added Microtaur URDF file, with basic system identification

See https://www.youtube.com/watch?v=UmGnLgpEVTE
This commit is contained in:
Erwin Coumans
2019-05-21 22:33:16 -04:00
parent 7b06293a97
commit af5bfb4089
14 changed files with 2066 additions and 1 deletions

View File

@@ -0,0 +1,29 @@
<?xml version="0.0" ?>
<robot name="cube.urdf">
<link name="baseLink">
<contact>
<lateral_friction value="0.3"/>
</contact>
<inertial>
<origin rpy="0 0 0" xyz="0 0 0"/>
<mass value="0.13"/>
<inertia ixx="1" ixy="0" ixz="0" iyy="1" iyz="0" izz="1"/>
</inertial>
<visual>
<origin rpy="0 0 0" xyz="-0.019 -0.019 -0.1502"/>
<geometry>
<mesh filename="channel.stl" scale="1.0 1.0 1.0"/>
</geometry>
<material name="white">
<color rgba="1 1 1 1"/>
</material>
</visual>
<collision>
<origin rpy="0 0 0" xyz="0 0 0"/>
<geometry>
<box size="0.038 0.038 0.305"/>
</geometry>
</collision>
</link>
</robot>

View File

@@ -0,0 +1,29 @@
<?xml version="0.0" ?>
<robot name="cube.urdf">
<link name="baseLink">
<contact>
<lateral_friction value="0.3"/>
</contact>
<inertial>
<origin rpy="0 0 0" xyz="0 0 0"/>
<mass value="0.081"/>
<inertia ixx="1" ixy="0" ixz="0" iyy="1" iyz="0" izz="1"/>
</inertial>
<visual>
<origin rpy="0 0 0" xyz="0 0 0.0125"/>
<geometry>
<mesh filename="d435i.stl" scale="1.0 1.0 1.0"/>
</geometry>
<material name="white">
<color rgba="1 1 1 1"/>
</material>
</visual>
<collision>
<origin rpy="0 0 0" xyz="0 0 0"/>
<geometry>
<box size="0.09 0.025 0.025"/>
</geometry>
</collision>
</link>
</robot>

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,29 @@
<?xml version="0.0" ?>
<robot name="cube.urdf">
<link name="baseLink">
<contact>
<lateral_friction value="0.3"/>
</contact>
<inertial>
<origin rpy="0 0 0" xyz="0 0 0"/>
<mass value="0.13"/>
<inertia ixx="1" ixy="0" ixz="0" iyy="1" iyz="0" izz="1"/>
</inertial>
<visual>
<origin rpy="0 0 0" xyz="-0.037 0.0045 0"/>
<geometry>
<mesh filename="plate.stl" scale="1.0 1.0 1.0"/>
</geometry>
<material name="white">
<color rgba="1 1 1 1"/>
</material>
</visual>
<collision>
<origin rpy="0 0 0" xyz="0 0 0"/>
<geometry>
<box size="0.074 0.009 0.138"/>
</geometry>
</collision>
</link>
</robot>

View File

@@ -0,0 +1,22 @@
import pybullet as p
cin = p.connect(p.SHARED_MEMORY)
if (cin < 0):
cin = p.connect(p.GUI)
objects = [p.loadURDF("plane.urdf", 0.000000,0.000000,0.000000,0.000000,0.000000,0.000000,1.000000)]
objects = [p.loadURDF("quadruped/microtaur/microtaur.urdf", 0.858173,-0.698485,0.227967,-0.002864,0.000163,0.951778,0.306776)]
ob = objects[0]
jointPositions=[ 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 1.568555, 0.000000, -2.177277, 1.570089, 0.000000, -2.184705, 1.570229, 0.000000, -2.182261, 1.570008, 0.000000, -2.184197, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, -1.569978, 0.000000, 2.184092, -1.569669, 0.000000, 2.186906, -1.570584, 0.000000, 2.181503, -1.568404, 0.000000, 2.178427 ]
for jointIndex in range (p.getNumJoints(ob)):
p.resetJointState(ob,jointIndex,jointPositions[jointIndex])
cid0 = p.createConstraint(1,35,1,32,p.JOINT_POINT2POINT,[0.000000,0.000000,0.000000],[0.000000,0.005000,0.100000],[0.000000,0.010000,0.100000],[0.000000,0.000000,0.000000,1.000000],[0.000000,0.000000,0.000000,1.000000])
p.changeConstraint(cid0,maxForce=1000.000000)
cid1 = p.createConstraint(1,7,1,10,p.JOINT_POINT2POINT,[0.000000,0.000000,0.000000],[0.000000,0.005000,0.100000],[0.000000,0.010000,0.100000],[0.000000,0.000000,0.000000,1.000000],[0.000000,0.000000,0.000000,1.000000])
p.changeConstraint(cid1,maxForce=1000.000000)
cid2 = p.createConstraint(1,41,1,38,p.JOINT_POINT2POINT,[0.000000,0.000000,0.000000],[0.000000,0.005000,0.100000],[0.000000,0.010000,0.100000],[0.000000,0.000000,0.000000,1.000000],[0.000000,0.000000,0.000000,1.000000])
p.changeConstraint(cid2,maxForce=1000.000000)
cid3 = p.createConstraint(1,13,1,16,p.JOINT_POINT2POINT,[0.000000,0.000000,0.000000],[0.000000,0.005000,0.100000],[0.000000,0.010000,0.100000],[0.000000,0.000000,0.000000,1.000000],[0.000000,0.000000,0.000000,1.000000])
p.changeConstraint(cid3,maxForce=1000.000000)
p.setGravity(0.000000,0.000000,-10.000000)
p.stepSimulation()
p.disconnect()

View File

@@ -0,0 +1,29 @@
<?xml version="0.0" ?>
<robot name="xavier">
<link name="baseLink">
<contact>
<lateral_friction value="0.3"/>
</contact>
<inertial>
<origin rpy="0 0 0" xyz="0 0 0"/>
<mass value="0.64"/>
<inertia ixx="1" ixy="0" ixz="0" iyy="1" iyz="0" izz="1"/>
</inertial>
<visual>
<origin rpy="0 0 0" xyz="-0.045 -0.045 -0.018"/>
<geometry>
<mesh filename="xavier.stl" scale="1.0 1.0 1.0"/>
</geometry>
<material name="white">
<color rgba="1 1 1 1"/>
</material>
</visual>
<collision>
<origin rpy="0 0 0" xyz="0 0 0"/>
<geometry>
<box size="0.092 0.105 0.045"/>
</geometry>
</collision>
</link>
</robot>

View File

@@ -0,0 +1,29 @@
<?xml version="0.0" ?>
<robot name="cube.urdf">
<link name="baseLink">
<contact>
<lateral_friction value="0.3"/>
</contact>
<inertial>
<origin rpy="0 0 0" xyz="0 0 0"/>
<mass value="0.082"/>
<inertia ixx="1" ixy="0" ixz="0" iyy="1" iyz="0" izz="1"/>
</inertial>
<visual>
<origin rpy="0 0 0" xyz="0 0.011 0"/>
<geometry>
<mesh filename="xm430w210.stl" scale="1.0 1.0 1.0"/>
</geometry>
<material name="black">
<color rgba=".3 .3 .3 1"/>
</material>
</visual>
<collision>
<origin rpy="0 0 0" xyz="0 0 0"/>
<geometry>
<box size="0.024 0.047 0.034"/>
</geometry>
</collision>
</link>
</robot>

View File

@@ -0,0 +1,469 @@
import pybullet as p
import pybullet_data as pd
import time
import math
def drawInertiaBox(parentUid, parentLinkIndex, color):
return
dyn = p.getDynamicsInfo(parentUid, parentLinkIndex)
mass = dyn[0]
frictionCoeff = dyn[1]
inertia = dyn[2]
if (mass > 0):
Ixx = inertia[0]
Iyy = inertia[1]
Izz = inertia[2]
boxScaleX = 0.5 * math.sqrt(6 * (Izz + Iyy - Ixx) / mass)
boxScaleY = 0.5 * math.sqrt(6 * (Izz + Ixx - Iyy) / mass)
boxScaleZ = 0.5 * math.sqrt(6 * (Ixx + Iyy - Izz) / mass)
halfExtents = [boxScaleX, boxScaleY, boxScaleZ]
pts = [[halfExtents[0], halfExtents[1], halfExtents[2]],
[-halfExtents[0], halfExtents[1], halfExtents[2]],
[halfExtents[0], -halfExtents[1], halfExtents[2]],
[-halfExtents[0], -halfExtents[1], halfExtents[2]],
[halfExtents[0], halfExtents[1], -halfExtents[2]],
[-halfExtents[0], halfExtents[1], -halfExtents[2]],
[halfExtents[0], -halfExtents[1], -halfExtents[2]],
[-halfExtents[0], -halfExtents[1], -halfExtents[2]]]
p.addUserDebugLine(pts[0],
pts[1],
color,
1,
parentObjectUniqueId=parentUid,
parentLinkIndex=parentLinkIndex)
p.addUserDebugLine(pts[1],
pts[3],
color,
1,
parentObjectUniqueId=parentUid,
parentLinkIndex=parentLinkIndex)
p.addUserDebugLine(pts[3],
pts[2],
color,
1,
parentObjectUniqueId=parentUid,
parentLinkIndex=parentLinkIndex)
p.addUserDebugLine(pts[2],
pts[0],
color,
1,
parentObjectUniqueId=parentUid,
parentLinkIndex=parentLinkIndex)
p.addUserDebugLine(pts[0],
pts[4],
color,
1,
parentObjectUniqueId=parentUid,
parentLinkIndex=parentLinkIndex)
p.addUserDebugLine(pts[1],
pts[5],
color,
1,
parentObjectUniqueId=parentUid,
parentLinkIndex=parentLinkIndex)
p.addUserDebugLine(pts[2],
pts[6],
color,
1,
parentObjectUniqueId=parentUid,
parentLinkIndex=parentLinkIndex)
p.addUserDebugLine(pts[3],
pts[7],
color,
1,
parentObjectUniqueId=parentUid,
parentLinkIndex=parentLinkIndex)
p.addUserDebugLine(pts[4 + 0],
pts[4 + 1],
color,
1,
parentObjectUniqueId=parentUid,
parentLinkIndex=parentLinkIndex)
p.addUserDebugLine(pts[4 + 1],
pts[4 + 3],
color,
1,
parentObjectUniqueId=parentUid,
parentLinkIndex=parentLinkIndex)
p.addUserDebugLine(pts[4 + 3],
pts[4 + 2],
color,
1,
parentObjectUniqueId=parentUid,
parentLinkIndex=parentLinkIndex)
p.addUserDebugLine(pts[4 + 2],
pts[4 + 0],
color,
1,
parentObjectUniqueId=parentUid,
parentLinkIndex=parentLinkIndex)
toeConstraint = True
useMaximalCoordinates = False
useRealTime = 1
#the fixedTimeStep and numSolverIterations are the most important parameters to trade-off quality versus performance
fixedTimeStep = 1. / 100
numSolverIterations = 50
if (useMaximalCoordinates):
fixedTimeStep = 1. / 500
numSolverIterations = 200
speed = 10
amplitude = 0.8
jump_amp = 0.5
maxForce = 3.5
kneeFrictionForce = 0
kp = 1
kd = .5
maxKneeForce = 1000
physId = p.connect(p.SHARED_MEMORY)
if (physId < 0):
p.connect(p.GUI)
#p.resetSimulation()
p.setAdditionalSearchPath(pd.getDataPath())
angle = 0 # pick in range 0..0.2 radians
orn = p.getQuaternionFromEuler([0, angle, 0])
p.loadURDF("plane.urdf", [0, 0, 0], orn)
p.setPhysicsEngineParameter(numSolverIterations=numSolverIterations)
p.startStateLogging(p.STATE_LOGGING_GENERIC_ROBOT,
"genericlogdata.bin",
maxLogDof=16,
logFlags=p.STATE_LOG_JOINT_TORQUES)
p.setTimeOut(4000000)
p.setGravity(0, 0, 0)
p.setTimeStep(fixedTimeStep)
orn = p.getQuaternionFromEuler([0, 0, 0.4])
p.setRealTimeSimulation(0)
quadruped = p.loadURDF("quadruped/microtaur/microtaur.urdf", [1, -1, .3],
orn,
useFixedBase=False,
useMaximalCoordinates=useMaximalCoordinates,
flags=p.URDF_USE_IMPLICIT_CYLINDER)
nJoints = p.getNumJoints(quadruped)
jointNameToId = {}
for i in range(nJoints):
jointInfo = p.getJointInfo(quadruped, i)
jointNameToId[jointInfo[1].decode('UTF-8')] = jointInfo[0]
motor_front_rightR_joint = jointNameToId['motor_front_rightR_joint']
motor_front_rightL_joint = jointNameToId['motor_front_rightL_joint']
knee_front_rightL_link = jointNameToId['knee_front_rightL_link']
hip_front_rightR_link = jointNameToId['hip_front_rightR_link']
knee_front_rightR_link = jointNameToId['knee_front_rightR_link']
motor_front_rightL_link = jointNameToId['motor_front_rightL_link']
motor_front_leftR_joint = jointNameToId['motor_front_leftR_joint']
hip_front_leftR_link = jointNameToId['hip_front_leftR_link']
knee_front_leftR_link = jointNameToId['knee_front_leftR_link']
motor_front_leftL_joint = jointNameToId['motor_front_leftL_joint']
motor_front_leftL_link = jointNameToId['motor_front_leftL_link']
knee_front_leftL_link = jointNameToId['knee_front_leftL_link']
motor_back_rightR_joint = jointNameToId['motor_back_rightR_joint']
hip_rightR_link = jointNameToId['hip_rightR_link']
knee_back_rightR_link = jointNameToId['knee_back_rightR_link']
motor_back_rightL_joint = jointNameToId['motor_back_rightL_joint']
motor_back_rightL_link = jointNameToId['motor_back_rightL_link']
knee_back_rightL_link = jointNameToId['knee_back_rightL_link']
motor_back_leftR_joint = jointNameToId['motor_back_leftR_joint']
hip_leftR_link = jointNameToId['hip_leftR_link']
knee_back_leftR_link = jointNameToId['knee_back_leftR_link']
motor_back_leftL_joint = jointNameToId['motor_back_leftL_joint']
motor_back_leftL_link = jointNameToId['motor_back_leftL_link']
knee_back_leftL_link = jointNameToId['knee_back_leftL_link']
#fixtorso = p.createConstraint(-1,-1,quadruped,-1,p.JOINT_FIXED,[0,0,0],[0,0,0],[0,0,0])
motordir = [-1, -1, -1, -1, 1, 1, 1, 1]
halfpi = 1.57079632679
twopi = 4 * halfpi
kneeangle = -2.1834
dyn = p.getDynamicsInfo(quadruped, -1)
mass = dyn[0]
friction = dyn[1]
localInertiaDiagonal = dyn[2]
print("localInertiaDiagonal", localInertiaDiagonal)
#this is a no-op, just to show the API
p.changeDynamics(quadruped, -1, localInertiaDiagonal=localInertiaDiagonal)
#for i in range (nJoints):
# p.changeDynamics(quadruped,i,localInertiaDiagonal=[0.000001,0.000001,0.000001])
drawInertiaBox(quadruped, -1, [1, 0, 0])
#drawInertiaBox(quadruped,motor_front_rightR_joint, [1,0,0])
for i in range(nJoints):
drawInertiaBox(quadruped, i, [0, 1, 0])
if (useMaximalCoordinates):
steps = 400
for aa in range(steps):
p.setJointMotorControl2(quadruped, motor_front_leftL_joint, p.POSITION_CONTROL,
motordir[0] * halfpi * float(aa) / steps)
p.setJointMotorControl2(quadruped, motor_front_leftR_joint, p.POSITION_CONTROL,
motordir[1] * halfpi * float(aa) / steps)
p.setJointMotorControl2(quadruped, motor_back_leftL_joint, p.POSITION_CONTROL,
motordir[2] * halfpi * float(aa) / steps)
p.setJointMotorControl2(quadruped, motor_back_leftR_joint, p.POSITION_CONTROL,
motordir[3] * halfpi * float(aa) / steps)
p.setJointMotorControl2(quadruped, motor_front_rightL_joint, p.POSITION_CONTROL,
motordir[4] * halfpi * float(aa) / steps)
p.setJointMotorControl2(quadruped, motor_front_rightR_joint, p.POSITION_CONTROL,
motordir[5] * halfpi * float(aa) / steps)
p.setJointMotorControl2(quadruped, motor_back_rightL_joint, p.POSITION_CONTROL,
motordir[6] * halfpi * float(aa) / steps)
p.setJointMotorControl2(quadruped, motor_back_rightR_joint, p.POSITION_CONTROL,
motordir[7] * halfpi * float(aa) / steps)
p.setJointMotorControl2(quadruped, knee_front_leftL_link, p.POSITION_CONTROL,
motordir[0] * (kneeangle + twopi) * float(aa) / steps)
p.setJointMotorControl2(quadruped, knee_front_leftR_link, p.POSITION_CONTROL,
motordir[1] * kneeangle * float(aa) / steps)
p.setJointMotorControl2(quadruped, knee_back_leftL_link, p.POSITION_CONTROL,
motordir[2] * kneeangle * float(aa) / steps)
p.setJointMotorControl2(quadruped, knee_back_leftR_link, p.POSITION_CONTROL,
motordir[3] * (kneeangle + twopi) * float(aa) / steps)
p.setJointMotorControl2(quadruped, knee_front_rightL_link, p.POSITION_CONTROL,
motordir[4] * (kneeangle) * float(aa) / steps)
p.setJointMotorControl2(quadruped, knee_front_rightR_link, p.POSITION_CONTROL,
motordir[5] * (kneeangle + twopi) * float(aa) / steps)
p.setJointMotorControl2(quadruped, knee_back_rightL_link, p.POSITION_CONTROL,
motordir[6] * (kneeangle + twopi) * float(aa) / steps)
p.setJointMotorControl2(quadruped, knee_back_rightR_link, p.POSITION_CONTROL,
motordir[7] * kneeangle * float(aa) / steps)
p.stepSimulation()
#time.sleep(fixedTimeStep)
else:
p.resetJointState(quadruped, motor_front_leftL_joint, motordir[0] * halfpi)
p.resetJointState(quadruped, knee_front_leftL_link, motordir[0] * kneeangle)
p.resetJointState(quadruped, motor_front_leftR_joint, motordir[1] * halfpi)
p.resetJointState(quadruped, knee_front_leftR_link, motordir[1] * kneeangle)
p.resetJointState(quadruped, motor_back_leftL_joint, motordir[2] * halfpi)
p.resetJointState(quadruped, knee_back_leftL_link, motordir[2] * kneeangle)
p.resetJointState(quadruped, motor_back_leftR_joint, motordir[3] * halfpi)
p.resetJointState(quadruped, knee_back_leftR_link, motordir[3] * kneeangle)
p.resetJointState(quadruped, motor_front_rightL_joint, motordir[4] * halfpi)
p.resetJointState(quadruped, knee_front_rightL_link, motordir[4] * kneeangle)
p.resetJointState(quadruped, motor_front_rightR_joint, motordir[5] * halfpi)
p.resetJointState(quadruped, knee_front_rightR_link, motordir[5] * kneeangle)
p.resetJointState(quadruped, motor_back_rightL_joint, motordir[6] * halfpi)
p.resetJointState(quadruped, knee_back_rightL_link, motordir[6] * kneeangle)
p.resetJointState(quadruped, motor_back_rightR_joint, motordir[7] * halfpi)
p.resetJointState(quadruped, knee_back_rightR_link, motordir[7] * kneeangle)
#p.getNumJoints(1)
if (toeConstraint):
cid = p.createConstraint(quadruped, knee_front_leftR_link, quadruped, knee_front_leftL_link,
p.JOINT_POINT2POINT, [0, 0, 0], [0, 0.005, 0.1], [0, 0.01, 0.1])
p.changeConstraint(cid, maxForce=maxKneeForce)
cid = p.createConstraint(quadruped, knee_front_rightR_link, quadruped, knee_front_rightL_link,
p.JOINT_POINT2POINT, [0, 0, 0], [0, 0.005, 0.1], [0, 0.01, 0.1])
p.changeConstraint(cid, maxForce=maxKneeForce)
cid = p.createConstraint(quadruped, knee_back_leftR_link, quadruped, knee_back_leftL_link,
p.JOINT_POINT2POINT, [0, 0, 0], [0, 0.005, 0.1], [0, 0.01, 0.1])
p.changeConstraint(cid, maxForce=maxKneeForce)
cid = p.createConstraint(quadruped, knee_back_rightR_link, quadruped, knee_back_rightL_link,
p.JOINT_POINT2POINT, [0, 0, 0], [0, 0.005, 0.1], [0, 0.01, 0.1])
p.changeConstraint(cid, maxForce=maxKneeForce)
if (1):
p.setJointMotorControl(quadruped, knee_front_leftL_link, p.VELOCITY_CONTROL, 0,
kneeFrictionForce)
p.setJointMotorControl(quadruped, knee_front_leftR_link, p.VELOCITY_CONTROL, 0,
kneeFrictionForce)
p.setJointMotorControl(quadruped, knee_front_rightL_link, p.VELOCITY_CONTROL, 0,
kneeFrictionForce)
p.setJointMotorControl(quadruped, knee_front_rightR_link, p.VELOCITY_CONTROL, 0,
kneeFrictionForce)
p.setJointMotorControl(quadruped, knee_back_leftL_link, p.VELOCITY_CONTROL, 0, kneeFrictionForce)
p.setJointMotorControl(quadruped, knee_back_leftR_link, p.VELOCITY_CONTROL, 0, kneeFrictionForce)
p.setJointMotorControl(quadruped, knee_back_leftL_link, p.VELOCITY_CONTROL, 0, kneeFrictionForce)
p.setJointMotorControl(quadruped, knee_back_leftR_link, p.VELOCITY_CONTROL, 0, kneeFrictionForce)
p.setJointMotorControl(quadruped, knee_back_rightL_link, p.VELOCITY_CONTROL, 0,
kneeFrictionForce)
p.setJointMotorControl(quadruped, knee_back_rightR_link, p.VELOCITY_CONTROL, 0,
kneeFrictionForce)
p.setGravity(0, 0, -10)
legnumbering = [
motor_front_leftL_joint, motor_front_leftR_joint, motor_back_leftL_joint,
motor_back_leftR_joint, motor_front_rightL_joint, motor_front_rightR_joint,
motor_back_rightL_joint, motor_back_rightR_joint
]
for i in range(8):
print(legnumbering[i])
#use the Minitaur leg numbering
p.setJointMotorControl2(bodyIndex=quadruped,
jointIndex=legnumbering[0],
controlMode=p.POSITION_CONTROL,
targetPosition=motordir[0] * 1.57,
positionGain=kp,
velocityGain=kd,
force=maxForce)
p.setJointMotorControl2(bodyIndex=quadruped,
jointIndex=legnumbering[1],
controlMode=p.POSITION_CONTROL,
targetPosition=motordir[1] * 1.57,
positionGain=kp,
velocityGain=kd,
force=maxForce)
p.setJointMotorControl2(bodyIndex=quadruped,
jointIndex=legnumbering[2],
controlMode=p.POSITION_CONTROL,
targetPosition=motordir[2] * 1.57,
positionGain=kp,
velocityGain=kd,
force=maxForce)
p.setJointMotorControl2(bodyIndex=quadruped,
jointIndex=legnumbering[3],
controlMode=p.POSITION_CONTROL,
targetPosition=motordir[3] * 1.57,
positionGain=kp,
velocityGain=kd,
force=maxForce)
p.setJointMotorControl2(bodyIndex=quadruped,
jointIndex=legnumbering[4],
controlMode=p.POSITION_CONTROL,
targetPosition=motordir[4] * 1.57,
positionGain=kp,
velocityGain=kd,
force=maxForce)
p.setJointMotorControl2(bodyIndex=quadruped,
jointIndex=legnumbering[5],
controlMode=p.POSITION_CONTROL,
targetPosition=motordir[5] * 1.57,
positionGain=kp,
velocityGain=kd,
force=maxForce)
p.setJointMotorControl2(bodyIndex=quadruped,
jointIndex=legnumbering[6],
controlMode=p.POSITION_CONTROL,
targetPosition=motordir[6] * 1.57,
positionGain=kp,
velocityGain=kd,
force=maxForce)
p.setJointMotorControl2(bodyIndex=quadruped,
jointIndex=legnumbering[7],
controlMode=p.POSITION_CONTROL,
targetPosition=motordir[7] * 1.57,
positionGain=kp,
velocityGain=kd,
force=maxForce)
#stand still
p.setRealTimeSimulation(useRealTime)
t = 0.0
t_end = t + 115
ref_time = time.time()
while (t < t_end):
p.setGravity(0, 0, -10)
if (useRealTime):
t = time.time() - ref_time
else:
t = t + fixedTimeStep
if (useRealTime == 0):
p.stepSimulation()
time.sleep(fixedTimeStep)
print("quadruped Id = ")
print(quadruped)
p.saveWorld("quadru.py")
logId = p.startStateLogging(p.STATE_LOGGING_MINITAUR, "quadrupedLog.bin", [quadruped])
#jump
t = 0.0
t_end = t + 100
i = 0
ref_time = time.time()
while (1):
if (useRealTime):
t = time.time() - ref_time
else:
t = t + fixedTimeStep
if (True):
target = math.sin(t * speed) * jump_amp + 1.57
p.setJointMotorControl2(bodyIndex=quadruped,
jointIndex=legnumbering[0],
controlMode=p.POSITION_CONTROL,
targetPosition=motordir[0] * target,
positionGain=kp,
velocityGain=kd,
force=maxForce)
p.setJointMotorControl2(bodyIndex=quadruped,
jointIndex=legnumbering[1],
controlMode=p.POSITION_CONTROL,
targetPosition=motordir[1] * target,
positionGain=kp,
velocityGain=kd,
force=maxForce)
p.setJointMotorControl2(bodyIndex=quadruped,
jointIndex=legnumbering[2],
controlMode=p.POSITION_CONTROL,
targetPosition=motordir[2] * target,
positionGain=kp,
velocityGain=kd,
force=maxForce)
p.setJointMotorControl2(bodyIndex=quadruped,
jointIndex=legnumbering[3],
controlMode=p.POSITION_CONTROL,
targetPosition=motordir[3] * target,
positionGain=kp,
velocityGain=kd,
force=maxForce)
p.setJointMotorControl2(bodyIndex=quadruped,
jointIndex=legnumbering[4],
controlMode=p.POSITION_CONTROL,
targetPosition=motordir[4] * target,
positionGain=kp,
velocityGain=kd,
force=maxForce)
p.setJointMotorControl2(bodyIndex=quadruped,
jointIndex=legnumbering[5],
controlMode=p.POSITION_CONTROL,
targetPosition=motordir[5] * target,
positionGain=kp,
velocityGain=kd,
force=maxForce)
p.setJointMotorControl2(bodyIndex=quadruped,
jointIndex=legnumbering[6],
controlMode=p.POSITION_CONTROL,
targetPosition=motordir[6] * target,
positionGain=kp,
velocityGain=kd,
force=maxForce)
p.setJointMotorControl2(bodyIndex=quadruped,
jointIndex=legnumbering[7],
controlMode=p.POSITION_CONTROL,
targetPosition=motordir[7] * target,
positionGain=kp,
velocityGain=kd,
force=maxForce)
if (useRealTime == 0):
p.stepSimulation()
time.sleep(fixedTimeStep)

View File

@@ -336,9 +336,10 @@ static PyObject* pybullet_stepSimulation(PyObject* self, PyObject* args, PyObjec
struct b3ForwardDynamicsAnalyticsArgs analyticsData; struct b3ForwardDynamicsAnalyticsArgs analyticsData;
int numIslands = 0; int numIslands = 0;
int i; int i;
PyObject* pyAnalyticsData = PyTuple_New(numIslands);
numIslands = b3GetStatusForwardDynamicsAnalyticsData(statusHandle, &analyticsData); numIslands = b3GetStatusForwardDynamicsAnalyticsData(statusHandle, &analyticsData);
PyObject* pyAnalyticsData = PyTuple_New(numIslands);
for (i=0;i<numIslands;i++) for (i=0;i<numIslands;i++)
{ {
int numFields = 4; int numFields = 4;