+ Fix btSubsimplexConvexCast

Thanks to Nacho, http://www.bulletphysics.com/Bullet/phpBB3/viewtopic.php?f=9&t=2422)
Fix in rendering, GL_STENCIL
+ btTriangleIndexVertexArray indices should be unsigned int/unsigned short int,
+ Made InternalProcessAllTriangles virtual, thanks to 
Both thank to Fullmetalcoder, http://www.bulletphysics.com/Bullet/phpBB3/viewtopic.php?f=9&t=2401
+clamp impulse for btPoint2PointConstraint
Thanks to Martijn Reuvers, http://www.bulletphysics.com/Bullet/phpBB3/viewtopic.php?f=9&t=2418
+ Free memory of bvh, pass in scaling factor (optional)
Thanks to Roy Eltham, http://www.bulletphysics.com/Bullet/phpBB3/viewtopic.php?f=9&t=2375
This commit is contained in:
erwin.coumans
2008-07-31 19:44:28 +00:00
parent 9cd83c004b
commit af4520801b
22 changed files with 332 additions and 273 deletions

View File

@@ -335,7 +335,7 @@ int main(int argc, char** argv)
printf("Bullet version %d\n",bulletVersion);
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE |GLUT_DEPTH);
glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE |GLUT_DEPTH | GLUT_STENCIL);
glutInitWindowSize(width, height);
mainWindow = glutCreateWindow("http://bulletphysics.com");
#ifdef BT_USE_FREEGLUT

View File

@@ -184,7 +184,9 @@ void ConcaveDemo::initPhysics()
//comment out the next line to read the BVH from disk (first run the demo once to create the BVH)
#define SERIALIZE_TO_DISK 1
#ifdef SERIALIZE_TO_DISK
trimeshShape = new btBvhTriangleMeshShape(m_indexVertexArrays,useQuantizedAabbCompression);
btVector3 aabbMin(-1000,-1000,-1000),aabbMax(1000,1000,1000);
trimeshShape = new btBvhTriangleMeshShape(m_indexVertexArrays,useQuantizedAabbCompression,aabbMin,aabbMax);
m_collisionShapes.push_back(trimeshShape);
@@ -295,7 +297,7 @@ void ConcaveDemo::initPhysics()
startTransform.setIdentity();
staticBody = localCreateRigidBody(mass, startTransform,groundShape);
staticBody->setCollisionFlags(staticBody->getCollisionFlags() | btCollisionObject::CF_STATIC_OBJECT);
staticBody->setCollisionFlags(staticBody->getCollisionFlags() | btCollisionObject::CF_KINEMATIC_OBJECT);//STATIC_OBJECT);
//enable custom material callback
staticBody->setCollisionFlags(staticBody->getCollisionFlags() | btCollisionObject::CF_CUSTOM_MATERIAL_CALLBACK);

View File

@@ -2,13 +2,17 @@
#include "ConcaveDemo.h"
#include "GlutStuff.h"
#include "GLDebugDrawer.h"
#include "btBulletDynamicsCommon.h"
GLDebugDrawer gDebugDrawer;
int main(int argc,char** argv)
{
ConcaveDemo* concaveDemo = new ConcaveDemo();
concaveDemo->initPhysics();
concaveDemo->setCameraDistance(30.f);
concaveDemo->getDynamicsWorld()->setDebugDrawer(&gDebugDrawer);
return glutmain(argc, argv,640,480,"Static Concave Mesh Demo",concaveDemo);
}

View File

@@ -599,6 +599,8 @@ btVector3 DemoApplication::getRayTo(int x,int y)
return rayTo;
}
btScalar mousePickClamping = 3.f;
void DemoApplication::mouseFunc(int button, int state, int x, int y)
{
@@ -686,6 +688,8 @@ void DemoApplication::mouseFunc(int button, int state, int x, int y)
btVector3 localPivot = body->getCenterOfMassTransform().inverse() * pickPos;
btPoint2PointConstraint* p2p = new btPoint2PointConstraint(*body,localPivot);
p2p->m_setting.m_impulseClamp = mousePickClamping;
m_dynamicsWorld->addConstraint(p2p);
m_pickConstraint = p2p;
@@ -965,6 +969,8 @@ for(int i=0;i<numObjects;i++)
//
void DemoApplication::renderme()
{
myinit();
updateCamera();
if (m_dynamicsWorld)

View File

@@ -184,17 +184,17 @@ void OGL_displaylist_register_shape(btCollisionShape * shape)
#endif //USE_DISPLAY_LISTS
void GL_ShapeDrawer::drawCoordSystem() {
glBegin(GL_LINES);
glColor3f(1, 0, 0);
glVertex3d(0, 0, 0);
glVertex3d(1, 0, 0);
glColor3f(0, 1, 0);
glVertex3d(0, 0, 0);
glVertex3d(0, 1, 0);
glColor3f(0, 0, 1);
glVertex3d(0, 0, 0);
glVertex3d(0, 0, 1);
glEnd();
glBegin(GL_LINES);
glColor3f(1, 0, 0);
glVertex3d(0, 0, 0);
glVertex3d(1, 0, 0);
glColor3f(0, 1, 0);
glVertex3d(0, 0, 0);
glVertex3d(0, 1, 0);
glColor3f(0, 0, 1);
glVertex3d(0, 0, 0);
glVertex3d(0, 0, 1);
glEnd();
}
@@ -319,45 +319,45 @@ void GL_ShapeDrawer::drawCylinder(float radius,float halfHeight, int upAxis)
GL_ShapeDrawer::ShapeCache* GL_ShapeDrawer::cache(btConvexShape* shape)
{
ShapeCache* sc=(ShapeCache*)shape->getUserPointer();
if(!sc)
ShapeCache* sc=(ShapeCache*)shape->getUserPointer();
if(!sc)
{
sc=new(btAlignedAlloc(sizeof(ShapeCache),16)) ShapeCache(shape);
sc->m_shapehull.buildHull(shape->getMargin());
m_shapecaches.push_back(sc);
shape->setUserPointer(sc);
/* Build edges */
const int ni=sc->m_shapehull.numIndices();
const int nv=sc->m_shapehull.numVertices();
const unsigned int* pi=sc->m_shapehull.getIndexPointer();
const btVector3* pv=sc->m_shapehull.getVertexPointer();
btAlignedObjectArray<ShapeCache::Edge*> edges;
sc->m_edges.reserve(ni);
edges.resize(nv*nv,0);
for(int i=0;i<ni;i+=3)
sc=new(btAlignedAlloc(sizeof(ShapeCache),16)) ShapeCache(shape);
sc->m_shapehull.buildHull(shape->getMargin());
m_shapecaches.push_back(sc);
shape->setUserPointer(sc);
/* Build edges */
const int ni=sc->m_shapehull.numIndices();
const int nv=sc->m_shapehull.numVertices();
const unsigned int* pi=sc->m_shapehull.getIndexPointer();
const btVector3* pv=sc->m_shapehull.getVertexPointer();
btAlignedObjectArray<ShapeCache::Edge*> edges;
sc->m_edges.reserve(ni);
edges.resize(nv*nv,0);
for(int i=0;i<ni;i+=3)
{
const unsigned int* ti=pi+i;
const btVector3 nrm=cross(pv[ti[1]]-pv[ti[0]],pv[ti[2]]-pv[ti[0]]).normalized();
for(int j=2,k=0;k<3;j=k++)
const unsigned int* ti=pi+i;
const btVector3 nrm=cross(pv[ti[1]]-pv[ti[0]],pv[ti[2]]-pv[ti[0]]).normalized();
for(int j=2,k=0;k<3;j=k++)
{
const unsigned int a=ti[j];
const unsigned int b=ti[k];
ShapeCache::Edge*& e=edges[btMin(a,b)*nv+btMax(a,b)];
if(!e)
const unsigned int a=ti[j];
const unsigned int b=ti[k];
ShapeCache::Edge*& e=edges[btMin(a,b)*nv+btMax(a,b)];
if(!e)
{
sc->m_edges.push_back(ShapeCache::Edge());
e=&sc->m_edges[sc->m_edges.size()-1];
e->n[0]=nrm;e->n[1]=-nrm;
e->v[0]=a;e->v[1]=b;
sc->m_edges.push_back(ShapeCache::Edge());
e=&sc->m_edges[sc->m_edges.size()-1];
e->n[0]=nrm;e->n[1]=-nrm;
e->v[0]=a;e->v[1]=b;
}
else
{
e->n[1]=nrm;
e->n[1]=nrm;
}
}
}
}
return(sc);
return(sc);
}
void GL_ShapeDrawer::drawOpenGL(btScalar* m, const btCollisionShape* shape, const btVector3& color,int debugMode)
@@ -365,7 +365,7 @@ void GL_ShapeDrawer::drawOpenGL(btScalar* m, const btCollisionShape* shape, cons
glPushMatrix();
btglMultMatrix(m);
btglMultMatrix(m);
if (shape->getShapeType() == UNIFORM_SCALING_SHAPE_PROXYTYPE)
{
@@ -374,9 +374,9 @@ void GL_ShapeDrawer::drawOpenGL(btScalar* m, const btCollisionShape* shape, cons
float scalingFactor = (float)scalingShape->getUniformScalingFactor();
{
btScalar tmpScaling[4][4]={{scalingFactor,0,0,0},
{0,scalingFactor,0,0},
{0,0,scalingFactor,0},
{0,0,0,1}};
{0,scalingFactor,0,0},
{0,0,scalingFactor,0},
{0,0,0,1}};
drawOpenGL( (btScalar*)tmpScaling,convexShape,color,debugMode);
}
@@ -399,20 +399,20 @@ void GL_ShapeDrawer::drawOpenGL(btScalar* m, const btCollisionShape* shape, cons
} else
{
if(m_textureenabled&&(!m_textureinitialized))
{
{
GLubyte* image=new GLubyte[256*256*3];
for(int y=0;y<256;++y)
{
{
const int t=y>>4;
GLubyte* pi=image+y*256*3;
for(int x=0;x<256;++x)
{
{
const int s=x>>4;
const GLubyte b=180;
GLubyte c=b+((s+t&1)&1)*(255-b);
pi[0]=pi[1]=pi[2]=c;pi+=3;
}
}
}
glGenTextures(1,&m_texturehandle);
glBindTexture(GL_TEXTURE_2D,m_texturehandle);
glTexEnvf(GL_TEXTURE_ENV,GL_TEXTURE_ENV_MODE,GL_MODULATE);
@@ -438,12 +438,18 @@ void GL_ShapeDrawer::drawOpenGL(btScalar* m, const btCollisionShape* shape, cons
glEnable(GL_TEXTURE_GEN_T);
glEnable(GL_TEXTURE_GEN_R);
m_textureinitialized=true;
}
}
//drawCoordSystem();
//glPushMatrix();
glEnable(GL_COLOR_MATERIAL);
if(m_textureenabled) glEnable(GL_TEXTURE_2D);
if(m_textureenabled)
{
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D,m_texturehandle);
}
glColor3f(color.x(),color.y(), color.z());
bool useWireframeFallback = true;
@@ -550,7 +556,7 @@ void GL_ShapeDrawer::drawOpenGL(btScalar* m, const btCollisionShape* shape, cons
if (shape->isConvex())
{
ShapeCache* sc=cache((btConvexShape*)shape);
#if 0
#if 0
btConvexShape* convexShape = (btConvexShape*)shape;
if (!shape->getUserPointer())
{
@@ -566,13 +572,13 @@ void GL_ShapeDrawer::drawOpenGL(btScalar* m, const btCollisionShape* shape, cons
convexShape->setUserPointer(hull);
// printf("numTriangles = %d\n", hull->numTriangles ());
// printf("numIndices = %d\n", hull->numIndices ());
// printf("numVertices = %d\n", hull->numVertices ());
// printf("numTriangles = %d\n", hull->numTriangles ());
// printf("numIndices = %d\n", hull->numIndices ());
// printf("numVertices = %d\n", hull->numVertices ());
}
#endif
#endif
@@ -620,11 +626,11 @@ void GL_ShapeDrawer::drawOpenGL(btScalar* m, const btCollisionShape* shape, cons
}
glEnd ();
}
}
}
}
}
}
}
@@ -672,7 +678,7 @@ void GL_ShapeDrawer::drawOpenGL(btScalar* m, const btCollisionShape* shape, cons
#ifdef USE_DISPLAY_LISTS
if (shape->getShapeType() == TRIANGLE_MESH_SHAPE_PROXYTYPE||shape->getShapeType() == GIMPACT_SHAPE_PROXYTYPE)
if (shape->getShapeType() == TRIANGLE_MESH_SHAPE_PROXYTYPE||shape->getShapeType() == GIMPACT_SHAPE_PROXYTYPE)
{
GLuint dlist = OGL_get_displaylist_for_shape((btCollisionShape * )shape);
if (dlist)
@@ -682,8 +688,8 @@ void GL_ShapeDrawer::drawOpenGL(btScalar* m, const btCollisionShape* shape, cons
else
{
#else
if (shape->isConcave())//>getShapeType() == TRIANGLE_MESH_SHAPE_PROXYTYPE||shape->getShapeType() == GIMPACT_SHAPE_PROXYTYPE)
// if (shape->getShapeType() == TRIANGLE_MESH_SHAPE_PROXYTYPE)
if (shape->isConcave())//>getShapeType() == TRIANGLE_MESH_SHAPE_PROXYTYPE||shape->getShapeType() == GIMPACT_SHAPE_PROXYTYPE)
// if (shape->getShapeType() == TRIANGLE_MESH_SHAPE_PROXYTYPE)
{
btConcaveShape* concaveMesh = (btConcaveShape*) shape;
//btVector3 aabbMax(btScalar(1e30),btScalar(1e30),btScalar(1e30));
@@ -702,133 +708,133 @@ void GL_ShapeDrawer::drawOpenGL(btScalar* m, const btCollisionShape* shape, cons
#endif
#ifdef USE_DISPLAY_LISTS
}
}
}
#endif
/*
if (shape->getShapeType() == CONVEX_TRIANGLEMESH_SHAPE_PROXYTYPE)
{
btConvexTriangleMeshShape* convexMesh = (btConvexTriangleMeshShape*) shape;
/*
if (shape->getShapeType() == CONVEX_TRIANGLEMESH_SHAPE_PROXYTYPE)
{
btConvexTriangleMeshShape* convexMesh = (btConvexTriangleMeshShape*) shape;
//todo: pass camera for some culling
btVector3 aabbMax(btScalar(1e30),btScalar(1e30),btScalar(1e30));
btVector3 aabbMin(-btScalar(1e30),-btScalar(1e30),-btScalar(1e30));
TriangleGlDrawcallback drawCallback;
convexMesh->getMeshInterface()->InternalProcessAllTriangles(&drawCallback,aabbMin,aabbMax);
//todo: pass camera for some culling
btVector3 aabbMax(btScalar(1e30),btScalar(1e30),btScalar(1e30));
btVector3 aabbMin(-btScalar(1e30),-btScalar(1e30),-btScalar(1e30));
TriangleGlDrawcallback drawCallback;
convexMesh->getMeshInterface()->InternalProcessAllTriangles(&drawCallback,aabbMin,aabbMax);
}
*/
}
*/
glDisable(GL_DEPTH_BUFFER_BIT);
glRasterPos3f(0,0,0);//mvtx.x(), vtx.y(), vtx.z());
if (debugMode&btIDebugDraw::DBG_DrawText)
{
BMF_DrawString(BMF_GetFont(BMF_kHelvetica10),shape->getName());
}
glDisable(GL_DEPTH_BUFFER_BIT);
glRasterPos3f(0,0,0);//mvtx.x(), vtx.y(), vtx.z());
if (debugMode&btIDebugDraw::DBG_DrawText)
{
BMF_DrawString(BMF_GetFont(BMF_kHelvetica10),shape->getName());
}
if (debugMode& btIDebugDraw::DBG_DrawFeaturesText)
{
//BMF_DrawString(BMF_GetFont(BMF_kHelvetica10),shape->getExtraDebugInfo());
}
glEnable(GL_DEPTH_BUFFER_BIT);
if (debugMode& btIDebugDraw::DBG_DrawFeaturesText)
{
//BMF_DrawString(BMF_GetFont(BMF_kHelvetica10),shape->getExtraDebugInfo());
}
glEnable(GL_DEPTH_BUFFER_BIT);
// glPopMatrix();
if(m_textureenabled) glDisable(GL_TEXTURE_2D);
// glPopMatrix();
if(m_textureenabled) glDisable(GL_TEXTURE_2D);
}
glPopMatrix();
glPopMatrix();
}
//
void GL_ShapeDrawer::drawShadow(btScalar* m,const btVector3& extrusion,const btCollisionShape* shape)
{
glPushMatrix();
btglMultMatrix(m);
if(shape->getShapeType() == UNIFORM_SCALING_SHAPE_PROXYTYPE)
glPushMatrix();
btglMultMatrix(m);
if(shape->getShapeType() == UNIFORM_SCALING_SHAPE_PROXYTYPE)
{
const btUniformScalingShape* scalingShape = static_cast<const btUniformScalingShape*>(shape);
const btConvexShape* convexShape = scalingShape->getChildShape();
float scalingFactor = (float)scalingShape->getUniformScalingFactor();
btScalar tmpScaling[4][4]={ {scalingFactor,0,0,0},
{0,scalingFactor,0,0},
{0,0,scalingFactor,0},
{0,0,0,1}};
drawShadow((btScalar*)tmpScaling,extrusion,convexShape);
glPopMatrix();
return;
const btUniformScalingShape* scalingShape = static_cast<const btUniformScalingShape*>(shape);
const btConvexShape* convexShape = scalingShape->getChildShape();
float scalingFactor = (float)scalingShape->getUniformScalingFactor();
btScalar tmpScaling[4][4]={ {scalingFactor,0,0,0},
{0,scalingFactor,0,0},
{0,0,scalingFactor,0},
{0,0,0,1}};
drawShadow((btScalar*)tmpScaling,extrusion,convexShape);
glPopMatrix();
return;
}
else if(shape->getShapeType()==COMPOUND_SHAPE_PROXYTYPE)
else if(shape->getShapeType()==COMPOUND_SHAPE_PROXYTYPE)
{
const btCompoundShape* compoundShape = static_cast<const btCompoundShape*>(shape);
for (int i=compoundShape->getNumChildShapes()-1;i>=0;i--)
const btCompoundShape* compoundShape = static_cast<const btCompoundShape*>(shape);
for (int i=compoundShape->getNumChildShapes()-1;i>=0;i--)
{
btTransform childTrans = compoundShape->getChildTransform(i);
const btCollisionShape* colShape = compoundShape->getChildShape(i);
btScalar childMat[16];
childTrans.getOpenGLMatrix(childMat);
drawShadow(childMat,extrusion*childTrans.getBasis(),colShape);
btTransform childTrans = compoundShape->getChildTransform(i);
const btCollisionShape* colShape = compoundShape->getChildShape(i);
btScalar childMat[16];
childTrans.getOpenGLMatrix(childMat);
drawShadow(childMat,extrusion*childTrans.getBasis(),colShape);
}
}
else
else
{
bool useWireframeFallback = true;
if (shape->isConvex())
{
ShapeCache* sc=cache((btConvexShape*)shape);
btShapeHull* hull =&sc->m_shapehull;
glBegin(GL_QUADS);
for(int i=0;i<sc->m_edges.size();++i)
{
const btScalar d=dot(sc->m_edges[i].n[0],extrusion);
if((d*dot(sc->m_edges[i].n[1],extrusion))<0)
{
ShapeCache* sc=cache((btConvexShape*)shape);
btShapeHull* hull =&sc->m_shapehull;
glBegin(GL_QUADS);
for(int i=0;i<sc->m_edges.size();++i)
{
const btScalar d=dot(sc->m_edges[i].n[0],extrusion);
if((d*dot(sc->m_edges[i].n[1],extrusion))<0)
{
const int q= d<0?1:0;
const btVector3& a= hull->getVertexPointer()[sc->m_edges[i].v[q]];
const btVector3& b= hull->getVertexPointer()[sc->m_edges[i].v[1-q]];
glVertex3f(a[0],a[1],a[2]);
glVertex3f(b[0],b[1],b[2]);
glVertex3f(b[0]+extrusion[0],b[1]+extrusion[1],b[2]+extrusion[2]);
glVertex3f(a[0]+extrusion[0],a[1]+extrusion[1],a[2]+extrusion[2]);
}
}
glEnd();
}
const int q= d<0?1:0;
const btVector3& a= hull->getVertexPointer()[sc->m_edges[i].v[q]];
const btVector3& b= hull->getVertexPointer()[sc->m_edges[i].v[1-q]];
glVertex3f(a[0],a[1],a[2]);
glVertex3f(b[0],b[1],b[2]);
glVertex3f(b[0]+extrusion[0],b[1]+extrusion[1],b[2]+extrusion[2]);
glVertex3f(a[0]+extrusion[0],a[1]+extrusion[1],a[2]+extrusion[2]);
}
}
glEnd();
}
}
if (shape->isConcave())//>getShapeType() == TRIANGLE_MESH_SHAPE_PROXYTYPE||shape->getShapeType() == GIMPACT_SHAPE_PROXYTYPE)
// if (shape->getShapeType() == TRIANGLE_MESH_SHAPE_PROXYTYPE)
{
btConcaveShape* concaveMesh = (btConcaveShape*) shape;
//btVector3 aabbMax(btScalar(1e30),btScalar(1e30),btScalar(1e30));
//btVector3 aabbMax(100,100,100);//btScalar(1e30),btScalar(1e30),btScalar(1e30));
// if (shape->getShapeType() == TRIANGLE_MESH_SHAPE_PROXYTYPE)
{
btConcaveShape* concaveMesh = (btConcaveShape*) shape;
//btVector3 aabbMax(btScalar(1e30),btScalar(1e30),btScalar(1e30));
//btVector3 aabbMax(100,100,100);//btScalar(1e30),btScalar(1e30),btScalar(1e30));
//todo pass camera, for some culling
btVector3 aabbMax(btScalar(1e30),btScalar(1e30),btScalar(1e30));
btVector3 aabbMin(-btScalar(1e30),-btScalar(1e30),-btScalar(1e30));
//todo pass camera, for some culling
btVector3 aabbMax(btScalar(1e30),btScalar(1e30),btScalar(1e30));
btVector3 aabbMin(-btScalar(1e30),-btScalar(1e30),-btScalar(1e30));
GlDrawcallback drawCallback;
drawCallback.m_wireframe = false;
GlDrawcallback drawCallback;
drawCallback.m_wireframe = false;
concaveMesh->processAllTriangles(&drawCallback,aabbMin,aabbMax);
concaveMesh->processAllTriangles(&drawCallback,aabbMin,aabbMax);
}
glPopMatrix();
}
glPopMatrix();
}
//
GL_ShapeDrawer::GL_ShapeDrawer()
{
m_texturehandle = 0;
m_textureenabled = false;
m_textureinitialized = false;
m_texturehandle = 0;
m_textureenabled = false;
m_textureinitialized = false;
}
GL_ShapeDrawer::~GL_ShapeDrawer()
@@ -836,14 +842,14 @@ GL_ShapeDrawer::~GL_ShapeDrawer()
int i;
for (i=0;i<m_shapecaches.size();i++)
{
m_shapecaches[i]->~ShapeCache();
btAlignedFree(m_shapecaches[i]);
m_shapecaches[i]->~ShapeCache();
btAlignedFree(m_shapecaches[i]);
}
m_shapecaches.clear();
if(m_textureinitialized)
{
{
glDeleteTextures(1,&m_texturehandle);
}
}
}

View File

@@ -1597,7 +1597,7 @@ ColladaConverter::addConcaveMesh(btCollisionShape* shape, const char* nodeName)
{
for (int t = 0; t < numFaces; t++)
{
short int* index = (short int*)indexBase;
unsigned short int* index = (unsigned short int*)indexBase;
indices.append3( index[0], index[1], index[2]);
indexBase += indexStride;
}
@@ -1605,7 +1605,7 @@ ColladaConverter::addConcaveMesh(btCollisionShape* shape, const char* nodeName)
{
for (int t = 0; t < numFaces; t++)
{
int* index = (int*)indexBase;
unsigned int* index = (unsigned int*)indexBase;
indices.append3( index[0], index[1], index[2]);
indexBase += indexStride;
}

View File

@@ -181,19 +181,23 @@ void SpuGatheringCollisionDispatcher::dispatchAllCollisionPairs(btOverlappingPai
{
btCollisionObject* colObj0 = (btCollisionObject*)collisionPair.m_pProxy0->m_clientObject;
btCollisionObject* colObj1 = (btCollisionObject*)collisionPair.m_pProxy1->m_clientObject;
btManifoldResult contactPointResult(colObj0,colObj1);
if (dispatchInfo.m_dispatchFunc == btDispatcherInfo::DISPATCH_DISCRETE)
if (dispatcher->needsCollision(colObj0,colObj1))
{
//discrete collision detection query
collisionPair.m_algorithm->processCollision(colObj0,colObj1,dispatchInfo,&contactPointResult);
} else
{
//continuous collision detection query, time of impact (toi)
btScalar toi = collisionPair.m_algorithm->calculateTimeOfImpact(colObj0,colObj1,dispatchInfo,&contactPointResult);
if (dispatchInfo.m_timeOfImpact > toi)
dispatchInfo.m_timeOfImpact = toi;
btManifoldResult contactPointResult(colObj0,colObj1);
if (dispatchInfo.m_dispatchFunc == btDispatcherInfo::DISPATCH_DISCRETE)
{
//discrete collision detection query
collisionPair.m_algorithm->processCollision(colObj0,colObj1,dispatchInfo,&contactPointResult);
} else
{
//continuous collision detection query, time of impact (toi)
btScalar toi = collisionPair.m_algorithm->calculateTimeOfImpact(colObj0,colObj1,dispatchInfo,&contactPointResult);
if (dispatchInfo.m_timeOfImpact > toi)
dispatchInfo.m_timeOfImpact = toi;
}
}
}
}

View File

@@ -270,20 +270,20 @@ public:
// ugly solution to support both 16bit and 32bit indices
if (m_lsMemPtr->bvhShapeData.gIndexMesh.m_indexType == PHY_SHORT)
{
short int* indexBasePtr = (short int*)(m_lsMemPtr->bvhShapeData.gIndexMesh.m_triangleIndexBase+triangleIndex*m_lsMemPtr->bvhShapeData.gIndexMesh.m_triangleIndexStride);
ATTRIBUTE_ALIGNED16(short int tmpIndices[3]);
unsigned short int* indexBasePtr = (unsigned short int*)(m_lsMemPtr->bvhShapeData.gIndexMesh.m_triangleIndexBase+triangleIndex*m_lsMemPtr->bvhShapeData.gIndexMesh.m_triangleIndexStride);
ATTRIBUTE_ALIGNED16(unsigned short int tmpIndices[3]);
small_cache_read_triple(&tmpIndices[0],(ppu_address_t)&indexBasePtr[0],
&tmpIndices[1],(ppu_address_t)&indexBasePtr[1],
&tmpIndices[2],(ppu_address_t)&indexBasePtr[2],
sizeof(short int));
sizeof(unsigned short int));
m_lsMemPtr->spuIndices[0] = int(tmpIndices[0]);
m_lsMemPtr->spuIndices[1] = int(tmpIndices[1]);
m_lsMemPtr->spuIndices[2] = int(tmpIndices[2]);
} else
{
int* indexBasePtr = (int*)(m_lsMemPtr->bvhShapeData.gIndexMesh.m_triangleIndexBase+triangleIndex*m_lsMemPtr->bvhShapeData.gIndexMesh.m_triangleIndexStride);
unsigned int* indexBasePtr = (unsigned int*)(m_lsMemPtr->bvhShapeData.gIndexMesh.m_triangleIndexBase+triangleIndex*m_lsMemPtr->bvhShapeData.gIndexMesh.m_triangleIndexStride);
small_cache_read_triple(&m_lsMemPtr->spuIndices[0],(ppu_address_t)&indexBasePtr[0],
&m_lsMemPtr->spuIndices[1],(ppu_address_t)&indexBasePtr[1],
@@ -978,9 +978,12 @@ void processCollisionTask(void* userPtr, void* lsMemPtr)
// Get the collision objects
dmaAndSetupCollisionObjects(collisionPairInput, lsMem);
handleCollisionPair(collisionPairInput, lsMem, spuContacts,
(ppu_address_t)lsMem.getColObj0()->getCollisionShape(), &lsMem.gCollisionShapes[0].collisionShape,
(ppu_address_t)lsMem.getColObj1()->getCollisionShape(), &lsMem.gCollisionShapes[1].collisionShape);
if (lsMem.getColObj0()->isActive() || lsMem.getColObj1()->isActive())
{
handleCollisionPair(collisionPairInput, lsMem, spuContacts,
(ppu_address_t)lsMem.getColObj0()->getCollisionShape(), &lsMem.gCollisionShapes[0].collisionShape,
(ppu_address_t)lsMem.getColObj1()->getCollisionShape(), &lsMem.gCollisionShapes[1].collisionShape);
}
}
}

View File

@@ -404,9 +404,9 @@ void spuWalkStacklessQuantizedTreeAgainstRays(RaycastTask_LocalStoreMemory* lsMe
#define RAYAABB2
#ifdef RAYAABB2
unsigned int sign[numWorkUnits][3];
btVector3 rayInvDirection[numWorkUnits];
btScalar lambda_max[numWorkUnits];
unsigned int sign[SPU_RAYCAST_WORK_UNITS_PER_TASK][3];
btVector3 rayInvDirection[SPU_RAYCAST_WORK_UNITS_PER_TASK];
btScalar lambda_max[SPU_RAYCAST_WORK_UNITS_PER_TASK];
for (int i = 0; i < numWorkUnits; i++)
{
btVector3 rayDirection = (rayTo[i]-rayFrom[i]);
@@ -512,10 +512,10 @@ void performRaycastAgainstConcave (RaycastGatheredObjectData* gatheredObjectData
//need the mesh interface, for access to triangle vertices
dmaBvhShapeData (&(lsMemPtr->bvhShapeData), trimeshShape);
unsigned short int quantizedQueryAabbMin[numWorkUnits][3];
unsigned short int quantizedQueryAabbMax[numWorkUnits][3];
btVector3 rayFromInTriangleSpace[numWorkUnits];
btVector3 rayToInTriangleSpace[numWorkUnits];
unsigned short int quantizedQueryAabbMin[SPU_RAYCAST_WORK_UNITS_PER_TASK][3];
unsigned short int quantizedQueryAabbMax[SPU_RAYCAST_WORK_UNITS_PER_TASK][3];
btVector3 rayFromInTriangleSpace[SPU_RAYCAST_WORK_UNITS_PER_TASK];
btVector3 rayToInTriangleSpace[SPU_RAYCAST_WORK_UNITS_PER_TASK];
/* Calculate the AABB for the ray in the triangle mesh shape */
btTransform rayInTriangleSpace;

View File

@@ -235,7 +235,7 @@ btCollisionAlgorithmCreateFunc* btDefaultCollisionConfiguration::getCollisionAlg
if ((proxyType0 == BOX_SHAPE_PROXYTYPE) && (proxyType1 == BOX_SHAPE_PROXYTYPE))
{
return m_boxBoxCF;
//return m_boxBoxCF;
}
if (btBroadphaseProxy::isConvex(proxyType0) && (proxyType1 == STATIC_PLANE_PROXYTYPE))

View File

@@ -143,17 +143,13 @@ class btPersistentManifoldSortPredicate
};
//
// todo: this is random access, it can be walked 'cache friendly'!
//
void btSimulationIslandManager::buildAndProcessIslands(btDispatcher* dispatcher,btCollisionObjectArray& collisionObjects, IslandCallback* callback)
void btSimulationIslandManager::buildIslands(btDispatcher* dispatcher,btCollisionObjectArray& collisionObjects)
{
BT_PROFILE("islandUnionFindAndQuickSort");
m_islandmanifold.resize(0);
//we are going to sort the unionfind array, and store the element id in the size
//afterwards, we clean unionfind, to make sure no-one uses it anymore
@@ -287,6 +283,23 @@ void btSimulationIslandManager::buildAndProcessIslands(btDispatcher* dispatcher,
#endif //SPLIT_ISLANDS
}
}
}
//
// todo: this is random access, it can be walked 'cache friendly'!
//
void btSimulationIslandManager::buildAndProcessIslands(btDispatcher* dispatcher,btCollisionObjectArray& collisionObjects, IslandCallback* callback)
{
buildIslands(dispatcher,collisionObjects);
int endIslandIndex=1;
int startIslandIndex;
int numElem = getUnionFind().getNumElements();
BT_PROFILE("processIslands");
#ifndef SPLIT_ISLANDS
btPersistentManifold** manifold = dispatcher->getInternalManifoldPointer();
@@ -367,5 +380,5 @@ void btSimulationIslandManager::buildAndProcessIslands(btDispatcher* dispatcher,
}
#endif //SPLIT_ISLANDS
m_islandmanifold.resize(0);
}

View File

@@ -63,6 +63,8 @@ public:
void buildAndProcessIslands(btDispatcher* dispatcher,btCollisionObjectArray& collisionObjects, IslandCallback* callback);
void buildIslands(btDispatcher* dispatcher,btCollisionObjectArray& collisionObjects);
};
#endif //SIMULATION_ISLAND_MANAGER_H

View File

@@ -127,13 +127,13 @@ void btBvhTriangleMeshShape::performRaycast (btTriangleCallback* callback, const
indicestype,
nodeSubPart);
int* gfxbase = (int*)(indexbase+nodeTriangleIndex*indexstride);
unsigned int* gfxbase = (unsigned int*)(indexbase+nodeTriangleIndex*indexstride);
btAssert(indicestype==PHY_INTEGER||indicestype==PHY_SHORT);
const btVector3& meshScaling = m_meshInterface->getScaling();
for (int j=2;j>=0;j--)
{
int graphicsindex = indicestype==PHY_SHORT?((short*)gfxbase)[j]:gfxbase[j];
int graphicsindex = indicestype==PHY_SHORT?((unsigned short*)gfxbase)[j]:gfxbase[j];
btScalar* graphicsbase = (btScalar*)(vertexbase+graphicsindex*stride);
@@ -187,13 +187,13 @@ void btBvhTriangleMeshShape::performConvexcast (btTriangleCallback* callback, co
indicestype,
nodeSubPart);
int* gfxbase = (int*)(indexbase+nodeTriangleIndex*indexstride);
unsigned int* gfxbase = (unsigned int*)(indexbase+nodeTriangleIndex*indexstride);
btAssert(indicestype==PHY_INTEGER||indicestype==PHY_SHORT);
const btVector3& meshScaling = m_meshInterface->getScaling();
for (int j=2;j>=0;j--)
{
int graphicsindex = indicestype==PHY_SHORT?((short*)gfxbase)[j]:gfxbase[j];
int graphicsindex = indicestype==PHY_SHORT?((unsigned short*)gfxbase)[j]:gfxbase[j];
btScalar* graphicsbase = (btScalar*)(vertexbase+graphicsindex*stride);
@@ -259,14 +259,14 @@ void btBvhTriangleMeshShape::processAllTriangles(btTriangleCallback* callback,co
indicestype,
nodeSubPart);
int* gfxbase = (int*)(indexbase+nodeTriangleIndex*indexstride);
unsigned int* gfxbase = (unsigned int*)(indexbase+nodeTriangleIndex*indexstride);
btAssert(indicestype==PHY_INTEGER||indicestype==PHY_SHORT);
const btVector3& meshScaling = m_meshInterface->getScaling();
for (int j=2;j>=0;j--)
{
int graphicsindex = indicestype==PHY_SHORT?((short*)gfxbase)[j]:gfxbase[j];
int graphicsindex = indicestype==PHY_SHORT?((unsigned short*)gfxbase)[j]:gfxbase[j];
#ifdef DEBUG_TRIANGLE_MESH
@@ -299,22 +299,37 @@ void btBvhTriangleMeshShape::processAllTriangles(btTriangleCallback* callback,co
}
void btBvhTriangleMeshShape::setLocalScaling(const btVector3& scaling)
void btBvhTriangleMeshShape::setLocalScaling(const btVector3& scaling)
{
if ((getLocalScaling() -scaling).length2() > SIMD_EPSILON)
{
btTriangleMeshShape::setLocalScaling(scaling);
if (m_ownsBvh)
{
m_bvh->~btOptimizedBvh();
btAlignedFree(m_bvh);
}
///m_localAabbMin/m_localAabbMax is already re-calculated in btTriangleMeshShape. We could just scale aabb, but this needs some more work
void* mem = btAlignedAlloc(sizeof(btOptimizedBvh),16);
m_bvh = new(mem) btOptimizedBvh();
//rebuild the bvh...
m_bvh->build(m_meshInterface,m_useQuantizedAabbCompression,m_localAabbMin,m_localAabbMax);
}
if ((getLocalScaling() -scaling).length2() > SIMD_EPSILON)
{
btTriangleMeshShape::setLocalScaling(scaling);
if (m_ownsBvh)
{
m_bvh->~btOptimizedBvh();
btAlignedFree(m_bvh);
}
///m_localAabbMin/m_localAabbMax is already re-calculated in btTriangleMeshShape. We could just scale aabb, but this needs some more work
void* mem = btAlignedAlloc(sizeof(btOptimizedBvh),16);
m_bvh = new(mem) btOptimizedBvh();
//rebuild the bvh...
m_bvh->build(m_meshInterface,m_useQuantizedAabbCompression,m_localAabbMin,m_localAabbMax);
m_ownsBvh = true;
}
}
void btBvhTriangleMeshShape::setOptimizedBvh(btOptimizedBvh* bvh, const btVector3& scaling)
{
btAssert(!m_bvh);
btAssert(!m_ownsBvh);
m_bvh = bvh;
m_ownsBvh = false;
// update the scaling without rebuilding the bvh
if ((getLocalScaling() -scaling).length2() > SIMD_EPSILON)
{
btTriangleMeshShape::setLocalScaling(scaling);
}
}

View File

@@ -75,14 +75,7 @@ public:
}
void setOptimizedBvh(btOptimizedBvh* bvh)
{
btAssert(!m_bvh);
btAssert(!m_ownsBvh);
m_bvh = bvh;
m_ownsBvh = false;
}
void setOptimizedBvh(btOptimizedBvh* bvh, const btVector3& localScaling=btVector3(1,1,1));
bool usesQuantizedAabbCompression() const
{

View File

@@ -334,13 +334,13 @@ void btOptimizedBvh::updateBvhNodes(btStridingMeshInterface* meshInterface,int f
}
//triangles->getLockedReadOnlyVertexIndexBase(vertexBase,numVerts,
int* gfxbase = (int*)(indexbase+nodeTriangleIndex*indexstride);
unsigned int* gfxbase = (unsigned int*)(indexbase+nodeTriangleIndex*indexstride);
for (int j=2;j>=0;j--)
{
int graphicsindex = indicestype==PHY_SHORT?((short*)gfxbase)[j]:gfxbase[j];
int graphicsindex = indicestype==PHY_SHORT?((unsigned short*)gfxbase)[j]:gfxbase[j];
btScalar* graphicsbase = (btScalar*)(vertexbase+graphicsindex*stride);
#ifdef DEBUG_PATCH_COLORS
btVector3 mycolor = color[index&3];

View File

@@ -51,7 +51,7 @@ void btStridingMeshInterface::InternalProcessAllTriangles(btInternalTriangleInde
{
for (gfxindex=0;gfxindex<numtriangles;gfxindex++)
{
int* tri_indices= (int*)(indexbase+gfxindex*indexstride);
unsigned int* tri_indices= (unsigned int*)(indexbase+gfxindex*indexstride);
graphicsbase = (btScalar*)(vertexbase+tri_indices[0]*stride);
triangle[0].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),graphicsbase[2]*meshScaling.getZ());
graphicsbase = (btScalar*)(vertexbase+tri_indices[1]*stride);
@@ -66,7 +66,7 @@ void btStridingMeshInterface::InternalProcessAllTriangles(btInternalTriangleInde
{
for (gfxindex=0;gfxindex<numtriangles;gfxindex++)
{
short int* tri_indices= (short int*)(indexbase+gfxindex*indexstride);
unsigned short int* tri_indices= (unsigned short int*)(indexbase+gfxindex*indexstride);
graphicsbase = (btScalar*)(vertexbase+tri_indices[0]*stride);
triangle[0].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),graphicsbase[2]*meshScaling.getZ());
graphicsbase = (btScalar*)(vertexbase+tri_indices[1]*stride);

View File

@@ -47,7 +47,7 @@ class btStridingMeshInterface
void InternalProcessAllTriangles(btInternalTriangleIndexCallback* callback,const btVector3& aabbMin,const btVector3& aabbMax) const;
virtual void InternalProcessAllTriangles(btInternalTriangleIndexCallback* callback,const btVector3& aabbMin,const btVector3& aabbMax) const;
///brute force method to calculate aabb
void calculateAabbBruteForce(btVector3& aabbMin,btVector3& aabbMax);

View File

@@ -30,8 +30,8 @@ class btTriangleMesh : public btTriangleIndexVertexArray
btAlignedObjectArray<btVector3> m_4componentVertices;
btAlignedObjectArray<float> m_3componentVertices;
btAlignedObjectArray<int> m_32bitIndices;
btAlignedObjectArray<short int> m_16bitIndices;
btAlignedObjectArray<unsigned int> m_32bitIndices;
btAlignedObjectArray<unsigned short int> m_16bitIndices;
bool m_use32bitIndices;
bool m_use4componentVertices;

View File

@@ -120,7 +120,7 @@ bool btSubsimplexConvexCast::calcTimeOfImpact(
dist2 = v.length2();
hasResult = true;
//todo: check this normal for validity
n=v;
//n=v;
//printf("V=%f , %f, %f\n",v[0],v[1],v[2]);
//printf("DIST2=%f\n",dist2);
//printf("numverts = %i\n",m_simplexSolver->numVertices());

View File

@@ -100,6 +100,16 @@ void btPoint2PointConstraint::solveConstraint(btScalar timeStep)
btScalar depth = -(pivotAInW - pivotBInW).dot(normal); //this is the error projected on the normal
btScalar impulse = depth*m_setting.m_tau/timeStep * jacDiagABInv - m_setting.m_damping * rel_vel * jacDiagABInv;
btScalar impulseClamp = m_setting.m_impulseClamp;
if (impulseClamp > 0)
{
if (impulse < -impulseClamp)
impulse = -impulseClamp;
if (impulse > impulseClamp)
impulse = impulseClamp;
}
m_appliedImpulse+=impulse;
btVector3 impulse_vector = normal * impulse;
m_rbA.applyImpulse(impulse_vector, pivotAInW - m_rbA.getCenterOfMassPosition());

View File

@@ -26,11 +26,13 @@ struct btConstraintSetting
{
btConstraintSetting() :
m_tau(btScalar(0.3)),
m_damping(btScalar(1.))
m_damping(btScalar(1.)),
m_impulseClamp(btScalar(0.))
{
}
btScalar m_tau;
btScalar m_damping;
btScalar m_impulseClamp;
};
/// point to point constraint between two rigidbodies each with a pivotpoint that descibes the 'ballsocket' location in local space

View File

@@ -154,7 +154,6 @@ void initSolverBody(btSolverBody* solverBody, btCollisionObject* collisionObject
}
int gNumSplitImpulseRecoveries = 0;
btScalar restitutionCurve(btScalar rel_vel, btScalar restitution);