Merge branch 'master' of https://github.com/erwincoumans/bullet3
This commit is contained in:
File diff suppressed because it is too large
Load Diff
12
README.md
12
README.md
@@ -44,6 +44,18 @@ track down the issue, but more work is required to cover all OpenCL kernels.
|
||||
All source code files are licensed under the permissive zlib license
|
||||
(http://opensource.org/licenses/Zlib) unless marked differently in a particular folder/file.
|
||||
|
||||
## Build instructions for Bullet using vcpkg
|
||||
|
||||
You can download and install Bullet using the [vcpkg](https://github.com/Microsoft/vcpkg/) dependency manager:
|
||||
|
||||
git clone https://github.com/Microsoft/vcpkg.git
|
||||
cd vcpkg
|
||||
./bootstrap-vcpkg.sh
|
||||
./vcpkg integrate install
|
||||
vcpkg install bullet3
|
||||
|
||||
The Bullet port in vcpkg is kept up to date by Microsoft team members and community contributors. If the version is out of date, please [create an issue or pull request](https://github.com/Microsoft/vcpkg) on the vcpkg repository.
|
||||
|
||||
## Build instructions for Bullet using premake. You can also use cmake instead.
|
||||
|
||||
**Windows**
|
||||
|
||||
@@ -752,6 +752,14 @@ B3_SHARED_API int b3PhysicsParamSetWarmStartingFactor(b3SharedMemoryCommandHandl
|
||||
return 0;
|
||||
}
|
||||
|
||||
B3_SHARED_API int b3PhysicsParamSetArticulatedWarmStartingFactor(b3SharedMemoryCommandHandle commandHandle, double warmStartingFactor)
|
||||
{
|
||||
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
|
||||
b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS);
|
||||
command->m_physSimParamArgs.m_articulatedWarmStartingFactor = warmStartingFactor;
|
||||
command->m_updateFlags |= SIM_PARAM_UPDATE_ARTICULATED_WARM_STARTING_FACTOR;
|
||||
return 0;
|
||||
}
|
||||
B3_SHARED_API int b3PhysicsParamSetSolverResidualThreshold(b3SharedMemoryCommandHandle commandHandle, double solverResidualThreshold)
|
||||
{
|
||||
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
|
||||
|
||||
@@ -339,6 +339,7 @@ extern "C"
|
||||
B3_SHARED_API int b3PhysicsParamSetRealTimeSimulation(b3SharedMemoryCommandHandle commandHandle, int enableRealTimeSimulation);
|
||||
B3_SHARED_API int b3PhysicsParamSetNumSolverIterations(b3SharedMemoryCommandHandle commandHandle, int numSolverIterations);
|
||||
B3_SHARED_API int b3PhysicsParamSetWarmStartingFactor(b3SharedMemoryCommandHandle commandHandle, double warmStartingFactor);
|
||||
B3_SHARED_API int b3PhysicsParamSetArticulatedWarmStartingFactor(b3SharedMemoryCommandHandle commandHandle, double warmStartingFactor);
|
||||
B3_SHARED_API int b3PhysicsParamSetCollisionFilterMode(b3SharedMemoryCommandHandle commandHandle, int filterMode);
|
||||
B3_SHARED_API int b3PhysicsParamSetUseSplitImpulse(b3SharedMemoryCommandHandle commandHandle, int useSplitImpulse);
|
||||
B3_SHARED_API int b3PhysicsParamSetSplitImpulsePenetrationThreshold(b3SharedMemoryCommandHandle commandHandle, double splitImpulsePenetrationThreshold);
|
||||
|
||||
@@ -1458,7 +1458,7 @@ const SharedMemoryStatus* PhysicsClientSharedMemory::processServerStatus()
|
||||
BodyJointInfoCache* bodyJoints = new BodyJointInfoCache;
|
||||
m_data->m_bodyJointMap.insert(bodyUniqueId, bodyJoints);
|
||||
bodyJoints->m_bodyName = serverCmd.m_dataStreamArguments.m_bodyName;
|
||||
bodyJoints->m_baseName = "baseLink";
|
||||
bodyJoints->m_baseName = serverCmd.m_dataStreamArguments.m_bodyName;
|
||||
|
||||
if (bf.ok())
|
||||
{
|
||||
|
||||
@@ -1218,7 +1218,7 @@ void PhysicsDirect::postProcessStatus(const struct SharedMemoryStatus& serverCmd
|
||||
BodyJointInfoCache2* bodyJoints = new BodyJointInfoCache2;
|
||||
m_data->m_bodyJointMap.insert(bodyUniqueId, bodyJoints);
|
||||
bodyJoints->m_bodyName = serverCmd.m_dataStreamArguments.m_bodyName;
|
||||
bodyJoints->m_baseName = "baseLink";
|
||||
bodyJoints->m_baseName = serverCmd.m_dataStreamArguments.m_bodyName;
|
||||
break;
|
||||
}
|
||||
case CMD_SYNC_USER_DATA_FAILED:
|
||||
|
||||
@@ -3463,8 +3463,6 @@ int PhysicsServerCommandProcessor::createBodyInfoStream(int bodyUniqueId, char*
|
||||
btDefaultSerializer ser(bufferSizeInBytes, (unsigned char*)bufferServerToClient);
|
||||
|
||||
ser.startSerialization();
|
||||
ser.registerNameForPointer(sb, bodyHandle->m_bodyName.c_str());
|
||||
|
||||
int len = sb->calculateSerializeBufferSize();
|
||||
btChunk* chunk = ser.allocate(len, 1);
|
||||
const char* structType = sb->serialize(chunk->m_oldPtr, &ser);
|
||||
@@ -7259,6 +7257,7 @@ bool PhysicsServerCommandProcessor::processRequestActualStateCommand(const struc
|
||||
serverCmd.m_numDataStreamBytes = sizeof(SendActualStateSharedMemoryStorage);
|
||||
serverCmd.m_sendActualStateArgs.m_stateDetails = 0;
|
||||
|
||||
|
||||
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[0] =
|
||||
body->m_rootLocalInertialFrame.getOrigin()[0];
|
||||
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[1] =
|
||||
@@ -7275,11 +7274,12 @@ bool PhysicsServerCommandProcessor::processRequestActualStateCommand(const struc
|
||||
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[6] =
|
||||
body->m_rootLocalInertialFrame.getRotation()[3];
|
||||
|
||||
btVector3 center_of_mass(sb->getCenterOfMass());
|
||||
btTransform tr = sb->getWorldTransform();
|
||||
//base position in world space, cartesian
|
||||
stateDetails->m_actualStateQ[0] = tr.getOrigin()[0];
|
||||
stateDetails->m_actualStateQ[1] = tr.getOrigin()[1];
|
||||
stateDetails->m_actualStateQ[2] = tr.getOrigin()[2];
|
||||
stateDetails->m_actualStateQ[0] = center_of_mass[0];
|
||||
stateDetails->m_actualStateQ[1] = center_of_mass[1];
|
||||
stateDetails->m_actualStateQ[2] = center_of_mass[2];
|
||||
|
||||
//base orientation, quaternion x,y,z,w, in world space, cartesian
|
||||
stateDetails->m_actualStateQ[3] = tr.getRotation()[0];
|
||||
@@ -8227,6 +8227,12 @@ bool PhysicsServerCommandProcessor::processLoadSoftBodyCommand(const struct Shar
|
||||
|
||||
serverStatusOut.m_loadSoftBodyResultArguments.m_objectUniqueId = bodyUniqueId;
|
||||
serverStatusOut.m_type = CMD_LOAD_SOFT_BODY_COMPLETED;
|
||||
int pos = strlen(relativeFileName)-1;
|
||||
while(pos>=0 && relativeFileName[pos]!='/') { pos--;}
|
||||
btAssert(strlen(relativeFileName)-pos-5>0);
|
||||
std::string object_name (std::string(relativeFileName).substr(pos+1, strlen(relativeFileName)- 5 - pos));
|
||||
bodyHandle->m_bodyName = object_name;
|
||||
|
||||
|
||||
int streamSizeInBytes = createBodyInfoStream(bodyUniqueId, bufferServerToClient, bufferSizeInBytes);
|
||||
serverStatusOut.m_numDataStreamBytes = streamSizeInBytes;
|
||||
@@ -9338,6 +9344,12 @@ bool PhysicsServerCommandProcessor::processSendPhysicsParametersCommand(const st
|
||||
{
|
||||
m_data->m_dynamicsWorld->getSolverInfo().m_warmstartingFactor = clientCmd.m_physSimParamArgs.m_warmStartingFactor;
|
||||
}
|
||||
|
||||
if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_ARTICULATED_WARM_STARTING_FACTOR)
|
||||
{
|
||||
m_data->m_dynamicsWorld->getSolverInfo().m_solverMode |= SOLVER_USE_ARTICULATED_WARMSTARTING;
|
||||
m_data->m_dynamicsWorld->getSolverInfo().m_articulatedWarmstartingFactor = clientCmd.m_physSimParamArgs.m_articulatedWarmStartingFactor;
|
||||
}
|
||||
SharedMemoryStatus& serverCmd = serverStatusOut;
|
||||
serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED;
|
||||
return hasStatus;
|
||||
|
||||
@@ -483,6 +483,7 @@ enum EnumSimParamUpdateFlags
|
||||
SIM_PARAM_CONSTRAINT_MIN_SOLVER_ISLAND_SIZE = 1 << 25,
|
||||
SIM_PARAM_REPORT_CONSTRAINT_SOLVER_ANALYTICS = 1 << 26,
|
||||
SIM_PARAM_UPDATE_WARM_STARTING_FACTOR = 1 << 27,
|
||||
SIM_PARAM_UPDATE_ARTICULATED_WARM_STARTING_FACTOR = 1 << 28,
|
||||
|
||||
};
|
||||
|
||||
|
||||
@@ -947,6 +947,7 @@ struct b3PhysicsSimulationParameters
|
||||
int m_numSimulationSubSteps;
|
||||
int m_numSolverIterations;
|
||||
double m_warmStartingFactor;
|
||||
double m_articulatedWarmStartingFactor;
|
||||
int m_useRealTimeSimulation;
|
||||
int m_useSplitImpulse;
|
||||
double m_splitImpulsePenetrationThreshold;
|
||||
|
||||
@@ -122,7 +122,7 @@ class MinitaurExtendedEnv(MinitaurReactiveEnv):
|
||||
leg_model = []
|
||||
if self._include_leg_model:
|
||||
raw_motor_angles = self.minitaur.GetMotorAngles()
|
||||
leg_model = self._convert_to_leg_model(raw_motor_angles)
|
||||
leg_model = self.convert_to_leg_model(raw_motor_angles)
|
||||
|
||||
observation_list = (
|
||||
[parent_observation] + history_states + history_actions +
|
||||
@@ -185,7 +185,7 @@ class MinitaurExtendedEnv(MinitaurReactiveEnv):
|
||||
if self._never_terminate:
|
||||
return False
|
||||
|
||||
leg_model = self._convert_to_leg_model(self.minitaur.GetMotorAngles())
|
||||
leg_model = self.convert_to_leg_model(self.minitaur.GetMotorAngles())
|
||||
swing0 = leg_model[0]
|
||||
swing1 = leg_model[2]
|
||||
maximum_swing_angle = 0.8
|
||||
|
||||
@@ -55,6 +55,7 @@ public:
|
||||
: m_userPersistentData(0),
|
||||
m_contactPointFlags(0),
|
||||
m_appliedImpulse(0.f),
|
||||
m_prevRHS(0.f),
|
||||
m_appliedImpulseLateral1(0.f),
|
||||
m_appliedImpulseLateral2(0.f),
|
||||
m_contactMotion1(0.f),
|
||||
@@ -79,6 +80,7 @@ public:
|
||||
m_userPersistentData(0),
|
||||
m_contactPointFlags(0),
|
||||
m_appliedImpulse(0.f),
|
||||
m_prevRHS(0.f),
|
||||
m_appliedImpulseLateral1(0.f),
|
||||
m_appliedImpulseLateral2(0.f),
|
||||
m_contactMotion1(0.f),
|
||||
@@ -114,6 +116,7 @@ public:
|
||||
int m_contactPointFlags;
|
||||
|
||||
btScalar m_appliedImpulse;
|
||||
btScalar m_prevRHS;
|
||||
btScalar m_appliedImpulseLateral1;
|
||||
btScalar m_appliedImpulseLateral2;
|
||||
btScalar m_contactMotion1;
|
||||
|
||||
@@ -325,6 +325,7 @@ const char* btPersistentManifold::serialize(const class btPersistentManifold* ma
|
||||
{
|
||||
const btManifoldPoint& pt = manifold->getContactPoint(i);
|
||||
dataOut->m_pointCacheAppliedImpulse[i] = pt.m_appliedImpulse;
|
||||
dataOut->m_pointCachePrevRHS[i] = pt.m_prevRHS;
|
||||
dataOut->m_pointCacheAppliedImpulseLateral1[i] = pt.m_appliedImpulseLateral1;
|
||||
dataOut->m_pointCacheAppliedImpulseLateral2[i] = pt.m_appliedImpulseLateral2;
|
||||
pt.m_localPointA.serialize(dataOut->m_pointCacheLocalPointA[i]);
|
||||
@@ -371,6 +372,7 @@ void btPersistentManifold::deSerialize(const struct btPersistentManifoldDoubleDa
|
||||
btManifoldPoint& pt = m_pointCache[i];
|
||||
|
||||
pt.m_appliedImpulse = manifoldDataPtr->m_pointCacheAppliedImpulse[i];
|
||||
pt.m_prevRHS = manifoldDataPtr->m_pointCachePrevRHS[i];
|
||||
pt.m_appliedImpulseLateral1 = manifoldDataPtr->m_pointCacheAppliedImpulseLateral1[i];
|
||||
pt.m_appliedImpulseLateral2 = manifoldDataPtr->m_pointCacheAppliedImpulseLateral2[i];
|
||||
pt.m_localPointA.deSerializeDouble(manifoldDataPtr->m_pointCacheLocalPointA[i]);
|
||||
@@ -416,6 +418,7 @@ void btPersistentManifold::deSerialize(const struct btPersistentManifoldFloatDat
|
||||
btManifoldPoint& pt = m_pointCache[i];
|
||||
|
||||
pt.m_appliedImpulse = manifoldDataPtr->m_pointCacheAppliedImpulse[i];
|
||||
pt.m_prevRHS = manifoldDataPtr->m_pointCachePrevRHS[i];
|
||||
pt.m_appliedImpulseLateral1 = manifoldDataPtr->m_pointCacheAppliedImpulseLateral1[i];
|
||||
pt.m_appliedImpulseLateral2 = manifoldDataPtr->m_pointCacheAppliedImpulseLateral2[i];
|
||||
pt.m_localPointA.deSerialize(manifoldDataPtr->m_pointCacheLocalPointA[i]);
|
||||
|
||||
@@ -173,6 +173,7 @@ public:
|
||||
//get rid of duplicated userPersistentData pointer
|
||||
m_pointCache[lastUsedIndex].m_userPersistentData = 0;
|
||||
m_pointCache[lastUsedIndex].m_appliedImpulse = 0.f;
|
||||
m_pointCache[lastUsedIndex].m_prevRHS = 0.f;
|
||||
m_pointCache[lastUsedIndex].m_contactPointFlags = 0;
|
||||
m_pointCache[lastUsedIndex].m_appliedImpulseLateral1 = 0.f;
|
||||
m_pointCache[lastUsedIndex].m_appliedImpulseLateral2 = 0.f;
|
||||
@@ -195,6 +196,7 @@ public:
|
||||
#ifdef MAINTAIN_PERSISTENCY
|
||||
int lifeTime = m_pointCache[insertIndex].getLifeTime();
|
||||
btScalar appliedImpulse = m_pointCache[insertIndex].m_appliedImpulse;
|
||||
btScalar prevRHS = m_pointCache[insertIndex].m_prevRHS;
|
||||
btScalar appliedLateralImpulse1 = m_pointCache[insertIndex].m_appliedImpulseLateral1;
|
||||
btScalar appliedLateralImpulse2 = m_pointCache[insertIndex].m_appliedImpulseLateral2;
|
||||
|
||||
@@ -223,6 +225,7 @@ public:
|
||||
m_pointCache[insertIndex] = newPoint;
|
||||
m_pointCache[insertIndex].m_userPersistentData = cache;
|
||||
m_pointCache[insertIndex].m_appliedImpulse = appliedImpulse;
|
||||
m_pointCache[insertIndex].m_prevRHS = prevRHS;
|
||||
m_pointCache[insertIndex].m_appliedImpulseLateral1 = appliedLateralImpulse1;
|
||||
m_pointCache[insertIndex].m_appliedImpulseLateral2 = appliedLateralImpulse2;
|
||||
}
|
||||
@@ -276,7 +279,8 @@ struct btPersistentManifoldDoubleData
|
||||
btVector3DoubleData m_pointCacheLateralFrictionDir2[4];
|
||||
double m_pointCacheDistance[4];
|
||||
double m_pointCacheAppliedImpulse[4];
|
||||
double m_pointCacheCombinedFriction[4];
|
||||
double m_pointCachePrevRHS[4];
|
||||
double m_pointCacheCombinedFriction[4];
|
||||
double m_pointCacheCombinedRollingFriction[4];
|
||||
double m_pointCacheCombinedSpinningFriction[4];
|
||||
double m_pointCacheCombinedRestitution[4];
|
||||
@@ -322,6 +326,7 @@ struct btPersistentManifoldFloatData
|
||||
btVector3FloatData m_pointCacheLateralFrictionDir2[4];
|
||||
float m_pointCacheDistance[4];
|
||||
float m_pointCacheAppliedImpulse[4];
|
||||
float m_pointCachePrevRHS[4];
|
||||
float m_pointCacheCombinedFriction[4];
|
||||
float m_pointCacheCombinedRollingFriction[4];
|
||||
float m_pointCacheCombinedSpinningFriction[4];
|
||||
|
||||
@@ -30,7 +30,8 @@ enum btSolverMode
|
||||
SOLVER_SIMD = 256,
|
||||
SOLVER_INTERLEAVE_CONTACT_AND_FRICTION_CONSTRAINTS = 512,
|
||||
SOLVER_ALLOW_ZERO_LENGTH_FRICTION_DIRECTIONS = 1024,
|
||||
SOLVER_DISABLE_IMPLICIT_CONE_FRICTION = 2048
|
||||
SOLVER_DISABLE_IMPLICIT_CONE_FRICTION = 2048,
|
||||
SOLVER_USE_ARTICULATED_WARMSTARTING = 4096,
|
||||
};
|
||||
|
||||
struct btContactSolverInfoData
|
||||
@@ -54,7 +55,7 @@ struct btContactSolverInfoData
|
||||
btScalar m_splitImpulseTurnErp;
|
||||
btScalar m_linearSlop;
|
||||
btScalar m_warmstartingFactor;
|
||||
|
||||
btScalar m_articulatedWarmstartingFactor;
|
||||
int m_solverMode;
|
||||
int m_restingContactRestitutionThreshold;
|
||||
int m_minimumSolverBatchSize;
|
||||
@@ -89,6 +90,7 @@ struct btContactSolverInfo : public btContactSolverInfoData
|
||||
m_splitImpulseTurnErp = 0.1f;
|
||||
m_linearSlop = btScalar(0.0);
|
||||
m_warmstartingFactor = btScalar(0.85);
|
||||
m_articulatedWarmstartingFactor = btScalar(0.85);
|
||||
//m_solverMode = SOLVER_USE_WARMSTARTING | SOLVER_SIMD | SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION|SOLVER_USE_2_FRICTION_DIRECTIONS|SOLVER_ENABLE_FRICTION_DIRECTION_CACHING;// | SOLVER_RANDMIZE_ORDER;
|
||||
m_solverMode = SOLVER_USE_WARMSTARTING | SOLVER_SIMD; // | SOLVER_RANDMIZE_ORDER;
|
||||
m_restingContactRestitutionThreshold = 2; //unused as of 2.81
|
||||
@@ -120,6 +122,7 @@ struct btContactSolverInfoDoubleData
|
||||
double m_splitImpulseTurnErp;
|
||||
double m_linearSlop;
|
||||
double m_warmstartingFactor;
|
||||
double m_articulatedWarmstartingFactor;
|
||||
double m_maxGyroscopicForce; ///it is only used for 'explicit' version of gyroscopic force
|
||||
double m_singleAxisRollingFrictionThreshold;
|
||||
|
||||
@@ -150,16 +153,17 @@ struct btContactSolverInfoFloatData
|
||||
|
||||
float m_linearSlop;
|
||||
float m_warmstartingFactor;
|
||||
float m_articulatedWarmstartingFactor;
|
||||
float m_maxGyroscopicForce;
|
||||
float m_singleAxisRollingFrictionThreshold;
|
||||
|
||||
float m_singleAxisRollingFrictionThreshold;
|
||||
int m_numIterations;
|
||||
int m_solverMode;
|
||||
int m_restingContactRestitutionThreshold;
|
||||
int m_minimumSolverBatchSize;
|
||||
|
||||
int m_minimumSolverBatchSize;
|
||||
int m_splitImpulse;
|
||||
char m_padding[4];
|
||||
|
||||
};
|
||||
|
||||
#endif //BT_CONTACT_SOLVER_INFO
|
||||
|
||||
@@ -1436,8 +1436,6 @@ void btDiscreteDynamicsWorld::serializeDynamicsWorldInfo(btSerializer* serialize
|
||||
|
||||
worldInfo->m_solverInfo.m_splitImpulse = getSolverInfo().m_splitImpulse;
|
||||
|
||||
// Fill padding with zeros to appease msan.
|
||||
memset(worldInfo->m_solverInfo.m_padding, 0, sizeof(worldInfo->m_solverInfo.m_padding));
|
||||
|
||||
#ifdef BT_USE_DOUBLE_PRECISION
|
||||
const char* structType = "btDynamicsWorldDoubleData";
|
||||
|
||||
@@ -342,40 +342,6 @@ btScalar btMultiBodyConstraint::fillMultiBodyConstraint(btMultiBodySolverConstra
|
||||
solverConstraint.m_friction = 0.f; //cp.m_combinedFriction;
|
||||
}
|
||||
|
||||
///warm starting (or zero if disabled)
|
||||
/*
|
||||
if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
|
||||
{
|
||||
solverConstraint.m_appliedImpulse = isFriction ? 0 : cp.m_appliedImpulse * infoGlobal.m_warmstartingFactor;
|
||||
|
||||
if (solverConstraint.m_appliedImpulse)
|
||||
{
|
||||
if (multiBodyA)
|
||||
{
|
||||
btScalar impulse = solverConstraint.m_appliedImpulse;
|
||||
btScalar* deltaV = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
|
||||
multiBodyA->applyDeltaVee(deltaV,impulse);
|
||||
applyDeltaVee(data,deltaV,impulse,solverConstraint.m_deltaVelAindex,ndofA);
|
||||
} else
|
||||
{
|
||||
if (rb0)
|
||||
bodyA->internalApplyImpulse(solverConstraint.m_contactNormal1*bodyA->internalGetInvMass()*rb0->getLinearFactor(),solverConstraint.m_angularComponentA,solverConstraint.m_appliedImpulse);
|
||||
}
|
||||
if (multiBodyB)
|
||||
{
|
||||
btScalar impulse = solverConstraint.m_appliedImpulse;
|
||||
btScalar* deltaV = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
|
||||
multiBodyB->applyDeltaVee(deltaV,impulse);
|
||||
applyDeltaVee(data,deltaV,impulse,solverConstraint.m_deltaVelBindex,ndofB);
|
||||
} else
|
||||
{
|
||||
if (rb1)
|
||||
bodyB->internalApplyImpulse(-solverConstraint.m_contactNormal2*bodyB->internalGetInvMass()*rb1->getLinearFactor(),-solverConstraint.m_angularComponentB,-(btScalar)solverConstraint.m_appliedImpulse);
|
||||
}
|
||||
}
|
||||
} else
|
||||
*/
|
||||
|
||||
solverConstraint.m_appliedImpulse = 0.f;
|
||||
solverConstraint.m_appliedPushImpulse = 0.f;
|
||||
|
||||
|
||||
@@ -22,6 +22,8 @@ subject to the following restrictions:
|
||||
#include "BulletDynamics/ConstraintSolver/btContactSolverInfo.h"
|
||||
|
||||
#include "LinearMath/btQuickprof.h"
|
||||
#include "BulletDynamics/Featherstone/btMultiBodySolverConstraint.h"
|
||||
#include "LinearMath/btScalar.h"
|
||||
|
||||
btScalar btMultiBodyConstraintSolver::solveSingleIteration(int iteration, btCollisionObject** bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer)
|
||||
{
|
||||
@@ -491,11 +493,7 @@ btScalar btMultiBodyConstraintSolver::resolveConeFrictionConstraintRows(const bt
|
||||
return deltaVel;
|
||||
}
|
||||
|
||||
void btMultiBodyConstraintSolver::setupMultiBodyContactConstraint(btMultiBodySolverConstraint& solverConstraint,
|
||||
const btVector3& contactNormal,
|
||||
btManifoldPoint& cp, const btContactSolverInfo& infoGlobal,
|
||||
btScalar& relaxation,
|
||||
bool isFriction, btScalar desiredVelocity, btScalar cfmSlip)
|
||||
void btMultiBodyConstraintSolver::setupMultiBodyContactConstraint(btMultiBodySolverConstraint& solverConstraint, const btVector3& contactNormal, const btScalar& appliedImpulse, btManifoldPoint& cp, const btContactSolverInfo& infoGlobal, btScalar& relaxation, bool isFriction, btScalar desiredVelocity, btScalar cfmSlip)
|
||||
{
|
||||
BT_PROFILE("setupMultiBodyContactConstraint");
|
||||
btVector3 rel_pos1;
|
||||
@@ -781,48 +779,6 @@ void btMultiBodyConstraintSolver::setupMultiBodyContactConstraint(btMultiBodySol
|
||||
}
|
||||
}
|
||||
|
||||
///warm starting (or zero if disabled)
|
||||
//disable warmstarting for btMultiBody, it has issues gaining energy (==explosion)
|
||||
if (/* DISABLES CODE */ (0)) //infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
|
||||
{
|
||||
solverConstraint.m_appliedImpulse = isFriction ? 0 : cp.m_appliedImpulse * infoGlobal.m_warmstartingFactor;
|
||||
|
||||
if (solverConstraint.m_appliedImpulse)
|
||||
{
|
||||
if (multiBodyA)
|
||||
{
|
||||
btScalar impulse = solverConstraint.m_appliedImpulse;
|
||||
btScalar* deltaV = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
|
||||
multiBodyA->applyDeltaVeeMultiDof(deltaV, impulse);
|
||||
|
||||
applyDeltaVee(deltaV, impulse, solverConstraint.m_deltaVelAindex, ndofA);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rb0)
|
||||
bodyA->internalApplyImpulse(solverConstraint.m_contactNormal1 * bodyA->internalGetInvMass() * rb0->getLinearFactor(), solverConstraint.m_angularComponentA, solverConstraint.m_appliedImpulse);
|
||||
}
|
||||
if (multiBodyB)
|
||||
{
|
||||
btScalar impulse = solverConstraint.m_appliedImpulse;
|
||||
btScalar* deltaV = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
|
||||
multiBodyB->applyDeltaVeeMultiDof(deltaV, impulse);
|
||||
applyDeltaVee(deltaV, impulse, solverConstraint.m_deltaVelBindex, ndofB);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rb1)
|
||||
bodyB->internalApplyImpulse(-solverConstraint.m_contactNormal2 * bodyB->internalGetInvMass() * rb1->getLinearFactor(), -solverConstraint.m_angularComponentB, -(btScalar)solverConstraint.m_appliedImpulse);
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
solverConstraint.m_appliedImpulse = 0.f;
|
||||
}
|
||||
|
||||
solverConstraint.m_appliedPushImpulse = 0.f;
|
||||
|
||||
{
|
||||
btScalar positionalError = 0.f;
|
||||
btScalar velocityError = restitution - rel_vel; // * damping; //note for friction restitution is always set to 0 (check above) so it is acutally velocityError = -rel_vel for friction
|
||||
@@ -874,6 +830,54 @@ void btMultiBodyConstraintSolver::setupMultiBodyContactConstraint(btMultiBodySol
|
||||
|
||||
solverConstraint.m_cfm = cfm * solverConstraint.m_jacDiagABInv;
|
||||
}
|
||||
|
||||
if (infoGlobal.m_solverMode & SOLVER_USE_ARTICULATED_WARMSTARTING)
|
||||
{
|
||||
if (btFabs(cp.m_prevRHS) > 1e-5 && cp.m_prevRHS < 2* solverConstraint.m_rhs && solverConstraint.m_rhs < 2*cp.m_prevRHS)
|
||||
{
|
||||
solverConstraint.m_appliedImpulse = isFriction ? 0 : cp.m_appliedImpulse / cp.m_prevRHS * solverConstraint.m_rhs * infoGlobal.m_articulatedWarmstartingFactor;
|
||||
if (solverConstraint.m_appliedImpulse < 0)
|
||||
solverConstraint.m_appliedImpulse = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
solverConstraint.m_appliedImpulse = 0.f;
|
||||
}
|
||||
|
||||
if (solverConstraint.m_appliedImpulse)
|
||||
{
|
||||
if (multiBodyA)
|
||||
{
|
||||
btScalar impulse = solverConstraint.m_appliedImpulse;
|
||||
btScalar* deltaV = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
|
||||
multiBodyA->applyDeltaVeeMultiDof2(deltaV, impulse);
|
||||
|
||||
applyDeltaVee(deltaV, impulse, solverConstraint.m_deltaVelAindex, ndofA);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rb0)
|
||||
bodyA->internalApplyImpulse(solverConstraint.m_contactNormal1 * bodyA->internalGetInvMass() * rb0->getLinearFactor(), solverConstraint.m_angularComponentA, solverConstraint.m_appliedImpulse);
|
||||
}
|
||||
if (multiBodyB)
|
||||
{
|
||||
btScalar impulse = solverConstraint.m_appliedImpulse;
|
||||
btScalar* deltaV = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
|
||||
multiBodyB->applyDeltaVeeMultiDof2(deltaV, impulse);
|
||||
applyDeltaVee(deltaV, impulse, solverConstraint.m_deltaVelBindex, ndofB);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rb1)
|
||||
bodyB->internalApplyImpulse(-solverConstraint.m_contactNormal2 * bodyB->internalGetInvMass() * rb1->getLinearFactor(), -solverConstraint.m_angularComponentB, -(btScalar)solverConstraint.m_appliedImpulse);
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
solverConstraint.m_appliedImpulse = 0.f;
|
||||
solverConstraint.m_appliedPushImpulse = 0.f;
|
||||
}
|
||||
}
|
||||
|
||||
void btMultiBodyConstraintSolver::setupMultiBodyTorsionalFrictionConstraint(btMultiBodySolverConstraint& solverConstraint,
|
||||
@@ -1130,7 +1134,7 @@ void btMultiBodyConstraintSolver::setupMultiBodyTorsionalFrictionConstraint(btMu
|
||||
}
|
||||
}
|
||||
|
||||
btMultiBodySolverConstraint& btMultiBodyConstraintSolver::addMultiBodyFrictionConstraint(const btVector3& normalAxis, btPersistentManifold* manifold, int frictionIndex, btManifoldPoint& cp, btCollisionObject* colObj0, btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity, btScalar cfmSlip)
|
||||
btMultiBodySolverConstraint& btMultiBodyConstraintSolver::addMultiBodyFrictionConstraint(const btVector3& normalAxis, const btScalar& appliedImpulse, btPersistentManifold* manifold, int frictionIndex, btManifoldPoint& cp, btCollisionObject* colObj0, btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity, btScalar cfmSlip)
|
||||
{
|
||||
BT_PROFILE("addMultiBodyFrictionConstraint");
|
||||
btMultiBodySolverConstraint& solverConstraint = m_multiBodyFrictionContactConstraints.expandNonInitializing();
|
||||
@@ -1161,7 +1165,7 @@ btMultiBodySolverConstraint& btMultiBodyConstraintSolver::addMultiBodyFrictionCo
|
||||
|
||||
solverConstraint.m_originalContactPoint = &cp;
|
||||
|
||||
setupMultiBodyContactConstraint(solverConstraint, normalAxis, cp, infoGlobal, relaxation, isFriction, desiredVelocity, cfmSlip);
|
||||
setupMultiBodyContactConstraint(solverConstraint, normalAxis, 0, cp, infoGlobal, relaxation, isFriction, desiredVelocity, cfmSlip);
|
||||
return solverConstraint;
|
||||
}
|
||||
|
||||
@@ -1297,7 +1301,7 @@ void btMultiBodyConstraintSolver::convertMultiBodyContact(btPersistentManifold*
|
||||
solverConstraint.m_originalContactPoint = &cp;
|
||||
|
||||
bool isFriction = false;
|
||||
setupMultiBodyContactConstraint(solverConstraint, cp.m_normalWorldOnB, cp, infoGlobal, relaxation, isFriction);
|
||||
setupMultiBodyContactConstraint(solverConstraint, cp.m_normalWorldOnB, cp.m_appliedImpulse, cp, infoGlobal, relaxation, isFriction);
|
||||
|
||||
// const btVector3& pos1 = cp.getPositionWorldOnA();
|
||||
// const btVector3& pos2 = cp.getPositionWorldOnB();
|
||||
@@ -1371,13 +1375,13 @@ void btMultiBodyConstraintSolver::convertMultiBodyContact(btPersistentManifold*
|
||||
{
|
||||
applyAnisotropicFriction(colObj0, cp.m_lateralFrictionDir1, btCollisionObject::CF_ANISOTROPIC_FRICTION);
|
||||
applyAnisotropicFriction(colObj1, cp.m_lateralFrictionDir1, btCollisionObject::CF_ANISOTROPIC_FRICTION);
|
||||
addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir1, manifold, frictionIndex, cp, colObj0, colObj1, relaxation, infoGlobal);
|
||||
addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir1, cp.m_appliedImpulseLateral1, manifold, frictionIndex, cp, colObj0, colObj1, relaxation, infoGlobal);
|
||||
|
||||
if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
|
||||
{
|
||||
applyAnisotropicFriction(colObj0, cp.m_lateralFrictionDir2, btCollisionObject::CF_ANISOTROPIC_FRICTION);
|
||||
applyAnisotropicFriction(colObj1, cp.m_lateralFrictionDir2, btCollisionObject::CF_ANISOTROPIC_FRICTION);
|
||||
addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir2, manifold, frictionIndex, cp, colObj0, colObj1, relaxation, infoGlobal);
|
||||
addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir2, cp.m_appliedImpulseLateral2, manifold, frictionIndex, cp, colObj0, colObj1, relaxation, infoGlobal);
|
||||
}
|
||||
|
||||
if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS) && (infoGlobal.m_solverMode & SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION))
|
||||
@@ -1388,26 +1392,27 @@ void btMultiBodyConstraintSolver::convertMultiBodyContact(btPersistentManifold*
|
||||
}
|
||||
else
|
||||
{
|
||||
addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir1, manifold, frictionIndex, cp, colObj0, colObj1, relaxation, infoGlobal, cp.m_contactMotion1, cp.m_frictionCFM);
|
||||
addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir1, cp.m_appliedImpulseLateral1, manifold, frictionIndex, cp, colObj0, colObj1, relaxation, infoGlobal, cp.m_contactMotion1, cp.m_frictionCFM);
|
||||
|
||||
if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
|
||||
addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir2, manifold, frictionIndex, cp, colObj0, colObj1, relaxation, infoGlobal, cp.m_contactMotion2, cp.m_frictionCFM);
|
||||
|
||||
//setMultiBodyFrictionConstraintImpulse( solverConstraint, solverBodyIdA, solverBodyIdB, cp, infoGlobal);
|
||||
//todo:
|
||||
addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir2, cp.m_appliedImpulseLateral2, manifold, frictionIndex, cp, colObj0, colObj1, relaxation, infoGlobal, cp.m_contactMotion2, cp.m_frictionCFM);
|
||||
solverConstraint.m_appliedImpulse = 0.f;
|
||||
solverConstraint.m_appliedPushImpulse = 0.f;
|
||||
}
|
||||
}
|
||||
|
||||
#endif //ENABLE_FRICTION
|
||||
}
|
||||
else
|
||||
{
|
||||
// Reset quantities related to warmstart as 0.
|
||||
cp.m_appliedImpulse = 0;
|
||||
cp.m_prevRHS = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void btMultiBodyConstraintSolver::convertContacts(btPersistentManifold** manifoldPtr, int numManifolds, const btContactSolverInfo& infoGlobal)
|
||||
{
|
||||
//btPersistentManifold* manifold = 0;
|
||||
|
||||
for (int i = 0; i < numManifolds; i++)
|
||||
{
|
||||
btPersistentManifold* manifold = manifoldPtr[i];
|
||||
@@ -1434,6 +1439,51 @@ void btMultiBodyConstraintSolver::convertContacts(btPersistentManifold** manifol
|
||||
|
||||
c->createConstraintRows(m_multiBodyNonContactConstraints, m_data, infoGlobal);
|
||||
}
|
||||
|
||||
// Warmstart for noncontact constraints
|
||||
if (infoGlobal.m_solverMode & SOLVER_USE_ARTICULATED_WARMSTARTING)
|
||||
{
|
||||
for (int i = 0; i < m_multiBodyNonContactConstraints.size(); i++)
|
||||
{
|
||||
btMultiBodySolverConstraint& solverConstraint =
|
||||
m_multiBodyNonContactConstraints[i];
|
||||
solverConstraint.m_appliedImpulse =
|
||||
solverConstraint.m_orgConstraint->getAppliedImpulse(solverConstraint.m_orgDofIndex) *
|
||||
infoGlobal.m_articulatedWarmstartingFactor;
|
||||
|
||||
btMultiBody* multiBodyA = solverConstraint.m_multiBodyA;
|
||||
btMultiBody* multiBodyB = solverConstraint.m_multiBodyB;
|
||||
if (solverConstraint.m_appliedImpulse)
|
||||
{
|
||||
if (multiBodyA)
|
||||
{
|
||||
int ndofA = multiBodyA->getNumDofs() + 6;
|
||||
btScalar* deltaV =
|
||||
&m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
|
||||
btScalar impulse = solverConstraint.m_appliedImpulse;
|
||||
multiBodyA->applyDeltaVeeMultiDof2(deltaV, impulse);
|
||||
applyDeltaVee(deltaV, impulse, solverConstraint.m_deltaVelAindex, ndofA);
|
||||
}
|
||||
if (multiBodyB)
|
||||
{
|
||||
int ndofB = multiBodyB->getNumDofs() + 6;
|
||||
btScalar* deltaV =
|
||||
&m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
|
||||
btScalar impulse = solverConstraint.m_appliedImpulse;
|
||||
multiBodyB->applyDeltaVeeMultiDof2(deltaV, impulse);
|
||||
applyDeltaVee(deltaV, impulse, solverConstraint.m_deltaVelBindex, ndofB);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int i = 0; i < m_multiBodyNonContactConstraints.size(); i++)
|
||||
{
|
||||
btMultiBodySolverConstraint& solverConstraint = m_multiBodyNonContactConstraints[i];
|
||||
solverConstraint.m_appliedImpulse = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
btScalar btMultiBodyConstraintSolver::solveGroup(btCollisionObject** bodies, int numBodies, btPersistentManifold** manifold, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& info, btIDebugDraw* debugDrawer, btDispatcher* dispatcher)
|
||||
@@ -1556,7 +1606,7 @@ btScalar btMultiBodyConstraintSolver::solveGroupCacheFriendlyFinish(btCollisionO
|
||||
writeBackSolverBodyToMultiBody(solverConstraint, infoGlobal.m_timeStep);
|
||||
}
|
||||
|
||||
if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
|
||||
|
||||
{
|
||||
BT_PROFILE("warm starting write back");
|
||||
for (int j = 0; j < numPoolConstraints; j++)
|
||||
@@ -1565,6 +1615,7 @@ btScalar btMultiBodyConstraintSolver::solveGroupCacheFriendlyFinish(btCollisionO
|
||||
btManifoldPoint* pt = (btManifoldPoint*)solverConstraint.m_originalContactPoint;
|
||||
btAssert(pt);
|
||||
pt->m_appliedImpulse = solverConstraint.m_appliedImpulse;
|
||||
pt->m_prevRHS = solverConstraint.m_rhs;
|
||||
pt->m_appliedImpulseLateral1 = m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_appliedImpulse;
|
||||
|
||||
//printf("pt->m_appliedImpulseLateral1 = %f\n", pt->m_appliedImpulseLateral1);
|
||||
@@ -1576,9 +1627,8 @@ btScalar btMultiBodyConstraintSolver::solveGroupCacheFriendlyFinish(btCollisionO
|
||||
pt->m_appliedImpulseLateral2 = 0;
|
||||
}
|
||||
}
|
||||
|
||||
//do a callback here?
|
||||
}
|
||||
|
||||
#if 0
|
||||
//multibody joint feedback
|
||||
{
|
||||
|
||||
@@ -49,7 +49,7 @@ protected:
|
||||
|
||||
void convertContacts(btPersistentManifold * *manifoldPtr, int numManifolds, const btContactSolverInfo& infoGlobal);
|
||||
|
||||
btMultiBodySolverConstraint& addMultiBodyFrictionConstraint(const btVector3& normalAxis, btPersistentManifold* manifold, int frictionIndex, btManifoldPoint& cp, btCollisionObject* colObj0, btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity = 0, btScalar cfmSlip = 0);
|
||||
btMultiBodySolverConstraint& addMultiBodyFrictionConstraint(const btVector3& normalAxis, const btScalar& appliedImpulse, btPersistentManifold* manifold, int frictionIndex, btManifoldPoint& cp, btCollisionObject* colObj0, btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity = 0, btScalar cfmSlip = 0);
|
||||
|
||||
btMultiBodySolverConstraint& addMultiBodyTorsionalFrictionConstraint(const btVector3& normalAxis, btPersistentManifold* manifold, int frictionIndex, btManifoldPoint& cp,
|
||||
btScalar combinedTorsionalFriction,
|
||||
@@ -66,7 +66,9 @@ protected:
|
||||
|
||||
void setupMultiBodyContactConstraint(btMultiBodySolverConstraint & solverConstraint,
|
||||
const btVector3& contactNormal,
|
||||
btManifoldPoint& cp, const btContactSolverInfo& infoGlobal,
|
||||
const btScalar& appliedImpulse,
|
||||
btManifoldPoint& cp,
|
||||
const btContactSolverInfo& infoGlobal,
|
||||
btScalar& relaxation,
|
||||
bool isFriction, btScalar desiredVelocity = 0, btScalar cfmSlip = 0);
|
||||
|
||||
@@ -82,7 +84,6 @@ protected:
|
||||
void convertMultiBodyContact(btPersistentManifold * manifold, const btContactSolverInfo& infoGlobal);
|
||||
virtual btScalar solveGroupCacheFriendlySetup(btCollisionObject * *bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer);
|
||||
// virtual btScalar solveGroupCacheFriendlyIterations(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
|
||||
|
||||
virtual btScalar solveSingleIteration(int iteration, btCollisionObject** bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer);
|
||||
void applyDeltaVee(btScalar * deltaV, btScalar impulse, int velocityIndex, int ndof);
|
||||
void writeBackSolverBodyToMultiBody(btMultiBodySolverConstraint & constraint, btScalar deltaTime);
|
||||
|
||||
@@ -14,7 +14,6 @@
|
||||
*/
|
||||
|
||||
#include "btDeformableContactConstraint.h"
|
||||
|
||||
/* ================ Deformable Node Anchor =================== */
|
||||
btDeformableNodeAnchorConstraint::btDeformableNodeAnchorConstraint(const btSoftBody::DeformableNodeRigidAnchor& a)
|
||||
: m_anchor(&a)
|
||||
@@ -216,7 +215,6 @@ btScalar btDeformableRigidContactConstraint::solveConstraint()
|
||||
btVector3 impulse = m_contact->m_c0 * vr;
|
||||
const btVector3 impulse_normal = m_contact->m_c0 * (cti.m_normal * dn);
|
||||
btVector3 impulse_tangent = impulse - impulse_normal;
|
||||
|
||||
btVector3 old_total_tangent_dv = m_total_tangent_dv;
|
||||
// m_c2 is the inverse mass of the deformable node/face
|
||||
m_total_normal_dv -= impulse_normal * m_contact->m_c2;
|
||||
@@ -236,13 +234,13 @@ btScalar btDeformableRigidContactConstraint::solveConstraint()
|
||||
// dynamic friction
|
||||
// with dynamic friction, the impulse are still applied to the two objects colliding, however, it does not pose a constraint in the cg solve, hence the change to dv merely serves to update velocity in the contact iterations.
|
||||
m_static = false;
|
||||
if (m_total_tangent_dv.norm() < SIMD_EPSILON)
|
||||
if (m_total_tangent_dv.safeNorm() < SIMD_EPSILON)
|
||||
{
|
||||
m_total_tangent_dv = btVector3(0,0,0);
|
||||
}
|
||||
else
|
||||
{
|
||||
m_total_tangent_dv = m_total_tangent_dv.normalized() * m_total_normal_dv.norm() * m_contact->m_c3;
|
||||
m_total_tangent_dv = m_total_tangent_dv.normalized() * m_total_normal_dv.safeNorm() * m_contact->m_c3;
|
||||
}
|
||||
impulse_tangent = -btScalar(1)/m_contact->m_c2 * (m_total_tangent_dv - old_total_tangent_dv);
|
||||
}
|
||||
@@ -255,7 +253,6 @@ btScalar btDeformableRigidContactConstraint::solveConstraint()
|
||||
impulse = impulse_normal + impulse_tangent;
|
||||
// apply impulse to deformable nodes involved and change their velocities
|
||||
applyImpulse(impulse);
|
||||
|
||||
// apply impulse to the rigid/multibodies involved and change their velocities
|
||||
if (cti.m_colObj->getInternalType() == btCollisionObject::CO_RIGID_BODY)
|
||||
{
|
||||
@@ -361,12 +358,32 @@ void btDeformableFaceRigidContactConstraint::applyImpulse(const btVector3& impul
|
||||
const btSoftBody::DeformableFaceRigidContact* contact = getContact();
|
||||
btVector3 dv = impulse * contact->m_c2;
|
||||
btSoftBody::Face* face = contact->m_face;
|
||||
if (face->m_n[0]->m_im > 0)
|
||||
face->m_n[0]->m_v -= dv * contact->m_weights[0];
|
||||
if (face->m_n[1]->m_im > 0)
|
||||
face->m_n[1]->m_v -= dv * contact->m_weights[1];
|
||||
if (face->m_n[2]->m_im > 0)
|
||||
face->m_n[2]->m_v -= dv * contact->m_weights[2];
|
||||
|
||||
btVector3& v0 = face->m_n[0]->m_v;
|
||||
btVector3& v1 = face->m_n[1]->m_v;
|
||||
btVector3& v2 = face->m_n[2]->m_v;
|
||||
const btScalar& im0 = face->m_n[0]->m_im;
|
||||
const btScalar& im1 = face->m_n[1]->m_im;
|
||||
const btScalar& im2 = face->m_n[2]->m_im;
|
||||
if (im0 > 0)
|
||||
v0 -= dv * contact->m_weights[0];
|
||||
if (im1 > 0)
|
||||
v1 -= dv * contact->m_weights[1];
|
||||
if (im2 > 0)
|
||||
v2 -= dv * contact->m_weights[2];
|
||||
|
||||
// apply strain limiting to prevent undamped modes
|
||||
btScalar m01 = (btScalar(1)/(im0 + im1));
|
||||
btScalar m02 = (btScalar(1)/(im0 + im2));
|
||||
btScalar m12 = (btScalar(1)/(im1 + im2));
|
||||
|
||||
btVector3 dv0 = im0 * (m01 * (v1-v0) + m02 * (v2-v0));
|
||||
btVector3 dv1 = im1 * (m01 * (v0-v1) + m12 * (v2-v1));
|
||||
btVector3 dv2 = im2 * (m12 * (v1-v2) + m02 * (v0-v2));
|
||||
|
||||
v0 += dv0;
|
||||
v1 += dv1;
|
||||
v2 += dv2;
|
||||
}
|
||||
|
||||
/* ================ Face vs. Node =================== */
|
||||
@@ -449,13 +466,13 @@ btScalar btDeformableFaceNodeContactConstraint::solveConstraint()
|
||||
// dynamic friction
|
||||
// with dynamic friction, the impulse are still applied to the two objects colliding, however, it does not pose a constraint in the cg solve, hence the change to dv merely serves to update velocity in the contact iterations.
|
||||
m_static = false;
|
||||
if (m_total_tangent_dv.norm() < SIMD_EPSILON)
|
||||
if (m_total_tangent_dv.safeNorm() < SIMD_EPSILON)
|
||||
{
|
||||
m_total_tangent_dv = btVector3(0,0,0);
|
||||
}
|
||||
else
|
||||
{
|
||||
m_total_tangent_dv = m_total_tangent_dv.normalized() * m_total_normal_dv.norm() * m_contact->m_friction;
|
||||
m_total_tangent_dv = m_total_tangent_dv.normalized() * m_total_normal_dv.safeNorm() * m_contact->m_friction;
|
||||
}
|
||||
impulse_tangent = -btScalar(1)/m_node->m_im * (m_total_tangent_dv - old_total_tangent_dv);
|
||||
}
|
||||
@@ -482,16 +499,33 @@ void btDeformableFaceNodeContactConstraint::applyImpulse(const btVector3& impuls
|
||||
}
|
||||
|
||||
btSoftBody::Face* face = contact->m_face;
|
||||
if (face->m_n[0]->m_im > 0)
|
||||
btVector3& v0 = face->m_n[0]->m_v;
|
||||
btVector3& v1 = face->m_n[1]->m_v;
|
||||
btVector3& v2 = face->m_n[2]->m_v;
|
||||
const btScalar& im0 = face->m_n[0]->m_im;
|
||||
const btScalar& im1 = face->m_n[1]->m_im;
|
||||
const btScalar& im2 = face->m_n[2]->m_im;
|
||||
if (im0 > 0)
|
||||
{
|
||||
face->m_n[0]->m_v -= dvb * contact->m_weights[0];
|
||||
v0 -= dvb * contact->m_weights[0];
|
||||
}
|
||||
if (face->m_n[1]->m_im > 0)
|
||||
if (im1 > 0)
|
||||
{
|
||||
face->m_n[1]->m_v -= dvb * contact->m_weights[1];
|
||||
v1 -= dvb * contact->m_weights[1];
|
||||
}
|
||||
if (face->m_n[2]->m_im > 0)
|
||||
if (im2 > 0)
|
||||
{
|
||||
face->m_n[2]->m_v -= dvb * contact->m_weights[2];
|
||||
v2 -= dvb * contact->m_weights[2];
|
||||
}
|
||||
// todo: Face node constraints needs more work
|
||||
// btScalar m01 = (btScalar(1)/(im0 + im1));
|
||||
// btScalar m02 = (btScalar(1)/(im0 + im2));
|
||||
// btScalar m12 = (btScalar(1)/(im1 + im2));
|
||||
//
|
||||
// btVector3 dv0 = im0 * (m01 * (v1-v0) + m02 * (v2-v0));
|
||||
// btVector3 dv1 = im1 * (m01 * (v0-v1) + m12 * (v2-v1));
|
||||
// btVector3 dv2 = im2 * (m12 * (v1-v2) + m02 * (v0-v2));
|
||||
// v0 += dv0;
|
||||
// v1 += dv1;
|
||||
// v2 += dv2;
|
||||
}
|
||||
|
||||
@@ -176,24 +176,30 @@ public:
|
||||
btMatrix3x3 P;
|
||||
firstPiola(psb->m_tetraScratches[j],P);
|
||||
#if USE_SVD
|
||||
btMatrix3x3 U, V;
|
||||
btVector3 sigma;
|
||||
singularValueDecomposition(P, U, sigma, V);
|
||||
if (max_p > 0)
|
||||
{
|
||||
sigma[0] = btMin(sigma[0], max_p);
|
||||
sigma[1] = btMin(sigma[1], max_p);
|
||||
sigma[2] = btMin(sigma[2], max_p);
|
||||
sigma[0] = btMax(sigma[0], -max_p);
|
||||
sigma[1] = btMax(sigma[1], -max_p);
|
||||
sigma[2] = btMax(sigma[2], -max_p);
|
||||
// since we want to clamp the principal stress to max_p, we only need to
|
||||
// calculate SVD when sigma_0^2 + sigma_1^2 + sigma_2^2 > max_p * max_p
|
||||
btScalar trPTP = (P[0].length2() + P[1].length2() + P[2].length2());
|
||||
if (trPTP > max_p * max_p)
|
||||
{
|
||||
btMatrix3x3 U, V;
|
||||
btVector3 sigma;
|
||||
singularValueDecomposition(P, U, sigma, V);
|
||||
sigma[0] = btMin(sigma[0], max_p);
|
||||
sigma[1] = btMin(sigma[1], max_p);
|
||||
sigma[2] = btMin(sigma[2], max_p);
|
||||
sigma[0] = btMax(sigma[0], -max_p);
|
||||
sigma[1] = btMax(sigma[1], -max_p);
|
||||
sigma[2] = btMax(sigma[2], -max_p);
|
||||
btMatrix3x3 Sigma;
|
||||
Sigma.setIdentity();
|
||||
Sigma[0][0] = sigma[0];
|
||||
Sigma[1][1] = sigma[1];
|
||||
Sigma[2][2] = sigma[2];
|
||||
P = U * Sigma * V.transpose();
|
||||
}
|
||||
}
|
||||
btMatrix3x3 Sigma;
|
||||
Sigma.setIdentity();
|
||||
Sigma[0][0] = sigma[0];
|
||||
Sigma[1][1] = sigma[1];
|
||||
Sigma[2][2] = sigma[2];
|
||||
P = U * Sigma * V.transpose();
|
||||
#endif
|
||||
// btVector3 force_on_node0 = P * (tetra.m_Dm_inverse.transpose()*grad_N_hat_1st_col);
|
||||
btMatrix3x3 force_on_node123 = P * tetra.m_Dm_inverse.transpose();
|
||||
|
||||
@@ -20,6 +20,7 @@ subject to the following restrictions:
|
||||
#include "LinearMath/btAlignedObjectArray.h"
|
||||
#include "LinearMath/btTransform.h"
|
||||
#include "LinearMath/btIDebugDraw.h"
|
||||
#include "LinearMath/btVector3.h"
|
||||
#include "BulletDynamics/Dynamics/btRigidBody.h"
|
||||
|
||||
#include "BulletCollision/CollisionShapes/btConcaveShape.h"
|
||||
@@ -973,6 +974,16 @@ public:
|
||||
/* Return the volume */
|
||||
btScalar getVolume() const;
|
||||
/* Cluster count */
|
||||
btVector3 getCenterOfMass() const
|
||||
{
|
||||
btVector3 com(0, 0, 0);
|
||||
for (int i = 0; i < m_nodes.size(); i++)
|
||||
{
|
||||
com += (m_nodes[i].m_x * this->getMass(i));
|
||||
}
|
||||
com /= this->getTotalMass();
|
||||
return com;
|
||||
}
|
||||
int clusterCount() const;
|
||||
/* Cluster center of mass */
|
||||
static btVector3 clusterCom(const Cluster* cluster);
|
||||
|
||||
@@ -571,17 +571,18 @@ inline void singularValueDecomposition(
|
||||
*/
|
||||
inline btScalar wilkinsonShift(const btScalar a1, const btScalar b1, const btScalar a2)
|
||||
{
|
||||
btScalar d = (btScalar)0.5 * (a1 - a2);
|
||||
btScalar bs = b1 * b1;
|
||||
btScalar val = d * d + bs;
|
||||
if (val>SIMD_EPSILON)
|
||||
{
|
||||
btScalar denom = btFabs(d) + btSqrt(val);
|
||||
btScalar d = (btScalar)0.5 * (a1 - a2);
|
||||
btScalar bs = b1 * b1;
|
||||
btScalar val = d * d + bs;
|
||||
if (val>SIMD_EPSILON)
|
||||
{
|
||||
btScalar denom = btFabs(d) + btSqrt(val);
|
||||
|
||||
btScalar mu = a2 - copySign(bs / (denom), d);
|
||||
// T mu = a2 - bs / ( d + sign_d*sqrt (d*d + bs));
|
||||
return mu;
|
||||
}
|
||||
btScalar mu = a2 - copySign(bs / (denom), d);
|
||||
// T mu = a2 - bs / ( d + sign_d*sqrt (d*d + bs));
|
||||
return mu;
|
||||
}
|
||||
return a2;
|
||||
}
|
||||
|
||||
/**
|
||||
|
||||
@@ -25,13 +25,23 @@ subject to the following restrictions:
|
||||
#include <float.h>
|
||||
|
||||
/* SVN $Revision$ on $Date$ from http://bullet.googlecode.com*/
|
||||
#define BT_BULLET_VERSION 288
|
||||
#define BT_BULLET_VERSION 289
|
||||
|
||||
inline int btGetVersion()
|
||||
{
|
||||
return BT_BULLET_VERSION;
|
||||
}
|
||||
|
||||
inline int btIsDoublePrecision()
|
||||
{
|
||||
#ifdef BT_USE_DOUBLE_PRECISION
|
||||
return true;
|
||||
#else
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
// The following macro "BT_NOT_EMPTY_FILE" can be put into a file
|
||||
// in order suppress the MS Visual C++ Linker warning 4221
|
||||
//
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -481,7 +481,7 @@ public:
|
||||
|
||||
buffer[9] = '2';
|
||||
buffer[10] = '8';
|
||||
buffer[11] = '8';
|
||||
buffer[11] = '9';
|
||||
}
|
||||
|
||||
virtual void startSerialization()
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user