Refactored SpuGatheringCollisionTask to use code in SpuCollisionShapes.

More work on SpuBatchRaycaster. It is working now on the PS3 and Windows.
This commit is contained in:
johnmccutchan
2008-01-14 23:44:07 +00:00
parent 6ba6805b43
commit be0beaf7bd
20 changed files with 1190 additions and 1474 deletions

View File

@@ -26,7 +26,7 @@
#include "SpuGjkPairDetector.h"
#include "SpuVoronoiSimplexSolver.h"
#include "SpuLocalSupport.h" //definition of SpuConvexPolyhedronVertexData
#include "SpuCollisionShapes.h" //definition of SpuConvexPolyhedronVertexData
#ifdef __CELLOS_LV2__
///Software caching from the IBM Cell SDK, it reduces 25% SPU time for our test cases
@@ -92,16 +92,11 @@ int g_CacheHits=0;
#include <stdio.h>
#endif
#define MAX_SHAPE_SIZE 256
//int gNumConvexPoints0=0;
///Make sure no destructors are called on this memory
struct CollisionTask_LocalStoreMemory
{
ATTRIBUTE_ALIGNED16(char bufferProxy0[16]);
ATTRIBUTE_ALIGNED16(char bufferProxy1[16]);
@@ -138,41 +133,16 @@ struct CollisionTask_LocalStoreMemory
}
btPersistentManifold gPersistentManifold;
ATTRIBUTE_ALIGNED16(char gCollisionShape0[MAX_SHAPE_SIZE]);
ATTRIBUTE_ALIGNED16(char gCollisionShape1[MAX_SHAPE_SIZE]);
CollisionShape_LocalStoreMemory gCollisionShapes[2];
ATTRIBUTE_ALIGNED16(int spuIndices[16]);
//ATTRIBUTE_ALIGNED16(btOptimizedBvh gOptimizedBvh);
ATTRIBUTE_ALIGNED16(char gOptimizedBvh[sizeof(btOptimizedBvh)+16]);
btOptimizedBvh* getOptimizedBvh()
{
return (btOptimizedBvh*) gOptimizedBvh;
}
ATTRIBUTE_ALIGNED16(btTriangleIndexVertexArray gTriangleMeshInterfaceStorage);
btTriangleIndexVertexArray* gTriangleMeshInterfacePtr;
///only a single mesh part for now, we can add support for multiple parts, but quantized trees don't support this at the moment
ATTRIBUTE_ALIGNED16(btIndexedMesh gIndexMesh);
#define MAX_SPU_SUBTREE_HEADERS 32
//1024
ATTRIBUTE_ALIGNED16(btBvhSubtreeInfo gSubtreeHeaders[MAX_SPU_SUBTREE_HEADERS]);
ATTRIBUTE_ALIGNED16(btQuantizedBvhNode gSubtreeNodes[MAX_SUBTREE_SIZE_IN_BYTES/sizeof(btQuantizedBvhNode)]);
SpuConvexPolyhedronVertexData convexVertexData;
// Compound data
#define MAX_SPU_COMPOUND_SUBSHAPES 16
ATTRIBUTE_ALIGNED16(btCompoundShapeChild gSubshapes[MAX_SPU_COMPOUND_SUBSHAPES*2]);
ATTRIBUTE_ALIGNED16(char gSubshapeShape[MAX_SPU_COMPOUND_SUBSHAPES*2][MAX_SHAPE_SIZE]);
bvhMeshShape_LocalStoreMemory bvhShapeData;
SpuConvexPolyhedronVertexData convexVertexData[2];
CompoundShape_LocalStoreMemory compoundShapeData[2];
};
#if defined(__CELLOS_LV2__) || defined(USE_LIBSPE2)
ATTRIBUTE_ALIGNED16(CollisionTask_LocalStoreMemory gLocalStoreMemory);
@@ -189,73 +159,8 @@ void* createCollisionLocalStoreMemory()
#endif
void ProcessSpuConvexConvexCollision(SpuCollisionPairInput* wuInput, CollisionTask_LocalStoreMemory* lsMemPtr, SpuContactResult& spuContacts);
#define USE_BRANCHFREE_TEST 1
#ifdef USE_BRANCHFREE_TEST
SIMD_FORCE_INLINE unsigned int spuTestQuantizedAabbAgainstQuantizedAabb(unsigned short int* aabbMin1,unsigned short int* aabbMax1,const unsigned short int* aabbMin2,const unsigned short int* aabbMax2)
{
return btSelect((unsigned)((aabbMin1[0] <= aabbMax2[0]) & (aabbMax1[0] >= aabbMin2[0])
& (aabbMin1[2] <= aabbMax2[2]) & (aabbMax1[2] >= aabbMin2[2])
& (aabbMin1[1] <= aabbMax2[1]) & (aabbMax1[1] >= aabbMin2[1])),
1, 0);
}
#else
unsigned int spuTestQuantizedAabbAgainstQuantizedAabb(const unsigned short int* aabbMin1,const unsigned short int* aabbMax1,const unsigned short int* aabbMin2,const unsigned short int* aabbMax2)
{
unsigned int overlap = 1;
overlap = (aabbMin1[0] > aabbMax2[0] || aabbMax1[0] < aabbMin2[0]) ? 0 : overlap;
overlap = (aabbMin1[2] > aabbMax2[2] || aabbMax1[2] < aabbMin2[2]) ? 0 : overlap;
overlap = (aabbMin1[1] > aabbMax2[1] || aabbMax1[1] < aabbMin2[1]) ? 0 : overlap;
return overlap;
}
#endif
void spuWalkStacklessQuantizedTree(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax,const btQuantizedBvhNode* rootNode,int startNodeIndex,int endNodeIndex)
{
int curIndex = startNodeIndex;
int walkIterations = 0;
int subTreeSize = endNodeIndex - startNodeIndex;
int escapeIndex;
unsigned int aabbOverlap, isLeafNode;
while (curIndex < endNodeIndex)
{
//catch bugs in tree data
assert (walkIterations < subTreeSize);
walkIterations++;
aabbOverlap = spuTestQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode->m_quantizedAabbMin,rootNode->m_quantizedAabbMax);
isLeafNode = rootNode->isLeafNode();
if (isLeafNode && aabbOverlap)
{
//printf("overlap with node %d\n",rootNode->getTriangleIndex());
nodeCallback->processNode(0,rootNode->getTriangleIndex());
// spu_printf("SPU: overlap detected with triangleIndex:%d\n",rootNode->getTriangleIndex());
}
if (aabbOverlap || isLeafNode)
{
rootNode++;
curIndex++;
} else
{
escapeIndex = rootNode->getEscapeIndex();
rootNode += escapeIndex;
curIndex += escapeIndex;
}
}
}
SIMD_FORCE_INLINE void small_cache_read(void* buffer, ppu_address_t ea, size_t size)
{
@@ -271,7 +176,6 @@ SIMD_FORCE_INLINE void small_cache_read(void* buffer, ppu_address_t ea, size_t s
#endif
}
SIMD_FORCE_INLINE void small_cache_read_triple( void* ls0, ppu_address_t ea0,
void* ls1, ppu_address_t ea1,
void* ls2, ppu_address_t ea2,
@@ -326,7 +230,7 @@ class spuNodeCallback : public btNodeOverlapCallback
ATTRIBUTE_ALIGNED16(btVector3 spuTriangleVertices[3]);
ATTRIBUTE_ALIGNED16(btScalar spuUnscaledVertex[4]);
ATTRIBUTE_ALIGNED16(int spuIndices[16]);
//ATTRIBUTE_ALIGNED16(int spuIndices[16]);
public:
@@ -346,7 +250,7 @@ public:
int* indexBasePtr = (int*)(m_lsMemPtr->gIndexMesh.m_triangleIndexBase+triangleIndex*m_lsMemPtr->gIndexMesh.m_triangleIndexStride);
int* indexBasePtr = (int*)(m_lsMemPtr->bvhShapeData.gIndexMesh.m_triangleIndexBase+triangleIndex*m_lsMemPtr->bvhShapeData.gIndexMesh.m_triangleIndexStride);
small_cache_read_triple(&m_lsMemPtr->spuIndices[0],(ppu_address_t)&indexBasePtr[0],
&m_lsMemPtr->spuIndices[1],(ppu_address_t)&indexBasePtr[1],
@@ -358,13 +262,13 @@ public:
// spu_printf("SPU index2=%d ,",spuIndices[2]);
// spu_printf("SPU: indexBasePtr=%llx\n",indexBasePtr);
const btVector3& meshScaling = m_lsMemPtr->gTriangleMeshInterfacePtr->getScaling();
const btVector3& meshScaling = m_lsMemPtr->bvhShapeData.gTriangleMeshInterfacePtr->getScaling();
for (int j=2;btLikely( j>=0 );j--)
{
int graphicsindex = m_lsMemPtr->spuIndices[j];
// spu_printf("SPU index=%d ,",graphicsindex);
btScalar* graphicsbasePtr = (btScalar*)(m_lsMemPtr->gIndexMesh.m_vertexBase+graphicsindex*m_lsMemPtr->gIndexMesh.m_vertexStride);
btScalar* graphicsbasePtr = (btScalar*)(m_lsMemPtr->bvhShapeData.gIndexMesh.m_vertexBase+graphicsindex*m_lsMemPtr->bvhShapeData.gIndexMesh.m_vertexStride);
// spu_printf("SPU graphicsbasePtr=%llx\n",graphicsbasePtr);
@@ -405,38 +309,18 @@ public:
};
////////////////////////
/// Convex versus Concave triangle mesh collision detection (handles concave triangle mesh versus sphere, box, cylinder, triangle, cone, convex polyhedron etc)
///////////////////
void ProcessConvexConcaveSpuCollision(SpuCollisionPairInput* wuInput, CollisionTask_LocalStoreMemory* lsMemPtr, SpuContactResult& spuContacts)
{
//order: first collision shape is convex, second concave. m_isSwapped is true, if the original order was opposite
register int dmaSize;
register ppu_address_t dmaPpuAddress2;
btBvhTriangleMeshShape* trimeshShape = (btBvhTriangleMeshShape*)wuInput->m_spuCollisionShapes[1];
//need the mesh interface, for access to triangle vertices
dmaSize = sizeof(btTriangleIndexVertexArray);
dmaPpuAddress2 = reinterpret_cast<ppu_address_t>(trimeshShape->getMeshInterface());
// spu_printf("trimeshShape->getMeshInterface() == %llx\n",dmaPpuAddress2);
lsMemPtr->gTriangleMeshInterfacePtr = (btTriangleIndexVertexArray*)cellDmaGetReadOnly(&lsMemPtr->gTriangleMeshInterfaceStorage, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
//cellDmaWaitTagStatusAll(DMA_MASK(1));
///now DMA over the BVH
dmaSize = sizeof(btOptimizedBvh);
dmaPpuAddress2 = reinterpret_cast<ppu_address_t>(trimeshShape->getOptimizedBvh());
//spu_printf("trimeshShape->getOptimizedBvh() == %llx\n",dmaPpuAddress2);
cellDmaGet(&lsMemPtr->gOptimizedBvh, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0);
//cellDmaWaitTagStatusAll(DMA_MASK(2));
cellDmaWaitTagStatusAll(DMA_MASK(1) | DMA_MASK(2));
dmaBvhShapeData (&lsMemPtr->bvhShapeData, trimeshShape);
btVector3 aabbMin(-1,-400,-1);
btVector3 aabbMax(1,400,1);
@@ -446,82 +330,9 @@ void ProcessConvexConcaveSpuCollision(SpuCollisionPairInput* wuInput, CollisionT
btTransform convexInTriangleSpace;
convexInTriangleSpace = wuInput->m_worldTransform1.inverse() * wuInput->m_worldTransform0;
btConvexInternalShape* convexShape = (btConvexInternalShape*)wuInput->m_spuCollisionShapes[0];
//calculate the aabb, given the types...
switch (wuInput->m_shapeType0)
{
case CYLINDER_SHAPE_PROXYTYPE:
case BOX_SHAPE_PROXYTYPE:
{
float margin=convexShape->getMarginNV();
btVector3 halfExtents = convexShape->getImplicitShapeDimensions();
btTransform& t = convexInTriangleSpace;
btMatrix3x3 abs_b = t.getBasis().absolute();
btPoint3 center = t.getOrigin();
btVector3 extent = btVector3(abs_b[0].dot(halfExtents),
abs_b[1].dot(halfExtents),
abs_b[2].dot(halfExtents));
extent += btVector3(margin,margin,margin);
aabbMin = center - extent;
aabbMax = center + extent;
break;
}
computeAabb (aabbMin, aabbMax, convexShape, wuInput->m_collisionShapes[0], wuInput->m_shapeType0, convexInTriangleSpace);
case CAPSULE_SHAPE_PROXYTYPE:
{
float margin=convexShape->getMarginNV();
btVector3 halfExtents = convexShape->getImplicitShapeDimensions();
//add the radius to y-axis to get full height
btScalar radius = halfExtents[0];
halfExtents[1] += radius;
btTransform& t = convexInTriangleSpace;
btMatrix3x3 abs_b = t.getBasis().absolute();
btPoint3 center = t.getOrigin();
btVector3 extent = btVector3(abs_b[0].dot(halfExtents),
abs_b[1].dot(halfExtents),
abs_b[2].dot(halfExtents));
extent += btVector3(margin,margin,margin);
aabbMin = center - extent;
aabbMax = center + extent;
break;
}
case SPHERE_SHAPE_PROXYTYPE:
{
float radius = convexShape->getImplicitShapeDimensions().getX();// * convexShape->getLocalScaling().getX();
float margin = radius + convexShape->getMarginNV();
btTransform& t = convexInTriangleSpace;
const btVector3& center = t.getOrigin();
btVector3 extent(margin,margin,margin);
aabbMin = center - extent;
aabbMax = center + extent;
break;
}
case CONVEX_HULL_SHAPE_PROXYTYPE:
{
dmaSize = sizeof(btConvexHullShape);
dmaPpuAddress2 = wuInput->m_collisionShapes[0];
ATTRIBUTE_ALIGNED16(char convexHullShape0[sizeof(btConvexHullShape)]);
cellDmaGet(&convexHullShape0, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(1));
btConvexHullShape* localPtr = (btConvexHullShape*)&convexHullShape0;
btTransform& t = convexInTriangleSpace;
btScalar margin = convexShape->getMarginNV();
localPtr->getNonvirtualAabb(t,aabbMin,aabbMax,margin);
//spu_printf("SPU convex aabbMin=%f,%f,%f=\n",aabbMin.getX(),aabbMin.getY(),aabbMin.getZ());
//spu_printf("SPU convex aabbMax=%f,%f,%f=\n",aabbMax.getX(),aabbMax.getY(),aabbMax.getZ());
break;
}
default:
spu_printf("SPU: unsupported shapetype %d in AABB calculation\n");
};
//CollisionShape* triangleShape = static_cast<btCollisionShape*>(triBody->m_collisionShape);
//convexShape->getAabb(convexInTriangleSpace,m_aabbMin,m_aabbMax);
@@ -531,51 +342,38 @@ void ProcessConvexConcaveSpuCollision(SpuCollisionPairInput* wuInput, CollisionT
// aabbMax += extra;
// aabbMin -= extra;
///quantize query AABB
unsigned short int quantizedQueryAabbMin[3];
unsigned short int quantizedQueryAabbMax[3];
lsMemPtr->getOptimizedBvh()->quantizeWithClamp(quantizedQueryAabbMin,aabbMin);
lsMemPtr->getOptimizedBvh()->quantizeWithClamp(quantizedQueryAabbMax,aabbMax);
lsMemPtr->bvhShapeData.getOptimizedBvh()->quantizeWithClamp(quantizedQueryAabbMin,aabbMin);
lsMemPtr->bvhShapeData.getOptimizedBvh()->quantizeWithClamp(quantizedQueryAabbMax,aabbMax);
QuantizedNodeArray& nodeArray = lsMemPtr->getOptimizedBvh()->getQuantizedNodeArray();
QuantizedNodeArray& nodeArray = lsMemPtr->bvhShapeData.getOptimizedBvh()->getQuantizedNodeArray();
//spu_printf("SPU: numNodes = %d\n",nodeArray.size());
BvhSubtreeInfoArray& subTrees = lsMemPtr->getOptimizedBvh()->getSubtreeInfoArray();
BvhSubtreeInfoArray& subTrees = lsMemPtr->bvhShapeData.getOptimizedBvh()->getSubtreeInfoArray();
spuNodeCallback nodeCallback(wuInput,lsMemPtr,spuContacts);
IndexedMeshArray& indexArray = lsMemPtr->gTriangleMeshInterfacePtr->getIndexedMeshArray();
IndexedMeshArray& indexArray = lsMemPtr->bvhShapeData.gTriangleMeshInterfacePtr->getIndexedMeshArray();
//spu_printf("SPU:indexArray.size() = %d\n",indexArray.size());
// spu_printf("SPU: numSubTrees = %d\n",subTrees.size());
//not likely to happen
if (subTrees.size() && indexArray.size() == 1)
{
///DMA in the index info
dmaSize = sizeof(btIndexedMesh);
dmaPpuAddress2 = reinterpret_cast<ppu_address_t>(&indexArray[0]);
cellDmaGet(&lsMemPtr->gIndexMesh, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
dmaBvhIndexedMesh (&lsMemPtr->bvhShapeData.gIndexMesh, indexArray, 0 /* index into indexArray */, 1 /* dmaTag */);
cellDmaWaitTagStatusAll(DMA_MASK(1));
//spu_printf("SPU gIndexMesh dma finished\n");
//display the headers
int numBatch = subTrees.size();
for (int i=0;i<numBatch;)
{
// BEN: TODO - can reorder DMA transfers for less stall
int remaining = subTrees.size() - i;
int nextBatch = remaining < MAX_SPU_SUBTREE_HEADERS ? remaining : MAX_SPU_SUBTREE_HEADERS;
dmaSize = nextBatch* sizeof(btBvhSubtreeInfo);
dmaPpuAddress2 = reinterpret_cast<ppu_address_t>(&subTrees[i]);
// spu_printf("&subtree[i]=%llx, dmaSize = %d\n",dmaPpuAddress2,dmaSize);
cellDmaGet(&lsMemPtr->gSubtreeHeaders[0], dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
dmaBvhSubTreeHeaders (&lsMemPtr->bvhShapeData.gSubtreeHeaders[0], (ppu_address_t)(&subTrees[i]), nextBatch, 1);
cellDmaWaitTagStatusAll(DMA_MASK(1));
@@ -583,7 +381,7 @@ void ProcessConvexConcaveSpuCollision(SpuCollisionPairInput* wuInput, CollisionT
for (int j=0;j<nextBatch;j++)
{
const btBvhSubtreeInfo& subtree = lsMemPtr->gSubtreeHeaders[j];
const btBvhSubtreeInfo& subtree = lsMemPtr->bvhShapeData.gSubtreeHeaders[j];
unsigned int overlap = spuTestQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,subtree.m_quantizedAabbMin,subtree.m_quantizedAabbMax);
if (overlap)
@@ -591,23 +389,15 @@ void ProcessConvexConcaveSpuCollision(SpuCollisionPairInput* wuInput, CollisionT
btAssert(subtree.m_subtreeSize);
//dma the actual nodes of this subtree
dmaSize = subtree.m_subtreeSize* sizeof(btQuantizedBvhNode);
dmaPpuAddress2 = reinterpret_cast<ppu_address_t>(&nodeArray[subtree.m_rootNodeIndex]);
cellDmaGet(&lsMemPtr->gSubtreeNodes[0], dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0);
dmaBvhSubTreeNodes (&lsMemPtr->bvhShapeData.gSubtreeNodes[0], subtree, nodeArray, 2);
cellDmaWaitTagStatusAll(DMA_MASK(2));
/* Walk this subtree */
spuWalkStacklessQuantizedTree(&nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax,
&lsMemPtr->gSubtreeNodes[0],
&lsMemPtr->bvhShapeData.gSubtreeNodes[0],
0,
subtree.m_subtreeSize);
}
// spu_printf("subtreeSize = %d\n",gSubtreeHeaders[j].m_subtreeSize);
}
@@ -619,73 +409,10 @@ void ProcessConvexConcaveSpuCollision(SpuCollisionPairInput* wuInput, CollisionT
}
//pre-fetch first tree, then loop and double buffer
}
}
///getShapeTypeSize could easily be optimized, but it is not likely a bottleneck
SIMD_FORCE_INLINE int getShapeTypeSize(int shapeType)
{
switch (shapeType)
{
case CYLINDER_SHAPE_PROXYTYPE:
{
int shapeSize = sizeof(btCylinderShape);
btAssert(shapeSize < MAX_SHAPE_SIZE);
return shapeSize;
}
case BOX_SHAPE_PROXYTYPE:
{
int shapeSize = sizeof(btBoxShape);
btAssert(shapeSize < MAX_SHAPE_SIZE);
return shapeSize;
}
case SPHERE_SHAPE_PROXYTYPE:
{
int shapeSize = sizeof(btSphereShape);
btAssert(shapeSize < MAX_SHAPE_SIZE);
return shapeSize;
}
case TRIANGLE_MESH_SHAPE_PROXYTYPE:
{
int shapeSize = sizeof(btBvhTriangleMeshShape);
btAssert(shapeSize < MAX_SHAPE_SIZE);
return shapeSize;
}
case CAPSULE_SHAPE_PROXYTYPE:
{
int shapeSize = sizeof(btCapsuleShape);
btAssert(shapeSize < MAX_SHAPE_SIZE);
return shapeSize;
}
case CONVEX_HULL_SHAPE_PROXYTYPE:
{
int shapeSize = sizeof(btConvexHullShape);
btAssert(shapeSize < MAX_SHAPE_SIZE);
return shapeSize;
}
case COMPOUND_SHAPE_PROXYTYPE:
{
int shapeSize = sizeof(btCompoundShape);
btAssert(shapeSize < MAX_SHAPE_SIZE);
return shapeSize;
}
default:
btAssert(0);
//unsupported shapetype, please add here
return 0;
}
}
////////////////////////
@@ -693,8 +420,6 @@ SIMD_FORCE_INLINE int getShapeTypeSize(int shapeType)
///////////////////
void ProcessSpuConvexConvexCollision(SpuCollisionPairInput* wuInput, CollisionTask_LocalStoreMemory* lsMemPtr, SpuContactResult& spuContacts)
{
register int dmaSize;
register ppu_address_t dmaPpuAddress2;
@@ -705,12 +430,8 @@ void ProcessSpuConvexConvexCollision(SpuCollisionPairInput* wuInput, CollisionTa
//CollisionShape* shape1 = (CollisionShape*)wuInput->m_collisionShapes[1];
btPersistentManifold* manifold = (btPersistentManifold*)wuInput->m_persistentManifoldPtr;
bool genericGjk = true;
if (genericGjk)
{
//try generic GJK
@@ -718,8 +439,6 @@ void ProcessSpuConvexConvexCollision(SpuCollisionPairInput* wuInput, CollisionTa
SpuVoronoiSimplexSolver vsSolver;
SpuMinkowskiPenetrationDepthSolver penetrationSolver;
///DMA in the vertices for convex shapes
ATTRIBUTE_ALIGNED16(char convexHullShape0[sizeof(btConvexHullShape)]);
ATTRIBUTE_ALIGNED16(char convexHullShape1[sizeof(btConvexHullShape)]);
@@ -735,12 +454,8 @@ void ProcessSpuConvexConvexCollision(SpuCollisionPairInput* wuInput, CollisionTa
//cellDmaWaitTagStatusAll(DMA_MASK(1));
}
if ( btLikely( wuInput->m_shapeType1 == CONVEX_HULL_SHAPE_PROXYTYPE ) )
{
// spu_printf("SPU: DMA btConvexHullShape\n");
dmaSize = sizeof(btConvexHullShape);
dmaPpuAddress2 = wuInput->m_collisionShapes[1];
@@ -748,68 +463,31 @@ void ProcessSpuConvexConvexCollision(SpuCollisionPairInput* wuInput, CollisionTa
//cellDmaWaitTagStatusAll(DMA_MASK(1));
}
if ( btLikely( wuInput->m_shapeType0 == CONVEX_HULL_SHAPE_PROXYTYPE ) )
{
cellDmaWaitTagStatusAll(DMA_MASK(1));
btConvexHullShape* localPtr = (btConvexHullShape*)&convexHullShape0;
lsMemPtr->convexVertexData.gNumConvexPoints0 = localPtr->getNumPoints();
if (lsMemPtr->convexVertexData.gNumConvexPoints0>MAX_NUM_SPU_CONVEX_POINTS)
{
btAssert(0);
spu_printf("SPU: Error: MAX_NUM_SPU_CONVEX_POINTS(%d) exceeded: %d\n",MAX_NUM_SPU_CONVEX_POINTS,lsMemPtr->convexVertexData.gNumConvexPoints0);
return;
}
dmaSize = lsMemPtr->convexVertexData.gNumConvexPoints0*sizeof(btPoint3);
dmaPpuAddress2 = (ppu_address_t) localPtr->getPoints();
cellDmaGet(&lsMemPtr->convexVertexData.g_convexPointBuffer0, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0);
lsMemPtr->convexVertexData.gSpuConvexShapePtr0 = wuInput->m_spuCollisionShapes[0];
dmaConvexVertexData (&lsMemPtr->convexVertexData[0], (btConvexHullShape*)&convexHullShape0);
lsMemPtr->convexVertexData[0].gSpuConvexShapePtr = wuInput->m_spuCollisionShapes[0];
}
if ( btLikely( wuInput->m_shapeType1 == CONVEX_HULL_SHAPE_PROXYTYPE ) )
{
cellDmaWaitTagStatusAll(DMA_MASK(1));
btConvexHullShape* localPtr = (btConvexHullShape*)&convexHullShape1;
lsMemPtr->convexVertexData.gNumConvexPoints1 = localPtr->getNumPoints();
if (lsMemPtr->convexVertexData.gNumConvexPoints1>MAX_NUM_SPU_CONVEX_POINTS)
{
btAssert(0);
spu_printf("SPU: Error: MAX_NUM_SPU_CONVEX_POINTS(%d) exceeded: %d\n",MAX_NUM_SPU_CONVEX_POINTS,lsMemPtr->convexVertexData.gNumConvexPoints1);
return;
}
dmaSize = lsMemPtr->convexVertexData.gNumConvexPoints1*sizeof(btPoint3);
dmaPpuAddress2 = (ppu_address_t) localPtr->getPoints();
cellDmaGet(&lsMemPtr->convexVertexData.g_convexPointBuffer1, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0);
lsMemPtr->convexVertexData.gSpuConvexShapePtr1 = wuInput->m_spuCollisionShapes[1];
dmaConvexVertexData (&lsMemPtr->convexVertexData[1], (btConvexHullShape*)&convexHullShape1);
lsMemPtr->convexVertexData[1].gSpuConvexShapePtr = wuInput->m_spuCollisionShapes[1];
}
if ( btLikely( wuInput->m_shapeType0 == CONVEX_HULL_SHAPE_PROXYTYPE ) )
{
cellDmaWaitTagStatusAll(DMA_MASK(2));
lsMemPtr->convexVertexData.gConvexPoints0 = &lsMemPtr->convexVertexData.g_convexPointBuffer0[0];
lsMemPtr->convexVertexData[0].gConvexPoints = &lsMemPtr->convexVertexData[0].g_convexPointBuffer[0];
}
if ( btLikely( wuInput->m_shapeType1 == CONVEX_HULL_SHAPE_PROXYTYPE ) )
{
cellDmaWaitTagStatusAll(DMA_MASK(2));
lsMemPtr->convexVertexData.gConvexPoints1 = &lsMemPtr->convexVertexData.g_convexPointBuffer1[0];
cellDmaWaitTagStatusAll(DMA_MASK(2));
lsMemPtr->convexVertexData[1].gConvexPoints = &lsMemPtr->convexVertexData[1].g_convexPointBuffer[0];
}
@@ -821,7 +499,8 @@ void ProcessSpuConvexConvexCollision(SpuCollisionPairInput* wuInput, CollisionTa
float marginB = wuInput->m_collisionMargin1;
SpuClosestPointInput cpInput;
cpInput.m_convexVertexData = &lsMemPtr->convexVertexData;
cpInput.m_convexVertexData[0] = &lsMemPtr->convexVertexData[0];
cpInput.m_convexVertexData[1] = &lsMemPtr->convexVertexData[1];
cpInput.m_transformA = wuInput->m_worldTransform0;
cpInput.m_transformB = wuInput->m_worldTransform1;
float sumMargin = (marginA+marginB+lsMemPtr->gPersistentManifold.getContactBreakingThreshold());
@@ -858,27 +537,18 @@ SIMD_FORCE_INLINE void dmaAndSetupCollisionObjects(SpuCollisionPairInput& collis
register int dmaSize;
register ppu_address_t dmaPpuAddress2;
dmaSize = sizeof(btCollisionObject);
dmaPpuAddress2 = /*collisionPairInput.m_isSwapped ? (ppu_address_t)lsMem.gProxyPtr1->m_clientObject :*/ (ppu_address_t)lsMem.gProxyPtr0->m_clientObject;
cellDmaGet(&lsMem.gColObj0, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
dmaSize = sizeof(btCollisionObject);
dmaPpuAddress2 = /*collisionPairInput.m_isSwapped ? (ppu_address_t)lsMem.gProxyPtr0->m_clientObject :*/ (ppu_address_t)lsMem.gProxyPtr1->m_clientObject;
cellDmaGet(&lsMem.gColObj1, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0);
dmaSize = sizeof(btCollisionObject);
dmaPpuAddress2 = /*collisionPairInput.m_isSwapped ? (ppu_address_t)lsMem.gProxyPtr1->m_clientObject :*/ (ppu_address_t)lsMem.gProxyPtr0->m_clientObject;
cellDmaGet(&lsMem.gColObj0, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
dmaSize = sizeof(btCollisionObject);
dmaPpuAddress2 = /*collisionPairInput.m_isSwapped ? (ppu_address_t)lsMem.gProxyPtr0->m_clientObject :*/ (ppu_address_t)lsMem.gProxyPtr1->m_clientObject;
cellDmaGet(&lsMem.gColObj1, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(1) | DMA_MASK(2));
collisionPairInput.m_worldTransform0 = lsMem.getColObj0()->getWorldTransform();
collisionPairInput.m_worldTransform1 = lsMem.getColObj1()->getWorldTransform();
#ifdef DEBUG_SPU_COLLISION_DETECTION
#endif //DEBUG_SPU_COLLISION_DETECTION
}
@@ -894,26 +564,11 @@ void handleCollisionPair(SpuCollisionPairInput& collisionPairInput, CollisionTas
if (btBroadphaseProxy::isConvex(collisionPairInput.m_shapeType0)
&& btBroadphaseProxy::isConvex(collisionPairInput.m_shapeType1))
{
//dmaAndSetupCollisionObjects(collisionPairInput, lsMem);
if (dmaShapes)
{
dmaSize = getShapeTypeSize(collisionPairInput.m_shapeType0);
//uint64_t dmaPpuAddress2 = (uint64_t)lsMem.gColObj0.getCollisionShape();
dmaPpuAddress2 = collisionShape0Ptr;
cellDmaGet(collisionShape0Loc, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
//cellDmaWaitTagStatusAll(DMA_MASK(1));
dmaSize = getShapeTypeSize(collisionPairInput.m_shapeType1);
dmaPpuAddress2 = collisionShape1Ptr;
cellDmaGet(collisionShape1Loc, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0);
//cellDmaWaitTagStatusAll(DMA_MASK(2));
cellDmaWaitTagStatusAll(DMA_MASK(1) | DMA_MASK(2));
dmaCollisionShape (collisionShape0Loc, collisionShape0Ptr, 1, collisionPairInput.m_shapeType0);
dmaCollisionShape (collisionShape1Loc, collisionShape1Ptr, 2, collisionPairInput.m_shapeType1);
cellDmaWaitTagStatusAll(DMA_MASK(1) | DMA_MASK(2));
}
btConvexInternalShape* spuConvexShape0 = (btConvexInternalShape*)collisionShape0Loc;
@@ -935,82 +590,41 @@ void handleCollisionPair(SpuCollisionPairInput& collisionPairInput, CollisionTas
{
//snPause();
dmaCollisionShape (collisionShape0Loc, collisionShape0Ptr, 1, collisionPairInput.m_shapeType0);
dmaCollisionShape (collisionShape1Loc, collisionShape1Ptr, 2, collisionPairInput.m_shapeType1);
cellDmaWaitTagStatusAll(DMA_MASK(1) | DMA_MASK(2));
// Both are compounds, do N^2 CD for now
// TODO: add some AABB-based pruning
dmaSize = getShapeTypeSize(collisionPairInput.m_shapeType0);
dmaPpuAddress2 = collisionShape0Ptr;
cellDmaGet(collisionShape0Loc, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
//cellDmaWaitTagStatusAll(DMA_MASK(1));
dmaSize = getShapeTypeSize(collisionPairInput.m_shapeType1);
dmaPpuAddress2 = collisionShape1Ptr;
cellDmaGet(collisionShape1Loc, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0);
//cellDmaWaitTagStatusAll(DMA_MASK(2));
cellDmaWaitTagStatusAll(DMA_MASK(1) | DMA_MASK(2));
btCompoundShape* spuCompoundShape0 = (btCompoundShape*)collisionShape0Loc;
btCompoundShape* spuCompoundShape1 = (btCompoundShape*)collisionShape1Loc;
dmaCompoundShapeInfo (&lsMem.compoundShapeData[0], spuCompoundShape0, 1);
dmaCompoundShapeInfo (&lsMem.compoundShapeData[1], spuCompoundShape1, 2);
cellDmaWaitTagStatusAll(DMA_MASK(1) | DMA_MASK(2));
dmaCompoundSubShapes (&lsMem.compoundShapeData[0], spuCompoundShape0, 1);
cellDmaWaitTagStatusAll(DMA_MASK(1));
dmaCompoundSubShapes (&lsMem.compoundShapeData[1], spuCompoundShape1, 1);
cellDmaWaitTagStatusAll(DMA_MASK(1));
int childShapeCount0 = spuCompoundShape0->getNumChildShapes();
int childShapeCount1 = spuCompoundShape1->getNumChildShapes();
// dma the first list of child shapes
dmaSize = childShapeCount0 * sizeof(btCompoundShapeChild);
dmaPpuAddress2 = (ppu_address_t)spuCompoundShape0->getChildList();
cellDmaGet(lsMem.gSubshapes, dmaPpuAddress2, dmaSize, DMA_TAG(1), 0, 0);
//cellDmaWaitTagStatusAll(DMA_MASK(1));
// dma the second list of child shapes
dmaSize = childShapeCount1 * sizeof(btCompoundShapeChild);
dmaPpuAddress2 = (ppu_address_t)spuCompoundShape1->getChildList();
cellDmaGet(&lsMem.gSubshapes[MAX_SPU_COMPOUND_SUBSHAPES], dmaPpuAddress2, dmaSize, DMA_TAG(2), 0, 0);
//cellDmaWaitTagStatusAll(DMA_MASK(2));
cellDmaWaitTagStatusAll(DMA_MASK(1) | DMA_MASK(2));
int i;
// DMA all the subshapes
for ( i = 0; i < childShapeCount0; ++i)
{
btCompoundShapeChild& childShape = lsMem.gSubshapes[i];
dmaSize = getShapeTypeSize(childShape.m_childShapeType);
dmaPpuAddress2 = (ppu_address_t)childShape.m_childShape;
cellDmaGet(lsMem.gSubshapeShape[i], dmaPpuAddress2, dmaSize, DMA_TAG(1), 0, 0);
//cellDmaWaitTagStatusAll(DMA_MASK(1));
}
cellDmaWaitTagStatusAll(DMA_MASK(1));
for ( i = 0; i < childShapeCount1; ++i)
{
btCompoundShapeChild& childShape = lsMem.gSubshapes[MAX_SPU_COMPOUND_SUBSHAPES+i];
dmaSize = getShapeTypeSize(childShape.m_childShapeType);
dmaPpuAddress2 = (ppu_address_t)childShape.m_childShape;
cellDmaGet(lsMem.gSubshapeShape[MAX_SPU_COMPOUND_SUBSHAPES+i], dmaPpuAddress2, dmaSize, DMA_TAG(1), 0, 0);
//cellDmaWaitTagStatusAll(DMA_MASK(1));
}
cellDmaWaitTagStatusAll(DMA_MASK(1));
// Start the N^2
for ( i = 0; i < childShapeCount0; ++i)
for (int i = 0; i < childShapeCount0; ++i)
{
btCompoundShapeChild& childShape0 = lsMem.gSubshapes[i];
btCompoundShapeChild& childShape0 = lsMem.compoundShapeData[0].gSubshapes[i];
for (int j = 0; j < childShapeCount1; ++j)
{
btCompoundShapeChild& childShape1 = lsMem.gSubshapes[MAX_SPU_COMPOUND_SUBSHAPES+j];
btCompoundShapeChild& childShape1 = lsMem.compoundShapeData[1].gSubshapes[j];
/* Create a new collision pair input struct using the two child shapes */
SpuCollisionPairInput cinput (collisionPairInput);
cinput.m_worldTransform0 = collisionPairInput.m_worldTransform0 * childShape0.m_transform;
cinput.m_shapeType0 = childShape0.m_childShapeType;
cinput.m_collisionMargin0 = childShape0.m_childMargin;
@@ -1018,10 +632,10 @@ void handleCollisionPair(SpuCollisionPairInput& collisionPairInput, CollisionTas
cinput.m_worldTransform1 = collisionPairInput.m_worldTransform1 * childShape1.m_transform;
cinput.m_shapeType1 = childShape1.m_childShapeType;
cinput.m_collisionMargin1 = childShape1.m_childMargin;
/* Recursively call handleCollisionPair () with new collision pair input */
handleCollisionPair(cinput, lsMem, spuContacts,
(ppu_address_t)childShape0.m_childShape, lsMem.gSubshapeShape[i],
(ppu_address_t)childShape1.m_childShape, lsMem.gSubshapeShape[MAX_SPU_COMPOUND_SUBSHAPES+i], false);
(ppu_address_t)childShape0.m_childShape, lsMem.compoundShapeData[0].gSubshapeShape[i],
(ppu_address_t)childShape1.m_childShape, lsMem.compoundShapeData[1].gSubshapeShape[j], false); // bug fix: changed index to j.
}
}
}
@@ -1029,55 +643,32 @@ void handleCollisionPair(SpuCollisionPairInput& collisionPairInput, CollisionTas
{
//snPause();
dmaSize = getShapeTypeSize(collisionPairInput.m_shapeType0);
dmaPpuAddress2 = collisionShape0Ptr;
cellDmaGet(collisionShape0Loc, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
//cellDmaWaitTagStatusAll(DMA_MASK(1));
dmaSize = getShapeTypeSize(collisionPairInput.m_shapeType1);
dmaPpuAddress2 = collisionShape1Ptr;
cellDmaGet(collisionShape1Loc, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0);
// cellDmaWaitTagStatusAll(DMA_MASK(2));
cellDmaWaitTagStatusAll(DMA_MASK(1) | DMA_MASK(2));
dmaCollisionShape (collisionShape0Loc, collisionShape0Ptr, 1, collisionPairInput.m_shapeType0);
dmaCollisionShape (collisionShape1Loc, collisionShape1Ptr, 2, collisionPairInput.m_shapeType1);
cellDmaWaitTagStatusAll(DMA_MASK(1) | DMA_MASK(2));
// object 0 compound, object 1 non-compound
btCompoundShape* spuCompoundShape = (btCompoundShape*)collisionShape0Loc;
dmaCompoundShapeInfo (&lsMem.compoundShapeData[0], spuCompoundShape, 1);
cellDmaWaitTagStatusAll(DMA_MASK(1));
int childShapeCount = spuCompoundShape->getNumChildShapes();
// dma the list of child shapes
dmaSize = childShapeCount * sizeof(btCompoundShapeChild);
dmaPpuAddress2 = (ppu_address_t)spuCompoundShape->getChildList();
cellDmaGet(lsMem.gSubshapes, dmaPpuAddress2, dmaSize, DMA_TAG(1), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(1));
for (int i = 0; i < childShapeCount; ++i)
{
btCompoundShapeChild& childShape = lsMem.gSubshapes[i];
btCompoundShapeChild& childShape = lsMem.compoundShapeData[0].gSubshapes[i];
// Dma the child shape
dmaCollisionShape (&lsMem.compoundShapeData[0].gSubshapeShape[i], (ppu_address_t)childShape.m_childShape, 1, childShape.m_childShapeType);
cellDmaWaitTagStatusAll(DMA_MASK(1));
dmaSize = getShapeTypeSize(childShape.m_childShapeType);
dmaPpuAddress2 = (ppu_address_t)childShape.m_childShape;
cellDmaGet(lsMem.gSubshapeShape[i], dmaPpuAddress2, dmaSize, DMA_TAG(1), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(1));
SpuCollisionPairInput cinput (collisionPairInput);
cinput.m_worldTransform0 = collisionPairInput.m_worldTransform0 * childShape.m_transform;
cinput.m_shapeType0 = childShape.m_childShapeType;
cinput.m_collisionMargin0 = childShape.m_childMargin;
handleCollisionPair(cinput, lsMem, spuContacts,
(ppu_address_t)childShape.m_childShape, lsMem.gSubshapeShape[i],
(ppu_address_t)childShape.m_childShape, lsMem.compoundShapeData[0].gSubshapeShape[i],
collisionShape1Ptr, collisionShape1Loc, false);
}
}
@@ -1085,57 +676,30 @@ void handleCollisionPair(SpuCollisionPairInput& collisionPairInput, CollisionTas
{
//snPause();
dmaSize = getShapeTypeSize(collisionPairInput.m_shapeType0);
dmaPpuAddress2 = collisionShape0Ptr;
cellDmaGet(collisionShape0Loc, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
//cellDmaWaitTagStatusAll(DMA_MASK(1));
dmaSize = getShapeTypeSize(collisionPairInput.m_shapeType1);
dmaPpuAddress2 = collisionShape1Ptr;
cellDmaGet(collisionShape1Loc, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0);
//cellDmaWaitTagStatusAll(DMA_MASK(2));
cellDmaWaitTagStatusAll(DMA_MASK(1) | DMA_MASK(2));
dmaCollisionShape (collisionShape0Loc, collisionShape0Ptr, 1, collisionPairInput.m_shapeType0);
dmaCollisionShape (collisionShape1Loc, collisionShape1Ptr, 2, collisionPairInput.m_shapeType1);
cellDmaWaitTagStatusAll(DMA_MASK(1) | DMA_MASK(2));
// object 0 non-compound, object 1 compound
btCompoundShape* spuCompoundShape = (btCompoundShape*)collisionShape1Loc;
dmaCompoundShapeInfo (&lsMem.compoundShapeData[0], spuCompoundShape, 1);
cellDmaWaitTagStatusAll(DMA_MASK(1));
int childShapeCount = spuCompoundShape->getNumChildShapes();
// dma the list of child shapes
dmaSize = childShapeCount * sizeof(btCompoundShapeChild);
dmaPpuAddress2 = (ppu_address_t)spuCompoundShape->getChildList();
cellDmaGet(lsMem.gSubshapes, dmaPpuAddress2, dmaSize, DMA_TAG(1), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(1));
for (int i = 0; i < childShapeCount; ++i)
{
btCompoundShapeChild& childShape = lsMem.gSubshapes[i];
btCompoundShapeChild& childShape = lsMem.compoundShapeData[0].gSubshapes[i];
// Dma the child shape
dmaSize = getShapeTypeSize(childShape.m_childShapeType);
dmaPpuAddress2 = (ppu_address_t)childShape.m_childShape;
cellDmaGet(lsMem.gSubshapeShape[i], dmaPpuAddress2, dmaSize, DMA_TAG(1), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(1));
dmaCollisionShape (&lsMem.compoundShapeData[0].gSubshapeShape[i], (ppu_address_t)childShape.m_childShape, 1, childShape.m_childShapeType);
cellDmaWaitTagStatusAll(DMA_MASK(1));
SpuCollisionPairInput cinput (collisionPairInput);
cinput.m_worldTransform1 = collisionPairInput.m_worldTransform1 * childShape.m_transform;
cinput.m_shapeType1 = childShape.m_childShapeType;
cinput.m_collisionMargin1 = childShape.m_childMargin;
handleCollisionPair(cinput, lsMem, spuContacts,
collisionShape0Ptr, collisionShape0Loc,
(ppu_address_t)childShape.m_childShape, lsMem.gSubshapeShape[i], false);
(ppu_address_t)childShape.m_childShape, lsMem.compoundShapeData[0].gSubshapeShape[i], false);
}
}
@@ -1166,29 +730,11 @@ void handleCollisionPair(SpuCollisionPairInput& collisionPairInput, CollisionTas
}
if (handleConvexConcave)
{
if (dmaShapes)
{
///dma and initialize the convex object
dmaSize = getShapeTypeSize(collisionPairInput.m_shapeType0);
//uint64_t dmaPpuAddress2 = (uint64_t)lsMem.gColObj0.getCollisionShape();
dmaPpuAddress2 = collisionShape0Ptr;
cellDmaGet(collisionShape0Loc, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
//cellDmaWaitTagStatusAll(DMA_MASK(1));
///dma and initialize the concave object
dmaSize = getShapeTypeSize(collisionPairInput.m_shapeType1);
dmaPpuAddress2 = collisionShape1Ptr;
cellDmaGet(collisionShape1Loc, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0);
//cellDmaWaitTagStatusAll(DMA_MASK(2));
cellDmaWaitTagStatusAll(DMA_MASK(1) | DMA_MASK(2));
dmaCollisionShape (collisionShape0Loc, collisionShape0Ptr, 1, collisionPairInput.m_shapeType0);
dmaCollisionShape (collisionShape1Loc, collisionShape1Ptr, 2, collisionPairInput.m_shapeType1);
cellDmaWaitTagStatusAll(DMA_MASK(1) | DMA_MASK(2));
}
btConvexInternalShape* spuConvexShape0 = (btConvexInternalShape*)collisionShape0Loc;
@@ -1210,7 +756,6 @@ void handleCollisionPair(SpuCollisionPairInput& collisionPairInput, CollisionTas
}
void processCollisionTask(void* userPtr, void* lsMemPtr)
{
@@ -1225,7 +770,7 @@ void processCollisionTask(void* userPtr, void* lsMemPtr)
////////////////////
uint64_t dmaInPtr = taskDesc.inPtr;
ppu_address_t dmaInPtr = taskDesc.inPtr;
unsigned int numPages = taskDesc.numPages;
unsigned int numOnLastPage = taskDesc.numOnLastPage;
@@ -1336,7 +881,7 @@ void processCollisionTask(void* userPtr, void* lsMemPtr)
lsMem.gProxyPtr0 = (btBroadphaseProxy*) lsMem.bufferProxy0;
stallingUnalignedDmaSmallGet(lsMem.gProxyPtr0, dmaPpuAddress2 , dmaSize);
collisionPairInput.m_persistentManifoldPtr = (uint64_t) lsMem.gSpuContactManifoldAlgo.getContactManifoldPtr();
collisionPairInput.m_persistentManifoldPtr = (ppu_address_t) lsMem.gSpuContactManifoldAlgo.getContactManifoldPtr();
collisionPairInput.m_isSwapped = false;
@@ -1387,10 +932,10 @@ void processCollisionTask(void* userPtr, void* lsMemPtr)
dmaAndSetupCollisionObjects(collisionPairInput, lsMem);
handleCollisionPair(collisionPairInput, lsMem, spuContacts,
(ppu_address_t)lsMem.getColObj0()->getCollisionShape(), lsMem.gCollisionShape0,
(ppu_address_t)lsMem.getColObj1()->getCollisionShape(), lsMem.gCollisionShape1);
(ppu_address_t)lsMem.getColObj0()->getCollisionShape(), &lsMem.gCollisionShapes[0].collisionShape,
(ppu_address_t)lsMem.getColObj1()->getCollisionShape(), &lsMem.gCollisionShapes[1].collisionShape);
}
}
}
}