Implement train_pybullet_racecar.py and enjoy_pybullet_racecar.py using OpenAI baselines DQN for the RacecarGymEnv.
This commit is contained in:
45
examples/pybullet/gym/enjoy_pybullet_racecar.py
Normal file
45
examples/pybullet/gym/enjoy_pybullet_racecar.py
Normal file
@@ -0,0 +1,45 @@
|
||||
import gym
|
||||
from envs.bullet.racecarGymEnv import RacecarGymEnv
|
||||
|
||||
from baselines import deepq
|
||||
|
||||
|
||||
def main():
|
||||
|
||||
env = RacecarGymEnv(render=True)
|
||||
act = deepq.load("racecar_model.pkl")
|
||||
print(act)
|
||||
while True:
|
||||
obs, done = env.reset(), False
|
||||
print("===================================")
|
||||
print("obs")
|
||||
print(obs)
|
||||
episode_rew = 0
|
||||
while not done:
|
||||
#env.render()
|
||||
|
||||
print("!!!!!!!!!!!!!!!!!!!!!!!!!!")
|
||||
print("obs")
|
||||
print(obs)
|
||||
print("???????????????????????????")
|
||||
print("obs[None]")
|
||||
print(obs[None])
|
||||
o = obs[None]
|
||||
print("o")
|
||||
print(o)
|
||||
aa = act(o)
|
||||
print("aa")
|
||||
print (aa)
|
||||
a = aa[0]
|
||||
print("a")
|
||||
print(a)
|
||||
obs, rew, done, _ = env.step(a)
|
||||
print("===================================")
|
||||
print("obs")
|
||||
print(obs)
|
||||
episode_rew += rew
|
||||
print("Episode reward", episode_rew)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
Reference in New Issue
Block a user