improve the ARS implementation: add multiprocessing Gym environment stepping, add command-line parameters to resume a policy, --render, --movie, --steps, --env
This commit is contained in:
@@ -6,13 +6,17 @@ import numpy as np
|
||||
import gym
|
||||
from gym import wrappers
|
||||
import pybullet_envs
|
||||
import time
|
||||
import multiprocessing as mp
|
||||
from multiprocessing import Process, Pipe
|
||||
import argparse
|
||||
|
||||
|
||||
# Setting the Hyper Parameters
|
||||
|
||||
class Hp():
|
||||
|
||||
def __init__(self):
|
||||
self.nb_steps = 1000
|
||||
self.nb_steps = 10000
|
||||
self.episode_length = 1000
|
||||
self.learning_rate = 0.02
|
||||
self.nb_directions = 16
|
||||
@@ -22,6 +26,58 @@ class Hp():
|
||||
self.seed = 1
|
||||
self.env_name = 'HalfCheetahBulletEnv-v0'
|
||||
|
||||
|
||||
# Multiprocess Exploring the policy on one specific direction and over one episode
|
||||
|
||||
_RESET = 1
|
||||
_CLOSE = 2
|
||||
_EXPLORE = 3
|
||||
|
||||
def ExploreWorker(rank,childPipe, envname, args):
|
||||
env = gym.make(envname)
|
||||
nb_inputs = env.observation_space.shape[0]
|
||||
normalizer = Normalizer(nb_inputs)
|
||||
observation_n = env.reset()
|
||||
n=0
|
||||
while True:
|
||||
n+=1
|
||||
try:
|
||||
# Only block for short times to have keyboard exceptions be raised.
|
||||
if not childPipe.poll(0.001):
|
||||
continue
|
||||
message, payload = childPipe.recv()
|
||||
except (EOFError, KeyboardInterrupt):
|
||||
break
|
||||
if message == _RESET:
|
||||
observation_n = env.reset()
|
||||
childPipe.send(["reset ok"])
|
||||
continue
|
||||
if message == _EXPLORE:
|
||||
#normalizer = payload[0] #use our local normalizer
|
||||
policy = payload[1]
|
||||
hp = payload[2]
|
||||
direction = payload[3]
|
||||
delta = payload[4]
|
||||
state = env.reset()
|
||||
done = False
|
||||
num_plays = 0.
|
||||
sum_rewards = 0
|
||||
while not done and num_plays < hp.episode_length:
|
||||
normalizer.observe(state)
|
||||
state = normalizer.normalize(state)
|
||||
action = policy.evaluate(state, delta, direction,hp)
|
||||
state, reward, done, _ = env.step(action)
|
||||
reward = max(min(reward, 1), -1)
|
||||
sum_rewards += reward
|
||||
num_plays += 1
|
||||
childPipe.send([sum_rewards])
|
||||
continue
|
||||
if message == _CLOSE:
|
||||
childPipe.send(["close ok"])
|
||||
break
|
||||
childPipe.close()
|
||||
|
||||
|
||||
# Normalizing the states
|
||||
|
||||
class Normalizer():
|
||||
@@ -47,11 +103,14 @@ class Normalizer():
|
||||
# Building the AI
|
||||
|
||||
class Policy():
|
||||
|
||||
def __init__(self, input_size, output_size):
|
||||
def __init__(self, input_size, output_size, env_name, args):
|
||||
try:
|
||||
self.theta = np.load(args.policy)
|
||||
except:
|
||||
self.theta = np.zeros((output_size, input_size))
|
||||
print("self.theta=",self.theta)
|
||||
def evaluate(self, input, delta = None, direction = None):
|
||||
self.env_name = env_name
|
||||
print("Starting policy theta=",self.theta)
|
||||
def evaluate(self, input, delta, direction, hp):
|
||||
if direction is None:
|
||||
return np.clip(self.theta.dot(input), -1.0, 1.0)
|
||||
elif direction == "positive":
|
||||
@@ -62,15 +121,18 @@ class Policy():
|
||||
def sample_deltas(self):
|
||||
return [np.random.randn(*self.theta.shape) for _ in range(hp.nb_directions)]
|
||||
|
||||
def update(self, rollouts, sigma_r):
|
||||
def update(self, rollouts, sigma_r, args):
|
||||
step = np.zeros(self.theta.shape)
|
||||
for r_pos, r_neg, d in rollouts:
|
||||
step += (r_pos - r_neg) * d
|
||||
self.theta += hp.learning_rate / (hp.nb_best_directions * sigma_r) * step
|
||||
timestr = time.strftime("%Y%m%d-%H%M%S")
|
||||
np.save(args.logdir+"/policy_"+self.env_name+"_"+timestr+".npy", self.theta)
|
||||
|
||||
|
||||
# Exploring the policy on one specific direction and over one episode
|
||||
|
||||
def explore(env, normalizer, policy, direction = None, delta = None):
|
||||
def explore(env, normalizer, policy, direction, delta, hp):
|
||||
state = env.reset()
|
||||
done = False
|
||||
num_plays = 0.
|
||||
@@ -78,7 +140,7 @@ def explore(env, normalizer, policy, direction = None, delta = None):
|
||||
while not done and num_plays < hp.episode_length:
|
||||
normalizer.observe(state)
|
||||
state = normalizer.normalize(state)
|
||||
action = policy.evaluate(state, delta, direction)
|
||||
action = policy.evaluate(state, delta, direction, hp)
|
||||
state, reward, done, _ = env.step(action)
|
||||
reward = max(min(reward, 1), -1)
|
||||
sum_rewards += reward
|
||||
@@ -87,7 +149,7 @@ def explore(env, normalizer, policy, direction = None, delta = None):
|
||||
|
||||
# Training the AI
|
||||
|
||||
def train(env, policy, normalizer, hp):
|
||||
def train(env, policy, normalizer, hp, parentPipes, args):
|
||||
|
||||
for step in range(hp.nb_steps):
|
||||
|
||||
@@ -96,13 +158,29 @@ def train(env, policy, normalizer, hp):
|
||||
positive_rewards = [0] * hp.nb_directions
|
||||
negative_rewards = [0] * hp.nb_directions
|
||||
|
||||
if parentPipes:
|
||||
for k in range(hp.nb_directions):
|
||||
parentPipe = parentPipes[k]
|
||||
parentPipe.send([_EXPLORE,[normalizer, policy, hp, "positive", deltas[k]]])
|
||||
for k in range(hp.nb_directions):
|
||||
positive_rewards[k] = parentPipes[k].recv()[0]
|
||||
|
||||
for k in range(hp.nb_directions):
|
||||
parentPipe = parentPipes[k]
|
||||
parentPipe.send([_EXPLORE,[normalizer, policy, hp, "negative", deltas[k]]])
|
||||
for k in range(hp.nb_directions):
|
||||
negative_rewards[k] = parentPipes[k].recv()[0]
|
||||
|
||||
else:
|
||||
# Getting the positive rewards in the positive directions
|
||||
for k in range(hp.nb_directions):
|
||||
positive_rewards[k] = explore(env, normalizer, policy, direction = "positive", delta = deltas[k])
|
||||
positive_rewards[k] = explore(env, normalizer, policy, "positive", deltas[k], hp)
|
||||
|
||||
|
||||
# Getting the negative rewards in the negative/opposite directions
|
||||
for k in range(hp.nb_directions):
|
||||
negative_rewards[k] = explore(env, normalizer, policy, direction = "negative", delta = deltas[k])
|
||||
negative_rewards[k] = explore(env, normalizer, policy, "negative", deltas[k], hp)
|
||||
|
||||
|
||||
# Gathering all the positive/negative rewards to compute the standard deviation of these rewards
|
||||
all_rewards = np.array(positive_rewards + negative_rewards)
|
||||
@@ -114,10 +192,10 @@ def train(env, policy, normalizer, hp):
|
||||
rollouts = [(positive_rewards[k], negative_rewards[k], deltas[k]) for k in order]
|
||||
|
||||
# Updating our policy
|
||||
policy.update(rollouts, sigma_r)
|
||||
policy.update(rollouts, sigma_r, args)
|
||||
|
||||
# Printing the final reward of the policy after the update
|
||||
reward_evaluation = explore(env, normalizer, policy)
|
||||
reward_evaluation = explore(env, normalizer, policy, None, None, hp)
|
||||
print('Step:', step, 'Reward:', reward_evaluation)
|
||||
|
||||
# Running the main code
|
||||
@@ -127,16 +205,67 @@ def mkdir(base, name):
|
||||
if not os.path.exists(path):
|
||||
os.makedirs(path)
|
||||
return path
|
||||
work_dir = mkdir('exp', 'brs')
|
||||
monitor_dir = mkdir(work_dir, 'monitor')
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
mp.freeze_support()
|
||||
|
||||
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
parser.add_argument('--env', help='Gym environment name', type=str, default='HalfCheetahBulletEnv-v0')
|
||||
parser.add_argument('--seed', help='RNG seed', type=int, default=1)
|
||||
parser.add_argument('--render', help='OpenGL Visualizer', type=int, default=0)
|
||||
parser.add_argument('--movie',help='rgb_array gym movie',type=int, default=0)
|
||||
parser.add_argument('--steps', help='Number of steps', type=int, default=10000)
|
||||
parser.add_argument('--policy', help='Starting policy file (npy)', type=str, default='')
|
||||
parser.add_argument('--logdir', help='Directory root to log policy files (npy)', type=str, default='.')
|
||||
parser.add_argument('--mp', help='Enable multiprocessing', type=int, default=1)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
hp = Hp()
|
||||
hp.env_name = args.env
|
||||
hp.seed = args.seed
|
||||
hp.nb_steps = args.steps
|
||||
print("seed = ", hp.seed)
|
||||
np.random.seed(hp.seed)
|
||||
|
||||
parentPipes = None
|
||||
if args.mp:
|
||||
num_processes = hp.nb_directions
|
||||
processes = []
|
||||
childPipes = []
|
||||
parentPipes = []
|
||||
|
||||
for pr in range (num_processes):
|
||||
parentPipe, childPipe = Pipe()
|
||||
parentPipes.append(parentPipe)
|
||||
childPipes.append(childPipe)
|
||||
|
||||
for rank in range(num_processes):
|
||||
p = mp.Process(target=ExploreWorker, args=(rank,childPipes[rank], hp.env_name, args))
|
||||
p.start()
|
||||
processes.append(p)
|
||||
|
||||
work_dir = mkdir('exp', 'brs')
|
||||
monitor_dir = mkdir(work_dir, 'monitor')
|
||||
env = gym.make(hp.env_name)
|
||||
# env.render(mode = "human")
|
||||
#env = wrappers.Monitor(env, monitor_dir, force = True)
|
||||
if args.render:
|
||||
env.render(mode = "human")
|
||||
if args.movie:
|
||||
env = wrappers.Monitor(env, monitor_dir, force = True)
|
||||
nb_inputs = env.observation_space.shape[0]
|
||||
nb_outputs = env.action_space.shape[0]
|
||||
policy = Policy(nb_inputs, nb_outputs)
|
||||
policy = Policy(nb_inputs, nb_outputs,hp.env_name, args)
|
||||
normalizer = Normalizer(nb_inputs)
|
||||
train(env, policy, normalizer, hp)
|
||||
|
||||
print("start training")
|
||||
train(env, policy, normalizer, hp, parentPipes, args)
|
||||
|
||||
if args.mp:
|
||||
for parentPipe in parentPipes:
|
||||
parentPipe.send([_CLOSE,"pay2"])
|
||||
|
||||
for p in processes:
|
||||
p.join()
|
||||
|
||||
Reference in New Issue
Block a user