Implement train_pybullet_racecar.py and enjoy_pybullet_racecar.py using OpenAI baselines DQN for the RacecarGymEnv.

This commit is contained in:
Erwin Coumans
2017-06-09 19:26:07 -07:00
parent 82e3c553b9
commit b361722500
4 changed files with 138 additions and 33 deletions

View File

@@ -0,0 +1,40 @@
import gym
from envs.bullet.racecarGymEnv import RacecarGymEnv
from baselines import deepq
import datetime
def callback(lcl, glb):
# stop training if reward exceeds 199
is_solved = lcl['t'] > 100 and sum(lcl['episode_rewards'][-101:-1]) / 100 >= 199
#uniq_filename = "racecar_model" + str(datetime.datetime.now().date()) + '_' + str(datetime.datetime.now().time()).replace(':', '.')
#print("uniq_filename=")
#print(uniq_filename)
#act.save(uniq_filename)
return is_solved
def main():
env = RacecarGymEnv(render=False)
model = deepq.models.mlp([64])
act = deepq.learn(
env,
q_func=model,
lr=1e-3,
max_timesteps=10000000,
buffer_size=50000,
exploration_fraction=0.1,
exploration_final_eps=0.02,
print_freq=10,
callback=callback
)
print("Saving model to racecar_model.pkl")
act.save("racecar_model.pkl")
if __name__ == '__main__':
main()