Implement train_pybullet_racecar.py and enjoy_pybullet_racecar.py using OpenAI baselines DQN for the RacecarGymEnv.
This commit is contained in:
40
examples/pybullet/gym/train_pybullet_racecar.py
Normal file
40
examples/pybullet/gym/train_pybullet_racecar.py
Normal file
@@ -0,0 +1,40 @@
|
||||
import gym
|
||||
from envs.bullet.racecarGymEnv import RacecarGymEnv
|
||||
|
||||
from baselines import deepq
|
||||
|
||||
import datetime
|
||||
|
||||
|
||||
|
||||
def callback(lcl, glb):
|
||||
# stop training if reward exceeds 199
|
||||
is_solved = lcl['t'] > 100 and sum(lcl['episode_rewards'][-101:-1]) / 100 >= 199
|
||||
#uniq_filename = "racecar_model" + str(datetime.datetime.now().date()) + '_' + str(datetime.datetime.now().time()).replace(':', '.')
|
||||
#print("uniq_filename=")
|
||||
#print(uniq_filename)
|
||||
#act.save(uniq_filename)
|
||||
return is_solved
|
||||
|
||||
|
||||
def main():
|
||||
|
||||
env = RacecarGymEnv(render=False)
|
||||
model = deepq.models.mlp([64])
|
||||
act = deepq.learn(
|
||||
env,
|
||||
q_func=model,
|
||||
lr=1e-3,
|
||||
max_timesteps=10000000,
|
||||
buffer_size=50000,
|
||||
exploration_fraction=0.1,
|
||||
exploration_final_eps=0.02,
|
||||
print_freq=10,
|
||||
callback=callback
|
||||
)
|
||||
print("Saving model to racecar_model.pkl")
|
||||
act.save("racecar_model.pkl")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
Reference in New Issue
Block a user