Perform several rotation pertubations, to create multiple collision contact. works for convex versus plane. todo: convex versus convex.
See issue http://code.google.com/p/bullet/issues/detail?id=20: Note that the default number of pertubation iterations (10) and pertubation angle (0.05) can be modified through the collisionConfiguration: btConvexPlaneCollisionAlgorithm::CreateFunc* func = (btConvexPlaneCollisionAlgorithm::CreateFunc*)collisionConfiguration->getCollisionAlgorithmCreateFunc(BOX_SHAPE_PROXYTYPE,STATIC_PLANE_PROXYTYPE); func->m_numPertubationIterations = 0; func = (btConvexPlaneCollisionAlgorithm::CreateFunc*)collisionConfiguration->getCollisionAlgorithmCreateFunc(STATIC_PLANE_PROXYTYPE,BOX_SHAPE_PROXYTYPE); func->m_numPertubationIterations = 0;
This commit is contained in:
@@ -22,11 +22,13 @@ subject to the following restrictions:
|
||||
|
||||
//#include <stdio.h>
|
||||
|
||||
btConvexPlaneCollisionAlgorithm::btConvexPlaneCollisionAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* col0,btCollisionObject* col1, bool isSwapped)
|
||||
btConvexPlaneCollisionAlgorithm::btConvexPlaneCollisionAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* col0,btCollisionObject* col1, bool isSwapped, int numPertubationIterations,btScalar pertubeAngle)
|
||||
: btCollisionAlgorithm(ci),
|
||||
m_ownManifold(false),
|
||||
m_manifoldPtr(mf),
|
||||
m_isSwapped(isSwapped)
|
||||
m_isSwapped(isSwapped),
|
||||
m_numPertubationIterations(numPertubationIterations),
|
||||
m_pertubeAngle(pertubeAngle)
|
||||
{
|
||||
btCollisionObject* convexObj = m_isSwapped? col1 : col0;
|
||||
btCollisionObject* planeObj = m_isSwapped? col0 : col1;
|
||||
@@ -48,15 +50,8 @@ btConvexPlaneCollisionAlgorithm::~btConvexPlaneCollisionAlgorithm()
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
void btConvexPlaneCollisionAlgorithm::processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
|
||||
void btConvexPlaneCollisionAlgorithm::collideSingleContact (const btQuaternion& pertubeRot, btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
|
||||
{
|
||||
(void)dispatchInfo;
|
||||
(void)resultOut;
|
||||
if (!m_manifoldPtr)
|
||||
return;
|
||||
|
||||
btCollisionObject* convexObj = m_isSwapped? body1 : body0;
|
||||
btCollisionObject* planeObj = m_isSwapped? body0: body1;
|
||||
|
||||
@@ -66,12 +61,17 @@ void btConvexPlaneCollisionAlgorithm::processCollision (btCollisionObject* body0
|
||||
bool hasCollision = false;
|
||||
const btVector3& planeNormal = planeShape->getPlaneNormal();
|
||||
const btScalar& planeConstant = planeShape->getPlaneConstant();
|
||||
btTransform planeInConvex;
|
||||
planeInConvex= convexObj->getWorldTransform().inverse() * planeObj->getWorldTransform();
|
||||
|
||||
btTransform convexWorldTransform = convexObj->getWorldTransform();
|
||||
btTransform convexInPlaneTrans;
|
||||
convexInPlaneTrans= planeObj->getWorldTransform().inverse() * convexObj->getWorldTransform();
|
||||
convexInPlaneTrans= planeObj->getWorldTransform().inverse() * convexWorldTransform;
|
||||
//now pertube the convex-world transform
|
||||
convexWorldTransform.getBasis()*=btMatrix3x3(pertubeRot);
|
||||
btTransform planeInConvex;
|
||||
planeInConvex= convexWorldTransform.inverse() * planeObj->getWorldTransform();
|
||||
|
||||
btVector3 vtx = convexShape->localGetSupportingVertex(planeInConvex.getBasis()*-planeNormal);
|
||||
|
||||
btVector3 vtxInPlane = convexInPlaneTrans(vtx);
|
||||
btScalar distance = (planeNormal.dot(vtxInPlane) - planeConstant);
|
||||
|
||||
@@ -87,6 +87,42 @@ void btConvexPlaneCollisionAlgorithm::processCollision (btCollisionObject* body0
|
||||
btVector3 pOnB = vtxInPlaneWorld;
|
||||
resultOut->addContactPoint(normalOnSurfaceB,pOnB,distance);
|
||||
}
|
||||
}
|
||||
|
||||
void btConvexPlaneCollisionAlgorithm::processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
|
||||
{
|
||||
(void)dispatchInfo;
|
||||
if (!m_manifoldPtr)
|
||||
return;
|
||||
|
||||
btCollisionObject* convexObj = m_isSwapped? body1 : body0;
|
||||
btCollisionObject* planeObj = m_isSwapped? body0: body1;
|
||||
|
||||
btConvexShape* convexShape = (btConvexShape*) convexObj->getCollisionShape();
|
||||
btStaticPlaneShape* planeShape = (btStaticPlaneShape*) planeObj->getCollisionShape();
|
||||
|
||||
bool hasCollision = false;
|
||||
const btVector3& planeNormal = planeShape->getPlaneNormal();
|
||||
const btScalar& planeConstant = planeShape->getPlaneConstant();
|
||||
|
||||
|
||||
btVector3 v0,v1;
|
||||
btPlaneSpace1(planeNormal,v0,v1);
|
||||
//first perform a collision query with the non-pertubated collision objects
|
||||
{
|
||||
btQuaternion rotq(0,0,0,1);
|
||||
collideSingleContact(rotq,body0,body1,dispatchInfo,resultOut);
|
||||
}
|
||||
|
||||
//now perform 'm_numPertubationIterations' collision queries with the pertubated collision objects
|
||||
btQuaternion pertubeRot(v0,m_pertubeAngle);
|
||||
for (int i=0;i<m_numPertubationIterations;i++)
|
||||
{
|
||||
btScalar iterationAngle = i*(SIMD_2_PI/btScalar(m_numPertubationIterations));
|
||||
btQuaternion rotq(planeNormal,iterationAngle);
|
||||
collideSingleContact(rotq.inverse()*pertubeRot*rotq,body0,body1,dispatchInfo,resultOut);
|
||||
}
|
||||
|
||||
if (m_ownManifold)
|
||||
{
|
||||
if (m_manifoldPtr->getNumContacts())
|
||||
|
||||
@@ -31,15 +31,19 @@ class btConvexPlaneCollisionAlgorithm : public btCollisionAlgorithm
|
||||
bool m_ownManifold;
|
||||
btPersistentManifold* m_manifoldPtr;
|
||||
bool m_isSwapped;
|
||||
int m_numPertubationIterations;
|
||||
btScalar m_pertubeAngle;
|
||||
|
||||
public:
|
||||
|
||||
btConvexPlaneCollisionAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* col0,btCollisionObject* col1, bool isSwapped);
|
||||
btConvexPlaneCollisionAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* col0,btCollisionObject* col1, bool isSwapped, int numPertubationIterations, btScalar pertubeAngle);
|
||||
|
||||
virtual ~btConvexPlaneCollisionAlgorithm();
|
||||
|
||||
virtual void processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
|
||||
|
||||
void collideSingleContact (const btQuaternion& pertubeRot, btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
|
||||
|
||||
virtual btScalar calculateTimeOfImpact(btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
|
||||
|
||||
virtual void getAllContactManifolds(btManifoldArray& manifoldArray)
|
||||
@@ -52,15 +56,24 @@ public:
|
||||
|
||||
struct CreateFunc :public btCollisionAlgorithmCreateFunc
|
||||
{
|
||||
int m_numPertubationIterations;
|
||||
btScalar m_pertubeAngle;
|
||||
|
||||
CreateFunc()
|
||||
: m_numPertubationIterations(10),
|
||||
m_pertubeAngle(0.05f)
|
||||
{
|
||||
}
|
||||
|
||||
virtual btCollisionAlgorithm* CreateCollisionAlgorithm(btCollisionAlgorithmConstructionInfo& ci, btCollisionObject* body0,btCollisionObject* body1)
|
||||
{
|
||||
void* mem = ci.m_dispatcher1->allocateCollisionAlgorithm(sizeof(btConvexPlaneCollisionAlgorithm));
|
||||
if (!m_swapped)
|
||||
{
|
||||
return new(mem) btConvexPlaneCollisionAlgorithm(0,ci,body0,body1,false);
|
||||
return new(mem) btConvexPlaneCollisionAlgorithm(0,ci,body0,body1,false,m_numPertubationIterations,m_pertubeAngle);
|
||||
} else
|
||||
{
|
||||
return new(mem) btConvexPlaneCollisionAlgorithm(0,ci,body0,body1,true);
|
||||
return new(mem) btConvexPlaneCollisionAlgorithm(0,ci,body0,body1,true,m_numPertubationIterations,m_pertubeAngle);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
Reference in New Issue
Block a user