m_outer : index(); }
|
||||
inline Index col() const { return IsRowMajor ? index() : m_outer; }
|
||||
|
||||
EIGEN_STRONG_INLINE operator bool() const { return m_inner < m_end && m_inner>=0; }
|
||||
|
||||
protected:
|
||||
const unary_evaluator &m_sve;
|
||||
Index m_inner;
|
||||
const Index m_outer;
|
||||
const Index m_end;
|
||||
|
||||
private:
|
||||
void incrementToNonZero()
|
||||
{
|
||||
while((bool(*this)) && internal::isMuchSmallerThan(value(), m_sve.m_view.reference(), m_sve.m_view.epsilon()))
|
||||
{
|
||||
m_inner++;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
enum {
|
||||
CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
|
||||
Flags = XprType::Flags
|
||||
};
|
||||
|
||||
explicit unary_evaluator(const XprType& xpr) : m_argImpl(xpr.nestedExpression()), m_view(xpr) {}
|
||||
|
||||
protected:
|
||||
evaluator<ArgType> m_argImpl;
|
||||
const XprType &m_view;
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
/** \ingroup SparseCore_Module
|
||||
*
|
||||
* \returns a sparse expression of the dense expression \c *this with values smaller than
|
||||
* \a reference * \a epsilon removed.
|
||||
*
|
||||
* This method is typically used when prototyping to convert a quickly assembled dense Matrix \c D to a SparseMatrix \c S:
|
||||
* \code
|
||||
* MatrixXd D(n,m);
|
||||
* SparseMatrix<double> S;
|
||||
* S = D.sparseView(); // suppress numerical zeros (exact)
|
||||
* S = D.sparseView(reference);
|
||||
* S = D.sparseView(reference,epsilon);
|
||||
* \endcode
|
||||
* where \a reference is a meaningful non zero reference value,
|
||||
* and \a epsilon is a tolerance factor defaulting to NumTraits<Scalar>::dummy_precision().
|
||||
*
|
||||
* \sa SparseMatrixBase::pruned(), class SparseView */
|
||||
template<typename Derived>
|
||||
const SparseView<Derived> MatrixBase<Derived>::sparseView(const Scalar& reference,
|
||||
const typename NumTraits<Scalar>::Real& epsilon) const
|
||||
{
|
||||
return SparseView<Derived>(derived(), reference, epsilon);
|
||||
}
|
||||
|
||||
/** \returns an expression of \c *this with values smaller than
|
||||
* \a reference * \a epsilon removed.
|
||||
*
|
||||
* This method is typically used in conjunction with the product of two sparse matrices
|
||||
* to automatically prune the smallest values as follows:
|
||||
* \code
|
||||
* C = (A*B).pruned(); // suppress numerical zeros (exact)
|
||||
* C = (A*B).pruned(ref);
|
||||
* C = (A*B).pruned(ref,epsilon);
|
||||
* \endcode
|
||||
* where \c ref is a meaningful non zero reference value.
|
||||
* */
|
||||
template<typename Derived>
|
||||
const SparseView<Derived>
|
||||
SparseMatrixBase<Derived>::pruned(const Scalar& reference,
|
||||
const RealScalar& epsilon) const
|
||||
{
|
||||
return SparseView<Derived>(derived(), reference, epsilon);
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif
|
||||
315
examples/ThirdPartyLibs/Eigen/src/SparseCore/TriangularSolver.h
Normal file
315
examples/ThirdPartyLibs/Eigen/src/SparseCore/TriangularSolver.h
Normal file
@@ -0,0 +1,315 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SPARSETRIANGULARSOLVER_H
|
||||
#define EIGEN_SPARSETRIANGULARSOLVER_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Lhs, typename Rhs, int Mode,
|
||||
int UpLo = (Mode & Lower)
|
||||
? Lower
|
||||
: (Mode & Upper)
|
||||
? Upper
|
||||
: -1,
|
||||
int StorageOrder = int(traits<Lhs>::Flags) & RowMajorBit>
|
||||
struct sparse_solve_triangular_selector;
|
||||
|
||||
// forward substitution, row-major
|
||||
template<typename Lhs, typename Rhs, int Mode>
|
||||
struct sparse_solve_triangular_selector<Lhs,Rhs,Mode,Lower,RowMajor>
|
||||
{
|
||||
typedef typename Rhs::Scalar Scalar;
|
||||
typedef evaluator<Lhs> LhsEval;
|
||||
typedef typename evaluator<Lhs>::InnerIterator LhsIterator;
|
||||
static void run(const Lhs& lhs, Rhs& other)
|
||||
{
|
||||
LhsEval lhsEval(lhs);
|
||||
for(Index col=0 ; col<other.cols() ; ++col)
|
||||
{
|
||||
for(Index i=0; i<lhs.rows(); ++i)
|
||||
{
|
||||
Scalar tmp = other.coeff(i,col);
|
||||
Scalar lastVal(0);
|
||||
Index lastIndex = 0;
|
||||
for(LhsIterator it(lhsEval, i); it; ++it)
|
||||
{
|
||||
lastVal = it.value();
|
||||
lastIndex = it.index();
|
||||
if(lastIndex==i)
|
||||
break;
|
||||
tmp -= lastVal * other.coeff(lastIndex,col);
|
||||
}
|
||||
if (Mode & UnitDiag)
|
||||
other.coeffRef(i,col) = tmp;
|
||||
else
|
||||
{
|
||||
eigen_assert(lastIndex==i);
|
||||
other.coeffRef(i,col) = tmp/lastVal;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// backward substitution, row-major
|
||||
template<typename Lhs, typename Rhs, int Mode>
|
||||
struct sparse_solve_triangular_selector<Lhs,Rhs,Mode,Upper,RowMajor>
|
||||
{
|
||||
typedef typename Rhs::Scalar Scalar;
|
||||
typedef evaluator<Lhs> LhsEval;
|
||||
typedef typename evaluator<Lhs>::InnerIterator LhsIterator;
|
||||
static void run(const Lhs& lhs, Rhs& other)
|
||||
{
|
||||
LhsEval lhsEval(lhs);
|
||||
for(Index col=0 ; col<other.cols() ; ++col)
|
||||
{
|
||||
for(Index i=lhs.rows()-1 ; i>=0 ; --i)
|
||||
{
|
||||
Scalar tmp = other.coeff(i,col);
|
||||
Scalar l_ii(0);
|
||||
LhsIterator it(lhsEval, i);
|
||||
while(it && it.index()<i)
|
||||
++it;
|
||||
if(!(Mode & UnitDiag))
|
||||
{
|
||||
eigen_assert(it && it.index()==i);
|
||||
l_ii = it.value();
|
||||
++it;
|
||||
}
|
||||
else if (it && it.index() == i)
|
||||
++it;
|
||||
for(; it; ++it)
|
||||
{
|
||||
tmp -= it.value() * other.coeff(it.index(),col);
|
||||
}
|
||||
|
||||
if (Mode & UnitDiag) other.coeffRef(i,col) = tmp;
|
||||
else other.coeffRef(i,col) = tmp/l_ii;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// forward substitution, col-major
|
||||
template<typename Lhs, typename Rhs, int Mode>
|
||||
struct sparse_solve_triangular_selector<Lhs,Rhs,Mode,Lower,ColMajor>
|
||||
{
|
||||
typedef typename Rhs::Scalar Scalar;
|
||||
typedef evaluator<Lhs> LhsEval;
|
||||
typedef typename evaluator<Lhs>::InnerIterator LhsIterator;
|
||||
static void run(const Lhs& lhs, Rhs& other)
|
||||
{
|
||||
LhsEval lhsEval(lhs);
|
||||
for(Index col=0 ; col<other.cols() ; ++col)
|
||||
{
|
||||
for(Index i=0; i<lhs.cols(); ++i)
|
||||
{
|
||||
Scalar& tmp = other.coeffRef(i,col);
|
||||
if (tmp!=Scalar(0)) // optimization when other is actually sparse
|
||||
{
|
||||
LhsIterator it(lhsEval, i);
|
||||
while(it && it.index()<i)
|
||||
++it;
|
||||
if(!(Mode & UnitDiag))
|
||||
{
|
||||
eigen_assert(it && it.index()==i);
|
||||
tmp /= it.value();
|
||||
}
|
||||
if (it && it.index()==i)
|
||||
++it;
|
||||
for(; it; ++it)
|
||||
other.coeffRef(it.index(), col) -= tmp * it.value();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// backward substitution, col-major
|
||||
template<typename Lhs, typename Rhs, int Mode>
|
||||
struct sparse_solve_triangular_selector<Lhs,Rhs,Mode,Upper,ColMajor>
|
||||
{
|
||||
typedef typename Rhs::Scalar Scalar;
|
||||
typedef evaluator<Lhs> LhsEval;
|
||||
typedef typename evaluator<Lhs>::InnerIterator LhsIterator;
|
||||
static void run(const Lhs& lhs, Rhs& other)
|
||||
{
|
||||
LhsEval lhsEval(lhs);
|
||||
for(Index col=0 ; col<other.cols() ; ++col)
|
||||
{
|
||||
for(Index i=lhs.cols()-1; i>=0; --i)
|
||||
{
|
||||
Scalar& tmp = other.coeffRef(i,col);
|
||||
if (tmp!=Scalar(0)) // optimization when other is actually sparse
|
||||
{
|
||||
if(!(Mode & UnitDiag))
|
||||
{
|
||||
// TODO replace this by a binary search. make sure the binary search is safe for partially sorted elements
|
||||
LhsIterator it(lhsEval, i);
|
||||
while(it && it.index()!=i)
|
||||
++it;
|
||||
eigen_assert(it && it.index()==i);
|
||||
other.coeffRef(i,col) /= it.value();
|
||||
}
|
||||
LhsIterator it(lhsEval, i);
|
||||
for(; it && it.index()<i; ++it)
|
||||
other.coeffRef(it.index(), col) -= tmp * it.value();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
|
||||
template<typename ExpressionType,unsigned int Mode>
|
||||
template<typename OtherDerived>
|
||||
void TriangularViewImpl<ExpressionType,Mode,Sparse>::solveInPlace(MatrixBase<OtherDerived>& other) const
|
||||
{
|
||||
eigen_assert(derived().cols() == derived().rows() && derived().cols() == other.rows());
|
||||
eigen_assert((!(Mode & ZeroDiag)) && bool(Mode & (Upper|Lower)));
|
||||
|
||||
enum { copy = internal::traits<OtherDerived>::Flags & RowMajorBit };
|
||||
|
||||
typedef typename internal::conditional<copy,
|
||||
typename internal::plain_matrix_type_column_major<OtherDerived>::type, OtherDerived&>::type OtherCopy;
|
||||
OtherCopy otherCopy(other.derived());
|
||||
|
||||
internal::sparse_solve_triangular_selector<ExpressionType, typename internal::remove_reference<OtherCopy>::type, Mode>::run(derived().nestedExpression(), otherCopy);
|
||||
|
||||
if (copy)
|
||||
other = otherCopy;
|
||||
}
|
||||
#endif
|
||||
|
||||
// pure sparse path
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Lhs, typename Rhs, int Mode,
|
||||
int UpLo = (Mode & Lower)
|
||||
? Lower
|
||||
: (Mode & Upper)
|
||||
? Upper
|
||||
: -1,
|
||||
int StorageOrder = int(Lhs::Flags) & (RowMajorBit)>
|
||||
struct sparse_solve_triangular_sparse_selector;
|
||||
|
||||
// forward substitution, col-major
|
||||
template<typename Lhs, typename Rhs, int Mode, int UpLo>
|
||||
struct sparse_solve_triangular_sparse_selector<Lhs,Rhs,Mode,UpLo,ColMajor>
|
||||
{
|
||||
typedef typename Rhs::Scalar Scalar;
|
||||
typedef typename promote_index_type<typename traits<Lhs>::StorageIndex,
|
||||
typename traits<Rhs>::StorageIndex>::type StorageIndex;
|
||||
static void run(const Lhs& lhs, Rhs& other)
|
||||
{
|
||||
const bool IsLower = (UpLo==Lower);
|
||||
AmbiVector<Scalar,StorageIndex> tempVector(other.rows()*2);
|
||||
tempVector.setBounds(0,other.rows());
|
||||
|
||||
Rhs res(other.rows(), other.cols());
|
||||
res.reserve(other.nonZeros());
|
||||
|
||||
for(Index col=0 ; col<other.cols() ; ++col)
|
||||
{
|
||||
// FIXME estimate number of non zeros
|
||||
tempVector.init(.99/*float(other.col(col).nonZeros())/float(other.rows())*/);
|
||||
tempVector.setZero();
|
||||
tempVector.restart();
|
||||
for (typename Rhs::InnerIterator rhsIt(other, col); rhsIt; ++rhsIt)
|
||||
{
|
||||
tempVector.coeffRef(rhsIt.index()) = rhsIt.value();
|
||||
}
|
||||
|
||||
for(Index i=IsLower?0:lhs.cols()-1;
|
||||
IsLower?i<lhs.cols():i>=0;
|
||||
i+=IsLower?1:-1)
|
||||
{
|
||||
tempVector.restart();
|
||||
Scalar& ci = tempVector.coeffRef(i);
|
||||
if (ci!=Scalar(0))
|
||||
{
|
||||
// find
|
||||
typename Lhs::InnerIterator it(lhs, i);
|
||||
if(!(Mode & UnitDiag))
|
||||
{
|
||||
if (IsLower)
|
||||
{
|
||||
eigen_assert(it.index()==i);
|
||||
ci /= it.value();
|
||||
}
|
||||
else
|
||||
ci /= lhs.coeff(i,i);
|
||||
}
|
||||
tempVector.restart();
|
||||
if (IsLower)
|
||||
{
|
||||
if (it.index()==i)
|
||||
++it;
|
||||
for(; it; ++it)
|
||||
tempVector.coeffRef(it.index()) -= ci * it.value();
|
||||
}
|
||||
else
|
||||
{
|
||||
for(; it && it.index()<i; ++it)
|
||||
tempVector.coeffRef(it.index()) -= ci * it.value();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Index count = 0;
|
||||
// FIXME compute a reference value to filter zeros
|
||||
for (typename AmbiVector<Scalar,StorageIndex>::Iterator it(tempVector/*,1e-12*/); it; ++it)
|
||||
{
|
||||
++ count;
|
||||
// std::cerr << "fill " << it.index() << ", " << col << "\n";
|
||||
// std::cout << it.value() << " ";
|
||||
// FIXME use insertBack
|
||||
res.insert(it.index(), col) = it.value();
|
||||
}
|
||||
// std::cout << "tempVector.nonZeros() == " << int(count) << " / " << (other.rows()) << "\n";
|
||||
}
|
||||
res.finalize();
|
||||
other = res.markAsRValue();
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
template<typename ExpressionType,unsigned int Mode>
|
||||
template<typename OtherDerived>
|
||||
void TriangularViewImpl<ExpressionType,Mode,Sparse>::solveInPlace(SparseMatrixBase<OtherDerived>& other) const
|
||||
{
|
||||
eigen_assert(derived().cols() == derived().rows() && derived().cols() == other.rows());
|
||||
eigen_assert( (!(Mode & ZeroDiag)) && bool(Mode & (Upper|Lower)));
|
||||
|
||||
// enum { copy = internal::traits<OtherDerived>::Flags & RowMajorBit };
|
||||
|
||||
// typedef typename internal::conditional<copy,
|
||||
// typename internal::plain_matrix_type_column_major<OtherDerived>::type, OtherDerived&>::type OtherCopy;
|
||||
// OtherCopy otherCopy(other.derived());
|
||||
|
||||
internal::sparse_solve_triangular_sparse_selector<ExpressionType, OtherDerived, Mode>::run(derived().nestedExpression(), other.derived());
|
||||
|
||||
// if (copy)
|
||||
// other = otherCopy;
|
||||
}
|
||||
#endif
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_SPARSETRIANGULARSOLVER_H
|
||||
Reference in New Issue
Block a user