This commit is contained in:
Erwin Coumans
2017-11-28 11:52:07 -08:00
55 changed files with 7293 additions and 6344 deletions

View File

@@ -70,26 +70,45 @@ btScalar btMultiBodyConstraintSolver::solveSingleIteration(int iteration, btColl
//solve featherstone frictional contact
for (int j1=0;j1<this->m_multiBodyFrictionContactConstraints.size();j1++)
for (int j1=0;j1<this->m_multiBodyLateralFrictionContactConstraints.size();j1++)
{
if (iteration < infoGlobal.m_numIterations)
{
int index = j1;//iteration&1? j1 : m_multiBodyFrictionContactConstraints.size()-1-j1;
btMultiBodySolverConstraint& frictionConstraint = m_multiBodyFrictionContactConstraints[index];
btMultiBodySolverConstraint& frictionConstraint = m_multiBodyLateralFrictionContactConstraints[index];
btScalar totalImpulse = m_multiBodyNormalContactConstraints[frictionConstraint.m_frictionIndex].m_appliedImpulse;
//adjust friction limits here
if (totalImpulse>btScalar(0))
if (infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS)
{
frictionConstraint.m_lowerLimit = -(frictionConstraint.m_friction*totalImpulse);
frictionConstraint.m_upperLimit = frictionConstraint.m_friction*totalImpulse;
btScalar residual = resolveSingleConstraintRowGeneric(frictionConstraint);
leastSquaredResidual += residual*residual;
j1++;
int index2 = j1;//iteration&1? j1 : m_multiBodyFrictionContactConstraints.size()-1-j1;
btMultiBodySolverConstraint& frictionConstraintB = m_multiBodyLateralFrictionContactConstraints[index2];
btAssert(frictionConstraint.m_frictionIndex == frictionConstraintB.m_frictionIndex);
if(frictionConstraint.m_multiBodyA)
frictionConstraint.m_multiBodyA->setPosUpdated(false);
if(frictionConstraint.m_multiBodyB)
frictionConstraint.m_multiBodyB->setPosUpdated(false);
if (frictionConstraint.m_frictionIndex == frictionConstraintB.m_frictionIndex)
{
frictionConstraint.m_lowerLimit = -(frictionConstraint.m_friction*totalImpulse);
frictionConstraint.m_upperLimit = frictionConstraint.m_friction*totalImpulse;
frictionConstraintB.m_lowerLimit = -(frictionConstraintB.m_friction*totalImpulse);
frictionConstraintB.m_upperLimit = frictionConstraintB.m_friction*totalImpulse;
resolveConeFrictionConstraintRows(frictionConstraint,frictionConstraintB);
}
}
else
{
//adjust friction limits here
if (totalImpulse > btScalar(0))
{
frictionConstraint.m_lowerLimit = -(frictionConstraint.m_friction*totalImpulse);
frictionConstraint.m_upperLimit = frictionConstraint.m_friction*totalImpulse;
btScalar residual = resolveSingleConstraintRowGeneric(frictionConstraint);
leastSquaredResidual += residual*residual;
if (frictionConstraint.m_multiBodyA)
frictionConstraint.m_multiBodyA->setPosUpdated(false);
if (frictionConstraint.m_multiBodyB)
frictionConstraint.m_multiBodyB->setPosUpdated(false);
}
}
}
}
@@ -100,7 +119,9 @@ btScalar btMultiBodyConstraintSolver::solveGroupCacheFriendlySetup(btCollisionOb
{
m_multiBodyNonContactConstraints.resize(0);
m_multiBodyNormalContactConstraints.resize(0);
m_multiBodyFrictionContactConstraints.resize(0);
m_multiBodyLateralFrictionContactConstraints.resize(0);
m_multiBodyTorsionalFrictionContactConstraints.resize(0);
m_data.m_jacobians.resize(0);
m_data.m_deltaVelocitiesUnitImpulse.resize(0);
m_data.m_deltaVelocities.resize(0);
@@ -128,49 +149,51 @@ void btMultiBodyConstraintSolver::applyDeltaVee(btScalar* delta_vee, btScalar im
btScalar btMultiBodyConstraintSolver::resolveSingleConstraintRowGeneric(const btMultiBodySolverConstraint& c)
{
btScalar deltaImpulse = c.m_rhs-btScalar(c.m_appliedImpulse)*c.m_cfm;
btScalar deltaVelADotn=0;
btScalar deltaVelBDotn=0;
btScalar deltaImpulse = c.m_rhs - btScalar(c.m_appliedImpulse)*c.m_cfm;
btScalar deltaVelADotn = 0;
btScalar deltaVelBDotn = 0;
btSolverBody* bodyA = 0;
btSolverBody* bodyB = 0;
int ndofA=0;
int ndofB=0;
int ndofA = 0;
int ndofB = 0;
if (c.m_multiBodyA)
{
ndofA = c.m_multiBodyA->getNumDofs() + 6;
for (int i = 0; i < ndofA; ++i)
deltaVelADotn += m_data.m_jacobians[c.m_jacAindex+i] * m_data.m_deltaVelocities[c.m_deltaVelAindex+i];
} else if(c.m_solverBodyIdA >= 0)
ndofA = c.m_multiBodyA->getNumDofs() + 6;
for (int i = 0; i < ndofA; ++i)
deltaVelADotn += m_data.m_jacobians[c.m_jacAindex + i] * m_data.m_deltaVelocities[c.m_deltaVelAindex + i];
}
else if (c.m_solverBodyIdA >= 0)
{
bodyA = &m_tmpSolverBodyPool[c.m_solverBodyIdA];
deltaVelADotn += c.m_contactNormal1.dot(bodyA->internalGetDeltaLinearVelocity()) + c.m_relpos1CrossNormal.dot(bodyA->internalGetDeltaAngularVelocity());
deltaVelADotn += c.m_contactNormal1.dot(bodyA->internalGetDeltaLinearVelocity()) + c.m_relpos1CrossNormal.dot(bodyA->internalGetDeltaAngularVelocity());
}
if (c.m_multiBodyB)
{
ndofB = c.m_multiBodyB->getNumDofs() + 6;
for (int i = 0; i < ndofB; ++i)
deltaVelBDotn += m_data.m_jacobians[c.m_jacBindex+i] * m_data.m_deltaVelocities[c.m_deltaVelBindex+i];
} else if(c.m_solverBodyIdB >= 0)
ndofB = c.m_multiBodyB->getNumDofs() + 6;
for (int i = 0; i < ndofB; ++i)
deltaVelBDotn += m_data.m_jacobians[c.m_jacBindex + i] * m_data.m_deltaVelocities[c.m_deltaVelBindex + i];
}
else if (c.m_solverBodyIdB >= 0)
{
bodyB = &m_tmpSolverBodyPool[c.m_solverBodyIdB];
deltaVelBDotn += c.m_contactNormal2.dot(bodyB->internalGetDeltaLinearVelocity()) + c.m_relpos2CrossNormal.dot(bodyB->internalGetDeltaAngularVelocity());
deltaVelBDotn += c.m_contactNormal2.dot(bodyB->internalGetDeltaLinearVelocity()) + c.m_relpos2CrossNormal.dot(bodyB->internalGetDeltaAngularVelocity());
}
deltaImpulse -= deltaVelADotn*c.m_jacDiagABInv;//m_jacDiagABInv = 1./denom
deltaImpulse -= deltaVelBDotn*c.m_jacDiagABInv;
deltaImpulse -= deltaVelADotn*c.m_jacDiagABInv;//m_jacDiagABInv = 1./denom
deltaImpulse -= deltaVelBDotn*c.m_jacDiagABInv;
const btScalar sum = btScalar(c.m_appliedImpulse) + deltaImpulse;
if (sum < c.m_lowerLimit)
{
deltaImpulse = c.m_lowerLimit-c.m_appliedImpulse;
deltaImpulse = c.m_lowerLimit - c.m_appliedImpulse;
c.m_appliedImpulse = c.m_lowerLimit;
}
else if (sum > c.m_upperLimit)
else if (sum > c.m_upperLimit)
{
deltaImpulse = c.m_upperLimit-c.m_appliedImpulse;
deltaImpulse = c.m_upperLimit - c.m_appliedImpulse;
c.m_appliedImpulse = c.m_upperLimit;
}
else
@@ -180,33 +203,214 @@ btScalar btMultiBodyConstraintSolver::resolveSingleConstraintRowGeneric(const bt
if (c.m_multiBodyA)
{
applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex],deltaImpulse,c.m_deltaVelAindex,ndofA);
applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex], deltaImpulse, c.m_deltaVelAindex, ndofA);
#ifdef DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
//note: update of the actual velocities (below) in the multibody does not have to happen now since m_deltaVelocities can be applied after all iterations
//it would make the multibody solver more like the regular one with m_deltaVelocities being equivalent to btSolverBody::m_deltaLinearVelocity/m_deltaAngularVelocity
c.m_multiBodyA->applyDeltaVeeMultiDof2(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex],deltaImpulse);
c.m_multiBodyA->applyDeltaVeeMultiDof2(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex], deltaImpulse);
#endif //DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
} else if(c.m_solverBodyIdA >= 0)
}
else if (c.m_solverBodyIdA >= 0)
{
bodyA->internalApplyImpulse(c.m_contactNormal1*bodyA->internalGetInvMass(),c.m_angularComponentA,deltaImpulse);
bodyA->internalApplyImpulse(c.m_contactNormal1*bodyA->internalGetInvMass(), c.m_angularComponentA, deltaImpulse);
}
if (c.m_multiBodyB)
{
applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex],deltaImpulse,c.m_deltaVelBindex,ndofB);
applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex], deltaImpulse, c.m_deltaVelBindex, ndofB);
#ifdef DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
//note: update of the actual velocities (below) in the multibody does not have to happen now since m_deltaVelocities can be applied after all iterations
//it would make the multibody solver more like the regular one with m_deltaVelocities being equivalent to btSolverBody::m_deltaLinearVelocity/m_deltaAngularVelocity
c.m_multiBodyB->applyDeltaVeeMultiDof2(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex],deltaImpulse);
c.m_multiBodyB->applyDeltaVeeMultiDof2(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex], deltaImpulse);
#endif //DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
} else if(c.m_solverBodyIdB >= 0)
}
else if (c.m_solverBodyIdB >= 0)
{
bodyB->internalApplyImpulse(c.m_contactNormal2*bodyB->internalGetInvMass(),c.m_angularComponentB,deltaImpulse);
bodyB->internalApplyImpulse(c.m_contactNormal2*bodyB->internalGetInvMass(), c.m_angularComponentB, deltaImpulse);
}
return deltaImpulse;
}
btScalar btMultiBodyConstraintSolver::resolveConeFrictionConstraintRows(const btMultiBodySolverConstraint& cA1,const btMultiBodySolverConstraint& cB)
{
int ndofA=0;
int ndofB=0;
btSolverBody* bodyA = 0;
btSolverBody* bodyB = 0;
btScalar deltaImpulseB = 0.f;
btScalar sumB = 0.f;
{
deltaImpulseB = cB.m_rhs-btScalar(cB.m_appliedImpulse)*cB.m_cfm;
btScalar deltaVelADotn=0;
btScalar deltaVelBDotn=0;
if (cB.m_multiBodyA)
{
ndofA = cB.m_multiBodyA->getNumDofs() + 6;
for (int i = 0; i < ndofA; ++i)
deltaVelADotn += m_data.m_jacobians[cB.m_jacAindex+i] * m_data.m_deltaVelocities[cB.m_deltaVelAindex+i];
} else if(cB.m_solverBodyIdA >= 0)
{
bodyA = &m_tmpSolverBodyPool[cB.m_solverBodyIdA];
deltaVelADotn += cB.m_contactNormal1.dot(bodyA->internalGetDeltaLinearVelocity()) + cB.m_relpos1CrossNormal.dot(bodyA->internalGetDeltaAngularVelocity());
}
if (cB.m_multiBodyB)
{
ndofB = cB.m_multiBodyB->getNumDofs() + 6;
for (int i = 0; i < ndofB; ++i)
deltaVelBDotn += m_data.m_jacobians[cB.m_jacBindex+i] * m_data.m_deltaVelocities[cB.m_deltaVelBindex+i];
} else if(cB.m_solverBodyIdB >= 0)
{
bodyB = &m_tmpSolverBodyPool[cB.m_solverBodyIdB];
deltaVelBDotn += cB.m_contactNormal2.dot(bodyB->internalGetDeltaLinearVelocity()) + cB.m_relpos2CrossNormal.dot(bodyB->internalGetDeltaAngularVelocity());
}
deltaImpulseB -= deltaVelADotn*cB.m_jacDiagABInv;//m_jacDiagABInv = 1./denom
deltaImpulseB -= deltaVelBDotn*cB.m_jacDiagABInv;
sumB = btScalar(cB.m_appliedImpulse) + deltaImpulseB;
}
btScalar deltaImpulseA = 0.f;
btScalar sumA = 0.f;
const btMultiBodySolverConstraint& cA = cA1;
{
{
deltaImpulseA = cA.m_rhs-btScalar(cA.m_appliedImpulse)*cA.m_cfm;
btScalar deltaVelADotn=0;
btScalar deltaVelBDotn=0;
if (cA.m_multiBodyA)
{
ndofA = cA.m_multiBodyA->getNumDofs() + 6;
for (int i = 0; i < ndofA; ++i)
deltaVelADotn += m_data.m_jacobians[cA.m_jacAindex+i] * m_data.m_deltaVelocities[cA.m_deltaVelAindex+i];
} else if(cA.m_solverBodyIdA >= 0)
{
bodyA = &m_tmpSolverBodyPool[cA.m_solverBodyIdA];
deltaVelADotn += cA.m_contactNormal1.dot(bodyA->internalGetDeltaLinearVelocity()) + cA.m_relpos1CrossNormal.dot(bodyA->internalGetDeltaAngularVelocity());
}
if (cA.m_multiBodyB)
{
ndofB = cA.m_multiBodyB->getNumDofs() + 6;
for (int i = 0; i < ndofB; ++i)
deltaVelBDotn += m_data.m_jacobians[cA.m_jacBindex+i] * m_data.m_deltaVelocities[cA.m_deltaVelBindex+i];
} else if(cA.m_solverBodyIdB >= 0)
{
bodyB = &m_tmpSolverBodyPool[cA.m_solverBodyIdB];
deltaVelBDotn += cA.m_contactNormal2.dot(bodyB->internalGetDeltaLinearVelocity()) + cA.m_relpos2CrossNormal.dot(bodyB->internalGetDeltaAngularVelocity());
}
deltaImpulseA -= deltaVelADotn*cA.m_jacDiagABInv;//m_jacDiagABInv = 1./denom
deltaImpulseA -= deltaVelBDotn*cA.m_jacDiagABInv;
sumA = btScalar(cA.m_appliedImpulse) + deltaImpulseA;
}
}
if (sumA*sumA+sumB*sumB>=cA.m_lowerLimit*cB.m_lowerLimit)
{
btScalar angle = btAtan2(sumA,sumB);
btScalar sumAclipped = btFabs(cA.m_lowerLimit*btSin(angle));
btScalar sumBclipped = btFabs(cB.m_lowerLimit*btCos(angle));
if (sumA < -sumAclipped)
{
deltaImpulseA = -sumAclipped - cA.m_appliedImpulse;
cA.m_appliedImpulse = -sumAclipped;
}
else if (sumA > sumAclipped)
{
deltaImpulseA = sumAclipped - cA.m_appliedImpulse;
cA.m_appliedImpulse = sumAclipped;
}
else
{
cA.m_appliedImpulse = sumA;
}
if (sumB < -sumBclipped)
{
deltaImpulseB = -sumBclipped - cB.m_appliedImpulse;
cB.m_appliedImpulse = -sumBclipped;
}
else if (sumB > sumBclipped)
{
deltaImpulseB = sumBclipped - cB.m_appliedImpulse;
cB.m_appliedImpulse = sumBclipped;
}
else
{
cB.m_appliedImpulse = sumB;
}
//deltaImpulseA = sumAclipped-cA.m_appliedImpulse;
//cA.m_appliedImpulse = sumAclipped;
//deltaImpulseB = sumBclipped-cB.m_appliedImpulse;
//cB.m_appliedImpulse = sumBclipped;
}
else
{
cA.m_appliedImpulse = sumA;
cB.m_appliedImpulse = sumB;
}
if (cA.m_multiBodyA)
{
applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[cA.m_jacAindex],deltaImpulseA,cA.m_deltaVelAindex,ndofA);
#ifdef DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
//note: update of the actual velocities (below) in the multibody does not have to happen now since m_deltaVelocities can be applied after all iterations
//it would make the multibody solver more like the regular one with m_deltaVelocities being equivalent to btSolverBody::m_deltaLinearVelocity/m_deltaAngularVelocity
cA.m_multiBodyA->applyDeltaVeeMultiDof2(&m_data.m_deltaVelocitiesUnitImpulse[cA.m_jacAindex],deltaImpulseA);
#endif //DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
} else if(cA.m_solverBodyIdA >= 0)
{
bodyA->internalApplyImpulse(cA.m_contactNormal1*bodyA->internalGetInvMass(),cA.m_angularComponentA,deltaImpulseA);
}
if (cA.m_multiBodyB)
{
applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[cA.m_jacBindex],deltaImpulseA,cA.m_deltaVelBindex,ndofB);
#ifdef DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
//note: update of the actual velocities (below) in the multibody does not have to happen now since m_deltaVelocities can be applied after all iterations
//it would make the multibody solver more like the regular one with m_deltaVelocities being equivalent to btSolverBody::m_deltaLinearVelocity/m_deltaAngularVelocity
cA.m_multiBodyB->applyDeltaVeeMultiDof2(&m_data.m_deltaVelocitiesUnitImpulse[cA.m_jacBindex],deltaImpulseA);
#endif //DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
} else if(cA.m_solverBodyIdB >= 0)
{
bodyB->internalApplyImpulse(cA.m_contactNormal2*bodyB->internalGetInvMass(),cA.m_angularComponentB,deltaImpulseA);
}
if (cB.m_multiBodyA)
{
applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[cB.m_jacAindex],deltaImpulseB,cB.m_deltaVelAindex,ndofA);
#ifdef DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
//note: update of the actual velocities (below) in the multibody does not have to happen now since m_deltaVelocities can be applied after all iterations
//it would make the multibody solver more like the regular one with m_deltaVelocities being equivalent to btSolverBody::m_deltaLinearVelocity/m_deltaAngularVelocity
cB.m_multiBodyA->applyDeltaVeeMultiDof2(&m_data.m_deltaVelocitiesUnitImpulse[cB.m_jacAindex],deltaImpulseB);
#endif //DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
} else if(cB.m_solverBodyIdA >= 0)
{
bodyA->internalApplyImpulse(cB.m_contactNormal1*bodyA->internalGetInvMass(),cB.m_angularComponentA,deltaImpulseB);
}
if (cB.m_multiBodyB)
{
applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[cB.m_jacBindex],deltaImpulseB,cB.m_deltaVelBindex,ndofB);
#ifdef DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
//note: update of the actual velocities (below) in the multibody does not have to happen now since m_deltaVelocities can be applied after all iterations
//it would make the multibody solver more like the regular one with m_deltaVelocities being equivalent to btSolverBody::m_deltaLinearVelocity/m_deltaAngularVelocity
cB.m_multiBodyB->applyDeltaVeeMultiDof2(&m_data.m_deltaVelocitiesUnitImpulse[cB.m_jacBindex],deltaImpulseB);
#endif //DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
} else if(cB.m_solverBodyIdB >= 0)
{
bodyB->internalApplyImpulse(cB.m_contactNormal2*bodyB->internalGetInvMass(),cB.m_angularComponentB,deltaImpulseB);
}
return deltaImpulseA+deltaImpulseB;
}
void btMultiBodyConstraintSolver::setupMultiBodyContactConstraint(btMultiBodySolverConstraint& solverConstraint,
@@ -871,7 +1075,7 @@ void btMultiBodyConstraintSolver::setupMultiBodyTorsionalFrictionConstraint(btMu
btMultiBodySolverConstraint& btMultiBodyConstraintSolver::addMultiBodyFrictionConstraint(const btVector3& normalAxis,btPersistentManifold* manifold,int frictionIndex,btManifoldPoint& cp,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity, btScalar cfmSlip)
{
BT_PROFILE("addMultiBodyFrictionConstraint");
btMultiBodySolverConstraint& solverConstraint = m_multiBodyFrictionContactConstraints.expandNonInitializing();
btMultiBodySolverConstraint& solverConstraint = m_multiBodyLateralFrictionContactConstraints.expandNonInitializing();
solverConstraint.m_orgConstraint = 0;
solverConstraint.m_orgDofIndex = -1;
@@ -908,7 +1112,7 @@ btMultiBodySolverConstraint& btMultiBodyConstraintSolver::addMultiBodyTorsionalF
btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity, btScalar cfmSlip)
{
BT_PROFILE("addMultiBodyRollingFrictionConstraint");
btMultiBodySolverConstraint& solverConstraint = m_multiBodyFrictionContactConstraints.expandNonInitializing();
btMultiBodySolverConstraint& solverConstraint = m_multiBodyTorsionalFrictionContactConstraints.expandNonInitializing();
solverConstraint.m_orgConstraint = 0;
solverConstraint.m_orgDofIndex = -1;
@@ -1275,11 +1479,11 @@ btScalar btMultiBodyConstraintSolver::solveGroupCacheFriendlyFinish(btCollisionO
btMultiBodySolverConstraint& solverConstraint = m_multiBodyNormalContactConstraints[i];
writeBackSolverBodyToMultiBody(solverConstraint,infoGlobal.m_timeStep);
writeBackSolverBodyToMultiBody(m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex],infoGlobal.m_timeStep);
writeBackSolverBodyToMultiBody(m_multiBodyLateralFrictionContactConstraints[solverConstraint.m_frictionIndex],infoGlobal.m_timeStep);
if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
{
writeBackSolverBodyToMultiBody(m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1],infoGlobal.m_timeStep);
writeBackSolverBodyToMultiBody(m_multiBodyLateralFrictionContactConstraints[solverConstraint.m_frictionIndex+1],infoGlobal.m_timeStep);
}
}
@@ -1300,12 +1504,12 @@ btScalar btMultiBodyConstraintSolver::solveGroupCacheFriendlyFinish(btCollisionO
btManifoldPoint* pt = (btManifoldPoint*) solverConstraint.m_originalContactPoint;
btAssert(pt);
pt->m_appliedImpulse = solverConstraint.m_appliedImpulse;
pt->m_appliedImpulseLateral1 = m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_appliedImpulse;
pt->m_appliedImpulseLateral1 = m_multiBodyLateralFrictionContactConstraints[solverConstraint.m_frictionIndex].m_appliedImpulse;
//printf("pt->m_appliedImpulseLateral1 = %f\n", pt->m_appliedImpulseLateral1);
if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
{
pt->m_appliedImpulseLateral2 = m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_appliedImpulse;
pt->m_appliedImpulseLateral2 = m_multiBodyLateralFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_appliedImpulse;
}
//do a callback here?
}

View File

@@ -35,7 +35,8 @@ protected:
btMultiBodyConstraintArray m_multiBodyNonContactConstraints;
btMultiBodyConstraintArray m_multiBodyNormalContactConstraints;
btMultiBodyConstraintArray m_multiBodyFrictionContactConstraints;
btMultiBodyConstraintArray m_multiBodyLateralFrictionContactConstraints;
btMultiBodyConstraintArray m_multiBodyTorsionalFrictionContactConstraints;
btMultiBodyJacobianData m_data;
@@ -45,6 +46,9 @@ protected:
btScalar resolveSingleConstraintRowGeneric(const btMultiBodySolverConstraint& c);
//solve 2 friction directions and clamp against the implicit friction cone
btScalar resolveConeFrictionConstraintRows(const btMultiBodySolverConstraint& cA, const btMultiBodySolverConstraint& cB);
void convertContacts(btPersistentManifold** manifoldPtr,int numManifolds, const btContactSolverInfo& infoGlobal);

View File

@@ -990,4 +990,17 @@ void btMultiBodyDynamicsWorld::serializeMultiBodies(btSerializer* serializer)
}
}
//serialize all multibody links (collision objects)
for (i=0;i<m_collisionObjects.size();i++)
{
btCollisionObject* colObj = m_collisionObjects[i];
if (colObj->getInternalType() == btCollisionObject::CO_FEATHERSTONE_LINK)
{
int len = colObj->calculateSerializeBufferSize();
btChunk* chunk = serializer->allocate(len,1);
const char* structType = colObj->serialize(chunk->m_oldPtr, serializer);
serializer->finalizeChunk(chunk,structType,BT_MB_LINKCOLLIDER_CODE,colObj);
}
}
}

View File

@@ -19,6 +19,16 @@ subject to the following restrictions:
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include "btMultiBody.h"
#include "LinearMath/btSerializer.h"
#ifdef BT_USE_DOUBLE_PRECISION
#define btMultiBodyLinkColliderData btMultiBodyLinkColliderDoubleData
#define btMultiBodyLinkColliderDataName "btMultiBodyLinkColliderDoubleData"
#else
#define btMultiBodyLinkColliderData btMultiBodyLinkColliderFloatData
#define btMultiBodyLinkColliderDataName "btMultiBodyLinkColliderFloatData"
#endif
class btMultiBodyLinkCollider : public btCollisionObject
{
@@ -119,7 +129,49 @@ public:
}
return true;
}
virtual int calculateSerializeBufferSize() const;
///fills the dataBuffer and returns the struct name (and 0 on failure)
virtual const char* serialize(void* dataBuffer, class btSerializer* serializer) const;
};
struct btMultiBodyLinkColliderFloatData
{
btCollisionObjectFloatData m_colObjData;
void *m_multiBody;
int m_link;
char m_padding[4];
};
struct btMultiBodyLinkColliderDoubleData
{
btCollisionObjectDoubleData m_colObjData;
void *m_multiBody;
int m_link;
char m_padding[4];
};
SIMD_FORCE_INLINE int btMultiBodyLinkCollider::calculateSerializeBufferSize() const
{
return sizeof(btMultiBodyLinkColliderData);
}
SIMD_FORCE_INLINE const char* btMultiBodyLinkCollider::serialize(void* dataBuffer, class btSerializer* serializer) const
{
btMultiBodyLinkColliderData* dataOut = (btMultiBodyLinkColliderData*)dataBuffer;
btCollisionObject::serialize(&dataOut->m_colObjData,serializer);
dataOut->m_link = this->m_link;
dataOut->m_multiBody = serializer->getUniquePointer(m_multiBody);
// Fill padding with zeros to appease msan.
memset(dataOut->m_padding, 0, sizeof(dataOut->m_padding));
return btMultiBodyLinkColliderDataName;
}
#endif //BT_FEATHERSTONE_LINK_COLLIDER_H