Refactored GJK, EPA and MPR as a template class, reducing/removing the dependencies

to the rest of the Bullet code base. This code will replace the original GJK/EPA
in a future commit.

Added btMprPenetration, an implementation of Minkowski Portal Refinement
by Daniel Fiser. Original MPR idea is by Gary Snethen, and the first
implementation is here: https://github.com/erwincoumans/xenocollide
It is an alternative to EPA, although computing the local penetration depth.
EPA computes the global penetration depth. In many cases, MPR is sufficient
and performs better than EPA.
This commit is contained in:
Erwin Coumans
2014-11-02 12:53:36 -08:00
parent f25b5fb17a
commit b1863f7ce2
9 changed files with 2740 additions and 0 deletions

View File

@@ -116,6 +116,7 @@
if not _OPTIONS["without-gtest"] then
include "../test/gtest-1.7.0"
-- include "../test/hello_gtest"
include "../test/collision"
include "../test/TestBullet3OpenCL"
end

View File

@@ -0,0 +1,369 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2014 Erwin Coumans http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_GJK_EPA_PENETATION_CONVEX_COLLISION_H
#define BT_GJK_EPA_PENETATION_CONVEX_COLLISION_H
#include "LinearMath/btTransform.h" // Note that btVector3 might be double precision...
#include "btGjkEpa3.h"
#include "btGjkCollisionDescription.h"
#include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h"
template <typename btConvexTemplate>
bool btGjkEpaCalcPenDepth(const btConvexTemplate& a, const btConvexTemplate& b,
const btGjkCollisionDescription& colDesc,
btVector3& v, btVector3& wWitnessOnA, btVector3& wWitnessOnB)
{
(void)v;
// const btScalar radialmargin(btScalar(0.));
btVector3 guessVector(b.getWorldTransform().getOrigin()-a.getWorldTransform().getOrigin());//?? why not use the GJK input?
btGjkEpaSolver3::sResults results;
if(btGjkEpaSolver3_Penetration(a,b,guessVector,results))
{
// debugDraw->drawLine(results.witnesses[1],results.witnesses[1]+results.normal,btVector3(255,0,0));
//resultOut->addContactPoint(results.normal,results.witnesses[1],-results.depth);
wWitnessOnA = results.witnesses[0];
wWitnessOnB = results.witnesses[1];
v = results.normal;
return true;
} else
{
if(btGjkEpaSolver3_Distance(a,b,guessVector,results))
{
wWitnessOnA = results.witnesses[0];
wWitnessOnB = results.witnesses[1];
v = results.normal;
return false;
}
}
return false;
}
template <typename btConvexTemplate, typename btGjkDistanceTemplate>
int btComputeGjkEpaPenetration(const btConvexTemplate& a, const btConvexTemplate& b, const btGjkCollisionDescription& colDesc, btVoronoiSimplexSolver& simplexSolver, btGjkDistanceTemplate* distInfo)
{
bool m_catchDegeneracies = true;
btScalar m_cachedSeparatingDistance = 0.f;
btScalar distance=btScalar(0.);
btVector3 normalInB(btScalar(0.),btScalar(0.),btScalar(0.));
btVector3 pointOnA,pointOnB;
btTransform localTransA = a.getWorldTransform();
btTransform localTransB = b.getWorldTransform();
btScalar marginA = a.getMargin();
btScalar marginB = b.getMargin();
int m_curIter = 0;
int gGjkMaxIter = colDesc.m_maxGjkIterations;//this is to catch invalid input, perhaps check for #NaN?
btVector3 m_cachedSeparatingAxis = colDesc.m_firstDir;
bool isValid = false;
bool checkSimplex = false;
bool checkPenetration = true;
int m_degenerateSimplex = 0;
int m_lastUsedMethod = -1;
{
btScalar squaredDistance = BT_LARGE_FLOAT;
btScalar delta = btScalar(0.);
btScalar margin = marginA + marginB;
simplexSolver.reset();
for ( ; ; )
//while (true)
{
btVector3 seperatingAxisInA = (-m_cachedSeparatingAxis)* localTransA.getBasis();
btVector3 seperatingAxisInB = m_cachedSeparatingAxis* localTransB.getBasis();
btVector3 pInA = a.getLocalSupportWithoutMargin(seperatingAxisInA);
btVector3 qInB = b.getLocalSupportWithoutMargin(seperatingAxisInB);
btVector3 pWorld = localTransA(pInA);
btVector3 qWorld = localTransB(qInB);
btVector3 w = pWorld - qWorld;
delta = m_cachedSeparatingAxis.dot(w);
// potential exit, they don't overlap
if ((delta > btScalar(0.0)) && (delta * delta > squaredDistance * colDesc.m_maximumDistanceSquared))
{
m_degenerateSimplex = 10;
checkSimplex=true;
//checkPenetration = false;
break;
}
//exit 0: the new point is already in the simplex, or we didn't come any closer
if (simplexSolver.inSimplex(w))
{
m_degenerateSimplex = 1;
checkSimplex = true;
break;
}
// are we getting any closer ?
btScalar f0 = squaredDistance - delta;
btScalar f1 = squaredDistance * colDesc.m_gjkRelError2;
if (f0 <= f1)
{
if (f0 <= btScalar(0.))
{
m_degenerateSimplex = 2;
} else
{
m_degenerateSimplex = 11;
}
checkSimplex = true;
break;
}
//add current vertex to simplex
simplexSolver.addVertex(w, pWorld, qWorld);
btVector3 newCachedSeparatingAxis;
//calculate the closest point to the origin (update vector v)
if (!simplexSolver.closest(newCachedSeparatingAxis))
{
m_degenerateSimplex = 3;
checkSimplex = true;
break;
}
if(newCachedSeparatingAxis.length2()<colDesc.m_gjkRelError2)
{
m_cachedSeparatingAxis = newCachedSeparatingAxis;
m_degenerateSimplex = 6;
checkSimplex = true;
break;
}
btScalar previousSquaredDistance = squaredDistance;
squaredDistance = newCachedSeparatingAxis.length2();
#if 0
///warning: this termination condition leads to some problems in 2d test case see Bullet/Demos/Box2dDemo
if (squaredDistance>previousSquaredDistance)
{
m_degenerateSimplex = 7;
squaredDistance = previousSquaredDistance;
checkSimplex = false;
break;
}
#endif //
//redundant m_simplexSolver->compute_points(pointOnA, pointOnB);
//are we getting any closer ?
if (previousSquaredDistance - squaredDistance <= SIMD_EPSILON * previousSquaredDistance)
{
// m_simplexSolver->backup_closest(m_cachedSeparatingAxis);
checkSimplex = true;
m_degenerateSimplex = 12;
break;
}
m_cachedSeparatingAxis = newCachedSeparatingAxis;
//degeneracy, this is typically due to invalid/uninitialized worldtransforms for a btCollisionObject
if (m_curIter++ > gGjkMaxIter)
{
#if defined(DEBUG) || defined (_DEBUG)
printf("btGjkPairDetector maxIter exceeded:%i\n",m_curIter);
printf("sepAxis=(%f,%f,%f), squaredDistance = %f\n",
m_cachedSeparatingAxis.getX(),
m_cachedSeparatingAxis.getY(),
m_cachedSeparatingAxis.getZ(),
squaredDistance);
#endif
break;
}
bool check = (!simplexSolver.fullSimplex());
//bool check = (!m_simplexSolver->fullSimplex() && squaredDistance > SIMD_EPSILON * m_simplexSolver->maxVertex());
if (!check)
{
//do we need this backup_closest here ?
// m_simplexSolver->backup_closest(m_cachedSeparatingAxis);
m_degenerateSimplex = 13;
break;
}
}
if (checkSimplex)
{
simplexSolver.compute_points(pointOnA, pointOnB);
normalInB = m_cachedSeparatingAxis;
btScalar lenSqr =m_cachedSeparatingAxis.length2();
//valid normal
if (lenSqr < 0.0001)
{
m_degenerateSimplex = 5;
}
if (lenSqr > SIMD_EPSILON*SIMD_EPSILON)
{
btScalar rlen = btScalar(1.) / btSqrt(lenSqr );
normalInB *= rlen; //normalize
btScalar s = btSqrt(squaredDistance);
btAssert(s > btScalar(0.0));
pointOnA -= m_cachedSeparatingAxis * (marginA / s);
pointOnB += m_cachedSeparatingAxis * (marginB / s);
distance = ((btScalar(1.)/rlen) - margin);
isValid = true;
m_lastUsedMethod = 1;
} else
{
m_lastUsedMethod = 2;
}
}
bool catchDegeneratePenetrationCase =
(m_catchDegeneracies && m_degenerateSimplex && ((distance+margin) < 0.01));
//if (checkPenetration && !isValid)
if (checkPenetration && (!isValid || catchDegeneratePenetrationCase ))
{
//penetration case
//if there is no way to handle penetrations, bail out
// Penetration depth case.
btVector3 tmpPointOnA,tmpPointOnB;
m_cachedSeparatingAxis.setZero();
bool isValid2 = btGjkEpaCalcPenDepth(a,b,
colDesc,
m_cachedSeparatingAxis, tmpPointOnA, tmpPointOnB);
if (isValid2)
{
btVector3 tmpNormalInB = tmpPointOnB-tmpPointOnA;
btScalar lenSqr = tmpNormalInB.length2();
if (lenSqr <= (SIMD_EPSILON*SIMD_EPSILON))
{
tmpNormalInB = m_cachedSeparatingAxis;
lenSqr = m_cachedSeparatingAxis.length2();
}
if (lenSqr > (SIMD_EPSILON*SIMD_EPSILON))
{
tmpNormalInB /= btSqrt(lenSqr);
btScalar distance2 = -(tmpPointOnA-tmpPointOnB).length();
//only replace valid penetrations when the result is deeper (check)
if (!isValid || (distance2 < distance))
{
distance = distance2;
pointOnA = tmpPointOnA;
pointOnB = tmpPointOnB;
normalInB = tmpNormalInB;
isValid = true;
m_lastUsedMethod = 3;
} else
{
m_lastUsedMethod = 8;
}
} else
{
m_lastUsedMethod = 9;
}
} else
{
///this is another degenerate case, where the initial GJK calculation reports a degenerate case
///EPA reports no penetration, and the second GJK (using the supporting vector without margin)
///reports a valid positive distance. Use the results of the second GJK instead of failing.
///thanks to Jacob.Langford for the reproduction case
///http://code.google.com/p/bullet/issues/detail?id=250
if (m_cachedSeparatingAxis.length2() > btScalar(0.))
{
btScalar distance2 = (tmpPointOnA-tmpPointOnB).length()-margin;
//only replace valid distances when the distance is less
if (!isValid || (distance2 < distance))
{
distance = distance2;
pointOnA = tmpPointOnA;
pointOnB = tmpPointOnB;
pointOnA -= m_cachedSeparatingAxis * marginA ;
pointOnB += m_cachedSeparatingAxis * marginB ;
normalInB = m_cachedSeparatingAxis;
normalInB.normalize();
isValid = true;
m_lastUsedMethod = 6;
} else
{
m_lastUsedMethod = 5;
}
}
}
}
}
if (isValid && ((distance < 0) || (distance*distance < colDesc.m_maximumDistanceSquared)))
{
m_cachedSeparatingAxis = normalInB;
m_cachedSeparatingDistance = distance;
distInfo->m_distance = distance;
distInfo->m_normalBtoA = normalInB;
distInfo->m_pointOnB = pointOnB;
distInfo->m_pointOnA = pointOnB+normalInB*distance;
return 0;
}
return -m_lastUsedMethod;
}
#endif //BT_GJK_EPA_PENETATION_CONVEX_COLLISION_H

View File

@@ -0,0 +1,41 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2014 Erwin Coumans http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef GJK_COLLISION_DESCRIPTION_H
#define GJK_COLLISION_DESCRIPTION_H
#include "LinearMath/btVector3.h"
struct btGjkCollisionDescription
{
btVector3 m_firstDir;
int m_maxGjkIterations;
btScalar m_maximumDistanceSquared;
btScalar m_gjkRelError2;
btGjkCollisionDescription()
:m_firstDir(0,1,0),
m_maxGjkIterations(1000),
m_maximumDistanceSquared(1e30f),
m_gjkRelError2(1.0e-6)
{
}
virtual ~btGjkCollisionDescription()
{
}
};
#endif //GJK_COLLISION_DESCRIPTION_H

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,901 @@
/***
* ---------------------------------
* Copyright (c)2012 Daniel Fiser <danfis@danfis.cz>
*
* This file was ported from mpr.c file, part of libccd.
* The Minkoski Portal Refinement implementation was ported
* to OpenCL by Erwin Coumans for the Bullet 3 Physics library.
* The original MPR idea and implementation is by Gary Snethen
* in XenoCollide, see http://github.com/erwincoumans/xenocollide
*
* Distributed under the OSI-approved BSD License (the "License");
* see <http://www.opensource.org/licenses/bsd-license.php>.
* This software is distributed WITHOUT ANY WARRANTY; without even the
* implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the License for more information.
*/
///2014 Oct, Erwin Coumans, Use templates to avoid void* casts
#ifndef BT_MPR_PENETRATION_H
#define BT_MPR_PENETRATION_H
#define BT_DEBUG_MPR1
#include "LinearMath/btTransform.h"
#include "LinearMath/btAlignedObjectArray.h"
//#define MPR_AVERAGE_CONTACT_POSITIONS
struct btMprCollisionDescription
{
btVector3 m_firstDir;
int m_maxGjkIterations;
btScalar m_maximumDistanceSquared;
btScalar m_gjkRelError2;
btMprCollisionDescription()
: m_firstDir(0,1,0),
m_maxGjkIterations(1000),
m_maximumDistanceSquared(1e30f),
m_gjkRelError2(1.0e-6)
{
}
virtual ~btMprCollisionDescription()
{
}
};
struct btMprDistanceInfo
{
btVector3 m_pointOnA;
btVector3 m_pointOnB;
btVector3 m_normalBtoA;
btScalar m_distance;
};
#ifdef __cplusplus
#define BT_MPR_SQRT sqrtf
#else
#define BT_MPR_SQRT sqrt
#endif
#define BT_MPR_FMIN(x, y) ((x) < (y) ? (x) : (y))
#define BT_MPR_FABS fabs
#define BT_MPR_TOLERANCE 1E-6f
#define BT_MPR_MAX_ITERATIONS 1000
struct _btMprSupport_t
{
btVector3 v; //!< Support point in minkowski sum
btVector3 v1; //!< Support point in obj1
btVector3 v2; //!< Support point in obj2
};
typedef struct _btMprSupport_t btMprSupport_t;
struct _btMprSimplex_t
{
btMprSupport_t ps[4];
int last; //!< index of last added point
};
typedef struct _btMprSimplex_t btMprSimplex_t;
inline btMprSupport_t* btMprSimplexPointW(btMprSimplex_t *s, int idx)
{
return &s->ps[idx];
}
inline void btMprSimplexSetSize(btMprSimplex_t *s, int size)
{
s->last = size - 1;
}
#ifdef DEBUG_MPR
inline void btPrintPortalVertex(_btMprSimplex_t* portal, int index)
{
printf("portal[%d].v = %f,%f,%f, v1=%f,%f,%f, v2=%f,%f,%f\n", index, portal->ps[index].v.x(),portal->ps[index].v.y(),portal->ps[index].v.z(),
portal->ps[index].v1.x(),portal->ps[index].v1.y(),portal->ps[index].v1.z(),
portal->ps[index].v2.x(),portal->ps[index].v2.y(),portal->ps[index].v2.z());
}
#endif //DEBUG_MPR
inline int btMprSimplexSize(const btMprSimplex_t *s)
{
return s->last + 1;
}
inline const btMprSupport_t* btMprSimplexPoint(const btMprSimplex_t* s, int idx)
{
// here is no check on boundaries
return &s->ps[idx];
}
inline void btMprSupportCopy(btMprSupport_t *d, const btMprSupport_t *s)
{
*d = *s;
}
inline void btMprSimplexSet(btMprSimplex_t *s, size_t pos, const btMprSupport_t *a)
{
btMprSupportCopy(s->ps + pos, a);
}
inline void btMprSimplexSwap(btMprSimplex_t *s, size_t pos1, size_t pos2)
{
btMprSupport_t supp;
btMprSupportCopy(&supp, &s->ps[pos1]);
btMprSupportCopy(&s->ps[pos1], &s->ps[pos2]);
btMprSupportCopy(&s->ps[pos2], &supp);
}
inline int btMprIsZero(float val)
{
return BT_MPR_FABS(val) < FLT_EPSILON;
}
inline int btMprEq(float _a, float _b)
{
float ab;
float a, b;
ab = BT_MPR_FABS(_a - _b);
if (BT_MPR_FABS(ab) < FLT_EPSILON)
return 1;
a = BT_MPR_FABS(_a);
b = BT_MPR_FABS(_b);
if (b > a){
return ab < FLT_EPSILON * b;
}else{
return ab < FLT_EPSILON * a;
}
}
inline int btMprVec3Eq(const btVector3* a, const btVector3 *b)
{
return btMprEq((*a).x(), (*b).x())
&& btMprEq((*a).y(), (*b).y())
&& btMprEq((*a).z(), (*b).z());
}
template <typename btConvexTemplate>
inline void btFindOrigin(const btConvexTemplate& a, const btConvexTemplate& b, const btMprCollisionDescription& colDesc,btMprSupport_t *center)
{
center->v1 = a.getObjectCenterInWorld();
center->v2 = b.getObjectCenterInWorld();
center->v = center->v1 - center->v2;
}
inline void btMprVec3Set(btVector3 *v, float x, float y, float z)
{
v->setValue(x,y,z);
}
inline void btMprVec3Add(btVector3 *v, const btVector3 *w)
{
*v += *w;
}
inline void btMprVec3Copy(btVector3 *v, const btVector3 *w)
{
*v = *w;
}
inline void btMprVec3Scale(btVector3 *d, float k)
{
*d *= k;
}
inline float btMprVec3Dot(const btVector3 *a, const btVector3 *b)
{
float dot;
dot = btDot(*a,*b);
return dot;
}
inline float btMprVec3Len2(const btVector3 *v)
{
return btMprVec3Dot(v, v);
}
inline void btMprVec3Normalize(btVector3 *d)
{
float k = 1.f / BT_MPR_SQRT(btMprVec3Len2(d));
btMprVec3Scale(d, k);
}
inline void btMprVec3Cross(btVector3 *d, const btVector3 *a, const btVector3 *b)
{
*d = btCross(*a,*b);
}
inline void btMprVec3Sub2(btVector3 *d, const btVector3 *v, const btVector3 *w)
{
*d = *v - *w;
}
inline void btPortalDir(const btMprSimplex_t *portal, btVector3 *dir)
{
btVector3 v2v1, v3v1;
btMprVec3Sub2(&v2v1, &btMprSimplexPoint(portal, 2)->v,
&btMprSimplexPoint(portal, 1)->v);
btMprVec3Sub2(&v3v1, &btMprSimplexPoint(portal, 3)->v,
&btMprSimplexPoint(portal, 1)->v);
btMprVec3Cross(dir, &v2v1, &v3v1);
btMprVec3Normalize(dir);
}
inline int portalEncapsulesOrigin(const btMprSimplex_t *portal,
const btVector3 *dir)
{
float dot;
dot = btMprVec3Dot(dir, &btMprSimplexPoint(portal, 1)->v);
return btMprIsZero(dot) || dot > 0.f;
}
inline int portalReachTolerance(const btMprSimplex_t *portal,
const btMprSupport_t *v4,
const btVector3 *dir)
{
float dv1, dv2, dv3, dv4;
float dot1, dot2, dot3;
// find the smallest dot product of dir and {v1-v4, v2-v4, v3-v4}
dv1 = btMprVec3Dot(&btMprSimplexPoint(portal, 1)->v, dir);
dv2 = btMprVec3Dot(&btMprSimplexPoint(portal, 2)->v, dir);
dv3 = btMprVec3Dot(&btMprSimplexPoint(portal, 3)->v, dir);
dv4 = btMprVec3Dot(&v4->v, dir);
dot1 = dv4 - dv1;
dot2 = dv4 - dv2;
dot3 = dv4 - dv3;
dot1 = BT_MPR_FMIN(dot1, dot2);
dot1 = BT_MPR_FMIN(dot1, dot3);
return btMprEq(dot1, BT_MPR_TOLERANCE) || dot1 < BT_MPR_TOLERANCE;
}
inline int portalCanEncapsuleOrigin(const btMprSimplex_t *portal,
const btMprSupport_t *v4,
const btVector3 *dir)
{
float dot;
dot = btMprVec3Dot(&v4->v, dir);
return btMprIsZero(dot) || dot > 0.f;
}
inline void btExpandPortal(btMprSimplex_t *portal,
const btMprSupport_t *v4)
{
float dot;
btVector3 v4v0;
btMprVec3Cross(&v4v0, &v4->v, &btMprSimplexPoint(portal, 0)->v);
dot = btMprVec3Dot(&btMprSimplexPoint(portal, 1)->v, &v4v0);
if (dot > 0.f){
dot = btMprVec3Dot(&btMprSimplexPoint(portal, 2)->v, &v4v0);
if (dot > 0.f){
btMprSimplexSet(portal, 1, v4);
}else{
btMprSimplexSet(portal, 3, v4);
}
}else{
dot = btMprVec3Dot(&btMprSimplexPoint(portal, 3)->v, &v4v0);
if (dot > 0.f){
btMprSimplexSet(portal, 2, v4);
}else{
btMprSimplexSet(portal, 1, v4);
}
}
}
template <typename btConvexTemplate>
inline void btMprSupport(const btConvexTemplate& a, const btConvexTemplate& b,
const btMprCollisionDescription& colDesc,
const btVector3& dir, btMprSupport_t *supp)
{
btVector3 seperatingAxisInA = dir* a.getWorldTransform().getBasis();
btVector3 seperatingAxisInB = -dir* b.getWorldTransform().getBasis();
btVector3 pInA = a.getLocalSupportWithMargin(seperatingAxisInA);
btVector3 qInB = b.getLocalSupportWithMargin(seperatingAxisInB);
supp->v1 = a.getWorldTransform()(pInA);
supp->v2 = b.getWorldTransform()(qInB);
supp->v = supp->v1 - supp->v2;
}
template <typename btConvexTemplate>
static int btDiscoverPortal(const btConvexTemplate& a, const btConvexTemplate& b,
const btMprCollisionDescription& colDesc,
btMprSimplex_t *portal)
{
btVector3 dir, va, vb;
float dot;
int cont;
// vertex 0 is center of portal
btFindOrigin(a,b,colDesc, btMprSimplexPointW(portal, 0));
// vertex 0 is center of portal
btMprSimplexSetSize(portal, 1);
btVector3 zero = btVector3(0,0,0);
btVector3* org = &zero;
if (btMprVec3Eq(&btMprSimplexPoint(portal, 0)->v, org)){
// Portal's center lies on origin (0,0,0) => we know that objects
// intersect but we would need to know penetration info.
// So move center little bit...
btMprVec3Set(&va, FLT_EPSILON * 10.f, 0.f, 0.f);
btMprVec3Add(&btMprSimplexPointW(portal, 0)->v, &va);
}
// vertex 1 = support in direction of origin
btMprVec3Copy(&dir, &btMprSimplexPoint(portal, 0)->v);
btMprVec3Scale(&dir, -1.f);
btMprVec3Normalize(&dir);
btMprSupport(a,b,colDesc, dir, btMprSimplexPointW(portal, 1));
btMprSimplexSetSize(portal, 2);
// test if origin isn't outside of v1
dot = btMprVec3Dot(&btMprSimplexPoint(portal, 1)->v, &dir);
if (btMprIsZero(dot) || dot < 0.f)
return -1;
// vertex 2
btMprVec3Cross(&dir, &btMprSimplexPoint(portal, 0)->v,
&btMprSimplexPoint(portal, 1)->v);
if (btMprIsZero(btMprVec3Len2(&dir))){
if (btMprVec3Eq(&btMprSimplexPoint(portal, 1)->v, org)){
// origin lies on v1
return 1;
}else{
// origin lies on v0-v1 segment
return 2;
}
}
btMprVec3Normalize(&dir);
btMprSupport(a,b,colDesc, dir, btMprSimplexPointW(portal, 2));
dot = btMprVec3Dot(&btMprSimplexPoint(portal, 2)->v, &dir);
if (btMprIsZero(dot) || dot < 0.f)
return -1;
btMprSimplexSetSize(portal, 3);
// vertex 3 direction
btMprVec3Sub2(&va, &btMprSimplexPoint(portal, 1)->v,
&btMprSimplexPoint(portal, 0)->v);
btMprVec3Sub2(&vb, &btMprSimplexPoint(portal, 2)->v,
&btMprSimplexPoint(portal, 0)->v);
btMprVec3Cross(&dir, &va, &vb);
btMprVec3Normalize(&dir);
// it is better to form portal faces to be oriented "outside" origin
dot = btMprVec3Dot(&dir, &btMprSimplexPoint(portal, 0)->v);
if (dot > 0.f){
btMprSimplexSwap(portal, 1, 2);
btMprVec3Scale(&dir, -1.f);
}
while (btMprSimplexSize(portal) < 4){
btMprSupport(a,b,colDesc, dir, btMprSimplexPointW(portal, 3));
dot = btMprVec3Dot(&btMprSimplexPoint(portal, 3)->v, &dir);
if (btMprIsZero(dot) || dot < 0.f)
return -1;
cont = 0;
// test if origin is outside (v1, v0, v3) - set v2 as v3 and
// continue
btMprVec3Cross(&va, &btMprSimplexPoint(portal, 1)->v,
&btMprSimplexPoint(portal, 3)->v);
dot = btMprVec3Dot(&va, &btMprSimplexPoint(portal, 0)->v);
if (dot < 0.f && !btMprIsZero(dot)){
btMprSimplexSet(portal, 2, btMprSimplexPoint(portal, 3));
cont = 1;
}
if (!cont){
// test if origin is outside (v3, v0, v2) - set v1 as v3 and
// continue
btMprVec3Cross(&va, &btMprSimplexPoint(portal, 3)->v,
&btMprSimplexPoint(portal, 2)->v);
dot = btMprVec3Dot(&va, &btMprSimplexPoint(portal, 0)->v);
if (dot < 0.f && !btMprIsZero(dot)){
btMprSimplexSet(portal, 1, btMprSimplexPoint(portal, 3));
cont = 1;
}
}
if (cont){
btMprVec3Sub2(&va, &btMprSimplexPoint(portal, 1)->v,
&btMprSimplexPoint(portal, 0)->v);
btMprVec3Sub2(&vb, &btMprSimplexPoint(portal, 2)->v,
&btMprSimplexPoint(portal, 0)->v);
btMprVec3Cross(&dir, &va, &vb);
btMprVec3Normalize(&dir);
}else{
btMprSimplexSetSize(portal, 4);
}
}
return 0;
}
template <typename btConvexTemplate>
static int btRefinePortal(const btConvexTemplate& a, const btConvexTemplate& b,const btMprCollisionDescription& colDesc,
btMprSimplex_t *portal)
{
btVector3 dir;
btMprSupport_t v4;
for (int i=0;i<BT_MPR_MAX_ITERATIONS;i++)
//while (1)
{
// compute direction outside the portal (from v0 throught v1,v2,v3
// face)
btPortalDir(portal, &dir);
// test if origin is inside the portal
if (portalEncapsulesOrigin(portal, &dir))
return 0;
// get next support point
btMprSupport(a,b,colDesc, dir, &v4);
// test if v4 can expand portal to contain origin and if portal
// expanding doesn't reach given tolerance
if (!portalCanEncapsuleOrigin(portal, &v4, &dir)
|| portalReachTolerance(portal, &v4, &dir))
{
return -1;
}
// v1-v2-v3 triangle must be rearranged to face outside Minkowski
// difference (direction from v0).
btExpandPortal(portal, &v4);
}
return -1;
}
static void btFindPos(const btMprSimplex_t *portal, btVector3 *pos)
{
btVector3 zero = btVector3(0,0,0);
btVector3* origin = &zero;
btVector3 dir;
size_t i;
float b[4], sum, inv;
btVector3 vec, p1, p2;
btPortalDir(portal, &dir);
// use barycentric coordinates of tetrahedron to find origin
btMprVec3Cross(&vec, &btMprSimplexPoint(portal, 1)->v,
&btMprSimplexPoint(portal, 2)->v);
b[0] = btMprVec3Dot(&vec, &btMprSimplexPoint(portal, 3)->v);
btMprVec3Cross(&vec, &btMprSimplexPoint(portal, 3)->v,
&btMprSimplexPoint(portal, 2)->v);
b[1] = btMprVec3Dot(&vec, &btMprSimplexPoint(portal, 0)->v);
btMprVec3Cross(&vec, &btMprSimplexPoint(portal, 0)->v,
&btMprSimplexPoint(portal, 1)->v);
b[2] = btMprVec3Dot(&vec, &btMprSimplexPoint(portal, 3)->v);
btMprVec3Cross(&vec, &btMprSimplexPoint(portal, 2)->v,
&btMprSimplexPoint(portal, 1)->v);
b[3] = btMprVec3Dot(&vec, &btMprSimplexPoint(portal, 0)->v);
sum = b[0] + b[1] + b[2] + b[3];
if (btMprIsZero(sum) || sum < 0.f){
b[0] = 0.f;
btMprVec3Cross(&vec, &btMprSimplexPoint(portal, 2)->v,
&btMprSimplexPoint(portal, 3)->v);
b[1] = btMprVec3Dot(&vec, &dir);
btMprVec3Cross(&vec, &btMprSimplexPoint(portal, 3)->v,
&btMprSimplexPoint(portal, 1)->v);
b[2] = btMprVec3Dot(&vec, &dir);
btMprVec3Cross(&vec, &btMprSimplexPoint(portal, 1)->v,
&btMprSimplexPoint(portal, 2)->v);
b[3] = btMprVec3Dot(&vec, &dir);
sum = b[1] + b[2] + b[3];
}
inv = 1.f / sum;
btMprVec3Copy(&p1, origin);
btMprVec3Copy(&p2, origin);
for (i = 0; i < 4; i++){
btMprVec3Copy(&vec, &btMprSimplexPoint(portal, i)->v1);
btMprVec3Scale(&vec, b[i]);
btMprVec3Add(&p1, &vec);
btMprVec3Copy(&vec, &btMprSimplexPoint(portal, i)->v2);
btMprVec3Scale(&vec, b[i]);
btMprVec3Add(&p2, &vec);
}
btMprVec3Scale(&p1, inv);
btMprVec3Scale(&p2, inv);
#ifdef MPR_AVERAGE_CONTACT_POSITIONS
btMprVec3Copy(pos, &p1);
btMprVec3Add(pos, &p2);
btMprVec3Scale(pos, 0.5);
#else
btMprVec3Copy(pos, &p2);
#endif//MPR_AVERAGE_CONTACT_POSITIONS
}
inline float btMprVec3Dist2(const btVector3 *a, const btVector3 *b)
{
btVector3 ab;
btMprVec3Sub2(&ab, a, b);
return btMprVec3Len2(&ab);
}
inline float _btMprVec3PointSegmentDist2(const btVector3 *P,
const btVector3 *x0,
const btVector3 *b,
btVector3 *witness)
{
// The computation comes from solving equation of segment:
// S(t) = x0 + t.d
// where - x0 is initial point of segment
// - d is direction of segment from x0 (|d| > 0)
// - t belongs to <0, 1> interval
//
// Than, distance from a segment to some point P can be expressed:
// D(t) = |x0 + t.d - P|^2
// which is distance from any point on segment. Minimization
// of this function brings distance from P to segment.
// Minimization of D(t) leads to simple quadratic equation that's
// solving is straightforward.
//
// Bonus of this method is witness point for free.
float dist, t;
btVector3 d, a;
// direction of segment
btMprVec3Sub2(&d, b, x0);
// precompute vector from P to x0
btMprVec3Sub2(&a, x0, P);
t = -1.f * btMprVec3Dot(&a, &d);
t /= btMprVec3Len2(&d);
if (t < 0.f || btMprIsZero(t)){
dist = btMprVec3Dist2(x0, P);
if (witness)
btMprVec3Copy(witness, x0);
}else if (t > 1.f || btMprEq(t, 1.f)){
dist = btMprVec3Dist2(b, P);
if (witness)
btMprVec3Copy(witness, b);
}else{
if (witness){
btMprVec3Copy(witness, &d);
btMprVec3Scale(witness, t);
btMprVec3Add(witness, x0);
dist = btMprVec3Dist2(witness, P);
}else{
// recycling variables
btMprVec3Scale(&d, t);
btMprVec3Add(&d, &a);
dist = btMprVec3Len2(&d);
}
}
return dist;
}
inline float btMprVec3PointTriDist2(const btVector3 *P,
const btVector3 *x0, const btVector3 *B,
const btVector3 *C,
btVector3 *witness)
{
// Computation comes from analytic expression for triangle (x0, B, C)
// T(s, t) = x0 + s.d1 + t.d2, where d1 = B - x0 and d2 = C - x0 and
// Then equation for distance is:
// D(s, t) = | T(s, t) - P |^2
// This leads to minimization of quadratic function of two variables.
// The solution from is taken only if s is between 0 and 1, t is
// between 0 and 1 and t + s < 1, otherwise distance from segment is
// computed.
btVector3 d1, d2, a;
float u, v, w, p, q, r;
float s, t, dist, dist2;
btVector3 witness2;
btMprVec3Sub2(&d1, B, x0);
btMprVec3Sub2(&d2, C, x0);
btMprVec3Sub2(&a, x0, P);
u = btMprVec3Dot(&a, &a);
v = btMprVec3Dot(&d1, &d1);
w = btMprVec3Dot(&d2, &d2);
p = btMprVec3Dot(&a, &d1);
q = btMprVec3Dot(&a, &d2);
r = btMprVec3Dot(&d1, &d2);
s = (q * r - w * p) / (w * v - r * r);
t = (-s * r - q) / w;
if ((btMprIsZero(s) || s > 0.f)
&& (btMprEq(s, 1.f) || s < 1.f)
&& (btMprIsZero(t) || t > 0.f)
&& (btMprEq(t, 1.f) || t < 1.f)
&& (btMprEq(t + s, 1.f) || t + s < 1.f)){
if (witness){
btMprVec3Scale(&d1, s);
btMprVec3Scale(&d2, t);
btMprVec3Copy(witness, x0);
btMprVec3Add(witness, &d1);
btMprVec3Add(witness, &d2);
dist = btMprVec3Dist2(witness, P);
}else{
dist = s * s * v;
dist += t * t * w;
dist += 2.f * s * t * r;
dist += 2.f * s * p;
dist += 2.f * t * q;
dist += u;
}
}else{
dist = _btMprVec3PointSegmentDist2(P, x0, B, witness);
dist2 = _btMprVec3PointSegmentDist2(P, x0, C, &witness2);
if (dist2 < dist){
dist = dist2;
if (witness)
btMprVec3Copy(witness, &witness2);
}
dist2 = _btMprVec3PointSegmentDist2(P, B, C, &witness2);
if (dist2 < dist){
dist = dist2;
if (witness)
btMprVec3Copy(witness, &witness2);
}
}
return dist;
}
template <typename btConvexTemplate>
static void btFindPenetr(const btConvexTemplate& a, const btConvexTemplate& b,
const btMprCollisionDescription& colDesc,
btMprSimplex_t *portal,
float *depth, btVector3 *pdir, btVector3 *pos)
{
btVector3 dir;
btMprSupport_t v4;
unsigned long iterations;
btVector3 zero = btVector3(0,0,0);
btVector3* origin = &zero;
iterations = 1UL;
for (int i=0;i<BT_MPR_MAX_ITERATIONS;i++)
//while (1)
{
// compute portal direction and obtain next support point
btPortalDir(portal, &dir);
btMprSupport(a,b,colDesc, dir, &v4);
// reached tolerance -> find penetration info
if (portalReachTolerance(portal, &v4, &dir)
|| iterations ==BT_MPR_MAX_ITERATIONS)
{
*depth = btMprVec3PointTriDist2(origin,&btMprSimplexPoint(portal, 1)->v,&btMprSimplexPoint(portal, 2)->v,&btMprSimplexPoint(portal, 3)->v,pdir);
*depth = BT_MPR_SQRT(*depth);
if (btMprIsZero((*pdir).x()) && btMprIsZero((*pdir).y()) && btMprIsZero((*pdir).z()))
{
*pdir = dir;
}
btMprVec3Normalize(pdir);
// barycentric coordinates:
btFindPos(portal, pos);
return;
}
btExpandPortal(portal, &v4);
iterations++;
}
}
static void btFindPenetrTouch(btMprSimplex_t *portal,float *depth, btVector3 *dir, btVector3 *pos)
{
// Touching contact on portal's v1 - so depth is zero and direction
// is unimportant and pos can be guessed
*depth = 0.f;
btVector3 zero = btVector3(0,0,0);
btVector3* origin = &zero;
btMprVec3Copy(dir, origin);
#ifdef MPR_AVERAGE_CONTACT_POSITIONS
btMprVec3Copy(pos, &btMprSimplexPoint(portal, 1)->v1);
btMprVec3Add(pos, &btMprSimplexPoint(portal, 1)->v2);
btMprVec3Scale(pos, 0.5);
#else
btMprVec3Copy(pos, &btMprSimplexPoint(portal, 1)->v2);
#endif
}
static void btFindPenetrSegment(btMprSimplex_t *portal,
float *depth, btVector3 *dir, btVector3 *pos)
{
// Origin lies on v0-v1 segment.
// Depth is distance to v1, direction also and position must be
// computed
#ifdef MPR_AVERAGE_CONTACT_POSITIONS
btMprVec3Copy(pos, &btMprSimplexPoint(portal, 1)->v1);
btMprVec3Add(pos, &btMprSimplexPoint(portal, 1)->v2);
btMprVec3Scale(pos, 0.5f);
#else
btMprVec3Copy(pos, &btMprSimplexPoint(portal, 1)->v2);
#endif//MPR_AVERAGE_CONTACT_POSITIONS
btMprVec3Copy(dir, &btMprSimplexPoint(portal, 1)->v);
*depth = BT_MPR_SQRT(btMprVec3Len2(dir));
btMprVec3Normalize(dir);
}
template <typename btConvexTemplate>
inline int btMprPenetration( const btConvexTemplate& a, const btConvexTemplate& b,
const btMprCollisionDescription& colDesc,
float *depthOut, btVector3* dirOut, btVector3* posOut)
{
btMprSimplex_t portal;
// Phase 1: Portal discovery
int result = btDiscoverPortal(a,b,colDesc, &portal);
//sepAxis[pairIndex] = *pdir;//or -dir?
switch (result)
{
case 0:
{
// Phase 2: Portal refinement
result = btRefinePortal(a,b,colDesc, &portal);
if (result < 0)
return -1;
// Phase 3. Penetration info
btFindPenetr(a,b,colDesc, &portal, depthOut, dirOut, posOut);
break;
}
case 1:
{
// Touching contact on portal's v1.
btFindPenetrTouch(&portal, depthOut, dirOut, posOut);
result=0;
break;
}
case 2:
{
btFindPenetrSegment( &portal, depthOut, dirOut, posOut);
result=0;
break;
}
default:
{
//if (res < 0)
//{
// Origin isn't inside portal - no collision.
result = -1;
//}
}
};
return result;
};
template<typename btConvexTemplate, typename btMprDistanceTemplate>
inline int btComputeMprPenetration( const btConvexTemplate& a, const btConvexTemplate& b, const
btMprCollisionDescription& colDesc, btMprDistanceTemplate* distInfo)
{
btVector3 dir,pos;
float depth;
int res = btMprPenetration(a,b,colDesc,&depth, &dir, &pos);
if (res==0)
{
distInfo->m_distance = -depth;
distInfo->m_pointOnB = pos;
distInfo->m_normalBtoA = -dir;
distInfo->m_pointOnA = pos-distInfo->m_distance*dir;
return 0;
}
return -1;
}
#endif //BT_MPR_PENETRATION_H

View File

@@ -0,0 +1,57 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2014 Erwin Coumans http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef SPHERE_SPHERE_COLLISION_H
#define SPHERE_SPHERE_COLLISION_H
#include "LinearMath/btTransform.h" // Note that btVector3 might be double precision...
#include "btDistanceInfo.h"
struct btSphereSphereCollisionDescription
{
btTransform m_sphereTransformA;
btTransform m_sphereTransformB;
btScalar m_radiusA;
btScalar m_radiusB;
};
///compute the distance between two spheres, where the distance is zero when the spheres are touching
///positive distance means the spheres are separate and negative distance means penetration
///point A and pointB are witness points, and normalOnB points from sphere B to sphere A
inline int btComputeSphereSphereCollision(const btSphereSphereCollisionDescription& input, btDistanceInfo* distInfo)
{
btVector3 diff = input.m_sphereTransformA.getOrigin()- input.m_sphereTransformB.getOrigin();
btScalar len = diff.length();
btScalar radiusA = input.m_radiusA;
btScalar radiusB = input.m_radiusB;
///distance (negative means penetration)
btScalar dist = len - (radiusA+radiusB);
btVector3 normalOnSurfaceB(1,0,0);
if (len > SIMD_EPSILON)
{
normalOnSurfaceB = diff / len;
}
distInfo->m_distance = dist;
distInfo->m_normalBtoA = normalOnSurfaceB;
distInfo->m_pointOnA = input.m_sphereTransformA.getOrigin()-input.m_radiusA*normalOnSurfaceB;
distInfo->m_pointOnB = input.m_sphereTransformB.getOrigin()+input.m_radiusB*normalOnSurfaceB;
return 0;//sphere-sphere cannot fail
}
#endif //SPHERE_SPHERE_COLLISION_H

View File

@@ -0,0 +1,30 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2014 Erwin Coumans http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_DISTANCE_INFO_H
#define BT_DISTANCE_INFO_H
#include "LinearMath/btVector3.h"
struct btDistanceInfo
{
btVector3 m_pointOnA;
btVector3 m_pointOnB;
btVector3 m_normalBtoA;
btScalar m_distance;
};
#endif //BT_DISTANCE_INFO_H

271
test/collision/main.cpp Normal file
View File

@@ -0,0 +1,271 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2014 Google Inc. http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
///Original author: Erwin Coumans, October 2014
///Initial version of this low-level GJK/EPA/MPR convex-convex collision test
///You can provide your own support function in combination with the template functions
///See btComputeGjkEpaSphereSphereCollision below for an example
///Todo: the test needs proper coverage and using a convex hull point cloud
///Also the GJK, EPA and MPR should be improved, both quality and performance
#include <gtest/gtest.h>
#include "SphereSphereCollision.h"
#include "BulletCollision/CollisionShapes/btSphereShape.h"
#include "BulletCollision/CollisionShapes/btMultiSphereShape.h"
#include "BulletCollision/NarrowPhaseCollision/btComputeGjkEpaPenetration.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkEpa3.h"
#include "BulletCollision/NarrowPhaseCollision/btMprPenetration.h"
btVector3 MyBulletShapeSupportFunc(const void* shapeAptr, const btVector3& dir, bool includeMargin)
{
btConvexShape* shape = (btConvexShape*) shapeAptr;
if (includeMargin)
{
return shape->localGetSupportingVertex(dir);
}
return shape->localGetSupportingVertexWithoutMargin(dir);
}
btVector3 MyBulletShapeCenterFunc(const void* shapeAptr)
{
return btVector3(0,0,0);
}
enum SphereSphereTestMethod
{
SSTM_ANALYTIC,
SSTM_GJKEPA,
SSTM_GJKEPA_RADIUS_NOT_FULL_MARGIN,
SSTM_GJKMPR
};
struct ConvexWrap
{
btConvexShape* m_convex;
btTransform m_worldTrans;
inline btScalar getMargin() const
{
return m_convex->getMargin();
}
inline btVector3 getObjectCenterInWorld() const
{
return m_worldTrans.getOrigin();
}
inline const btTransform& getWorldTransform() const
{
return m_worldTrans;
}
inline btVector3 getLocalSupportWithMargin(const btVector3& dir) const
{
return m_convex->localGetSupportingVertex(dir);
}
inline btVector3 getLocalSupportWithoutMargin(const btVector3& dir) const
{
return m_convex->localGetSupportingVertexWithoutMargin(dir);
}
};
inline int btComputeGjkEpaSphereSphereCollision(const btSphereSphereCollisionDescription& input, btDistanceInfo* distInfo,SphereSphereTestMethod method)
{
///for spheres it is best to use a 'point' and set the margin to the radius (which is what btSphereShape does)
btSphereShape singleSphereA(input.m_radiusA);
btSphereShape singleSphereB(input.m_radiusB);
btVector3 org(0,0,0);
btScalar radA =input.m_radiusA;
btScalar radB =input.m_radiusB;
ConvexWrap a,b;
a.m_worldTrans = input.m_sphereTransformA;
b.m_worldTrans = input.m_sphereTransformB;;
btMultiSphereShape multiSphereA(&org,&radA,1);
btMultiSphereShape multiSphereB(&org,&radB,1);
btGjkCollisionDescription colDesc;
switch (method)
{
case SSTM_GJKEPA_RADIUS_NOT_FULL_MARGIN:
{
a.m_convex = &multiSphereA;
b.m_convex = &multiSphereB;
break;
}
default:
{
a.m_convex = &singleSphereA;
b.m_convex = &singleSphereB;
}
};
btVoronoiSimplexSolver simplexSolver;
simplexSolver.reset();
int res=-1;
///todo(erwincoumans): improve convex-convex quality and performance
///also compare with https://code.google.com/p/bullet/source/browse/branches/PhysicsEffects/src/base_level/collision/pfx_gjk_solver.cpp
switch (method)
{
case SSTM_GJKEPA_RADIUS_NOT_FULL_MARGIN:
case SSTM_GJKEPA:
{
res = btComputeGjkEpaPenetration(a,b,colDesc,simplexSolver, distInfo);
break;
}
case SSTM_GJKMPR:
{
res = btComputeGjkDistance(a,b,colDesc,distInfo);
if (res==0)
{
// printf("use GJK results in distance %f\n",distInfo->m_distance);
return res;
} else
{
btMprCollisionDescription mprDesc;
res = btComputeMprPenetration(a,b,mprDesc, distInfo);
// if (res==0)
// {
// printf("use MPR results in distance %f\n",distInfo->m_distance);
// }
}
break;
}
default:
{
btAssert(0);
}
}
return res;
}
void testSphereSphereDistance(SphereSphereTestMethod method, btScalar abs_error)
{
{
btSphereSphereCollisionDescription ssd;
ssd.m_sphereTransformA.setIdentity();
ssd.m_sphereTransformB.setIdentity();
ssd.m_radiusA = 0.f;
ssd.m_radiusB = 0.f;
btDistanceInfo distInfo;
int result = btComputeSphereSphereCollision(ssd,&distInfo);
ASSERT_EQ(0,result);
ASSERT_EQ(btScalar(0), distInfo.m_distance);
}
for (int rb=1;rb<10;rb++)
for (int z=-20;z<20;z++)
{
for (int j=1;j<10;j++)
{
for (int i=-20;i<20;i++)
{
if (i!=z)//skip co-centric spheres for now (todo(erwincoumans) fix this)
{
btSphereSphereCollisionDescription ssd;
ssd.m_sphereTransformA.setIdentity();
ssd.m_sphereTransformA.setOrigin(btVector3(0,btScalar(i),0));
ssd.m_sphereTransformB.setIdentity();
ssd.m_sphereTransformB.setOrigin(btVector3(0,btScalar(z),0));
ssd.m_radiusA = btScalar(j);
ssd.m_radiusB = btScalar(rb)*btScalar(0.1);
btDistanceInfo distInfo;
int result=-1;
switch (method)
{
case SSTM_ANALYTIC:
{
result = btComputeSphereSphereCollision(ssd,&distInfo);
break;
}
case SSTM_GJKMPR:
case SSTM_GJKEPA:
case SSTM_GJKEPA_RADIUS_NOT_FULL_MARGIN:
{
result = btComputeGjkEpaSphereSphereCollision(ssd,&distInfo, method);
break;
}
default:
{
ASSERT_EQ(0,1);
btAssert(0);
break;
}
}
// int result = btComputeSphereSphereCollision(ssd,&distInfo);
#if 0
printf("sphereA(pos=[%f,%f,%f],r=%f)-sphereB(pos=[%f,%f,%f],r=%f) Dist=%f,normalOnB[%f,%f,%f],pA=[%f,%f,%f],pB[%f,%f,%f]\n",
ssd.m_sphereTransformA.getOrigin()[0],ssd.m_sphereTransformA.getOrigin()[1],ssd.m_sphereTransformA.getOrigin()[2],ssd.m_radiusA,
ssd.m_sphereTransformB.getOrigin()[0],ssd.m_sphereTransformB.getOrigin()[1],ssd.m_sphereTransformB.getOrigin()[2],ssd.m_radiusB,
distInfo.m_distance,distInfo.m_normalBtoA[0],distInfo.m_normalBtoA[1],distInfo.m_normalBtoA[2],
distInfo.m_pointOnA[0],distInfo.m_pointOnA[1],distInfo.m_pointOnA[2],
distInfo.m_pointOnB[0],distInfo.m_pointOnB[1],distInfo.m_pointOnB[2]);
#endif
ASSERT_EQ(0,result);
ASSERT_NEAR(btFabs(btScalar(i-z))-btScalar(j)-ssd.m_radiusB, distInfo.m_distance, abs_error);
btVector3 computedA = distInfo.m_pointOnB+distInfo.m_distance*distInfo.m_normalBtoA;
ASSERT_NEAR(computedA.x(),distInfo.m_pointOnA.x(),abs_error);
ASSERT_NEAR(computedA.y(),distInfo.m_pointOnA.y(),abs_error);
ASSERT_NEAR(computedA.z(),distInfo.m_pointOnA.z(),abs_error);
}
}
}
}
}
TEST(BulletCollisionTest, GjkMPRSphereSphereDistance) {
testSphereSphereDistance(SSTM_GJKMPR, 0.0001);
}
TEST(BulletCollisionTest, GjkEpaSphereSphereDistance) {
testSphereSphereDistance(SSTM_GJKEPA, 0.00001);
}
TEST(BulletCollisionTest, GjkEpaSphereSphereRadiusNotFullMarginDistance) {
testSphereSphereDistance(SSTM_GJKEPA_RADIUS_NOT_FULL_MARGIN, 0.1);
}
TEST(BulletCollisionTest, AnalyticSphereSphereDistance) {
testSphereSphereDistance(SSTM_ANALYTIC, 0.00001);
}
int main(int argc, char **argv) {
#if _MSC_VER
_CrtSetDbgFlag ( _CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF );
//void *testWhetherMemoryLeakDetectionWorks = malloc(1);
#endif
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}

View File

@@ -0,0 +1,35 @@
project "test_bullet_collision"
kind "ConsoleApp"
-- defines { }
-- targetdir "../../bin"
includedirs
{
".",
"../../src",
"../gtest-1.7.0/include"
}
links {"LinearMath", "gtest"}
files {
"**.cpp",
"**.h",
"../../src/BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.cpp",
"../../src/BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h",
-- the *Shape.* files are not strictly necessary if you provide your own 'support' function
"../../src/BulletCollision/CollisionShapes/btSphereShape.cpp",
"../../src/BulletCollision/CollisionShapes/btMultiSphereShape.cpp",
"../../src/BulletCollision/CollisionShapes/btPolyhedralConvexShape.cpp",
"../../src/BulletCollision/CollisionShapes/btConvexShape.cpp",
"../../src/BulletCollision/CollisionShapes/btConvexInternalShape.cpp",
"../../src/BulletCollision/CollisionShapes/btCollisionShape.cpp",
"../../src/BulletCollision/CollisionShapes/btConvexPolyhedron.cpp",
}