Refactored SpuGatheringCollisionTask to use code in SpuCollisionShapes.
More work on SpuBatchRaycaster. It is working now on the PS3 and Windows.
This commit is contained in:
@@ -1,10 +1,21 @@
|
||||
#include <stdio.h>
|
||||
|
||||
|
||||
#include "SpuRaycastTask.h"
|
||||
#include "SpuCollisionObjectWrapper.h"
|
||||
#include "SpuNarrowPhaseCollisionTask/SpuCollisionShapes.h"
|
||||
#include "SpuSubSimplexConvexCast.h"
|
||||
#include "LinearMath/btAabbUtil2.h"
|
||||
|
||||
|
||||
/* Future optimization strategies:
|
||||
1. BBOX prune before loading shape data
|
||||
2. When doing bvh tree traversal do it once for entire batch of rays.
|
||||
*/
|
||||
|
||||
/* Future work:
|
||||
1. support first hit, closest hit, etc rather than just closest hit.
|
||||
2. support compound objects
|
||||
*/
|
||||
|
||||
struct RaycastTask_LocalStoreMemory
|
||||
{
|
||||
@@ -14,7 +25,7 @@ struct RaycastTask_LocalStoreMemory
|
||||
return (btCollisionObject*) gColObj;
|
||||
}
|
||||
|
||||
SpuCollisionObjectWrapper gCollisionObjectWrapper;
|
||||
ATTRIBUTE_ALIGNED16(SpuCollisionObjectWrapper gCollisionObjectWrapper);
|
||||
SpuCollisionObjectWrapper* getCollisionObjectWrapper ()
|
||||
{
|
||||
return &gCollisionObjectWrapper;
|
||||
@@ -41,7 +52,7 @@ void* createRaycastLocalStoreMemory()
|
||||
}
|
||||
#endif
|
||||
|
||||
void GatherCollisionObjectAndShapeData (RaycastGatheredObjectData& gatheredObjectData, RaycastTask_LocalStoreMemory& lsMem, ppu_address_t objectWrapper)
|
||||
void GatherCollisionObjectAndShapeData (RaycastGatheredObjectData* gatheredObjectData, RaycastTask_LocalStoreMemory* lsMemPtr, ppu_address_t objectWrapper)
|
||||
{
|
||||
register int dmaSize;
|
||||
register ppu_address_t dmaPpuAddress2;
|
||||
@@ -49,27 +60,32 @@ void GatherCollisionObjectAndShapeData (RaycastGatheredObjectData& gatheredObjec
|
||||
/* DMA Collision object wrapper into local store */
|
||||
dmaSize = sizeof(SpuCollisionObjectWrapper);
|
||||
dmaPpuAddress2 = objectWrapper;
|
||||
cellDmaGet(&lsMem.gCollisionObjectWrapper, dmaPpuAddress2, dmaSize, DMA_TAG(1), 0, 0);
|
||||
cellDmaGet(&lsMemPtr->gCollisionObjectWrapper, dmaPpuAddress2, dmaSize, DMA_TAG(1), 0, 0);
|
||||
cellDmaWaitTagStatusAll(DMA_MASK(1));
|
||||
|
||||
/* DMA Collision object into local store */
|
||||
dmaSize = sizeof(btCollisionObject);
|
||||
dmaPpuAddress2 = lsMem.getCollisionObjectWrapper()->getCollisionObjectPtr();
|
||||
cellDmaGet(&lsMem.gColObj, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0);
|
||||
dmaPpuAddress2 = lsMemPtr->getCollisionObjectWrapper()->getCollisionObjectPtr();
|
||||
cellDmaGet(&lsMemPtr->gColObj, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0);
|
||||
cellDmaWaitTagStatusAll(DMA_MASK(2));
|
||||
|
||||
/* Gather information about collision object and shape */
|
||||
gatheredObjectData.m_worldTransform = lsMem.getColObj()->getWorldTransform();
|
||||
gatheredObjectData.m_collisionMargin = lsMem.getCollisionObjectWrapper()->getCollisionMargin ();
|
||||
gatheredObjectData.m_shapeType = lsMem.getCollisionObjectWrapper()->getShapeType ();
|
||||
gatheredObjectData.m_collisionShape = (ppu_address_t)lsMem.getColObj()->getCollisionShape();
|
||||
gatheredObjectData.m_spuCollisionShape = (void*)&lsMem.gCollisionShape.collisionShape[0];
|
||||
gatheredObjectData->m_worldTransform = lsMemPtr->getColObj()->getWorldTransform();
|
||||
gatheredObjectData->m_collisionMargin = lsMemPtr->getCollisionObjectWrapper()->getCollisionMargin ();
|
||||
gatheredObjectData->m_shapeType = lsMemPtr->getCollisionObjectWrapper()->getShapeType ();
|
||||
gatheredObjectData->m_collisionShape = (ppu_address_t)lsMemPtr->getColObj()->getCollisionShape();
|
||||
gatheredObjectData->m_spuCollisionShape = (void*)&lsMemPtr->gCollisionShape.collisionShape;
|
||||
|
||||
/* DMA shape data */
|
||||
dmaCollisionShape (gatheredObjectData.m_spuCollisionShape, gatheredObjectData.m_collisionShape, 1, gatheredObjectData.m_shapeType);
|
||||
dmaCollisionShape (gatheredObjectData->m_spuCollisionShape, gatheredObjectData->m_collisionShape, 1, gatheredObjectData->m_shapeType);
|
||||
cellDmaWaitTagStatusAll(DMA_MASK(1));
|
||||
btConvexInternalShape* spuConvexShape = (btConvexInternalShape*)gatheredObjectData.m_spuCollisionShape;
|
||||
gatheredObjectData.m_primitiveDimensions = spuConvexShape->getImplicitShapeDimensions ();
|
||||
if (btBroadphaseProxy::isConvex (gatheredObjectData->m_shapeType))
|
||||
{
|
||||
btConvexInternalShape* spuConvexShape = (btConvexInternalShape*)gatheredObjectData->m_spuCollisionShape;
|
||||
gatheredObjectData->m_primitiveDimensions = spuConvexShape->getImplicitShapeDimensions ();
|
||||
} else {
|
||||
gatheredObjectData->m_primitiveDimensions = btVector3(1.0, 1.0, 1.0);
|
||||
}
|
||||
}
|
||||
|
||||
void dmaLoadRayOutput (ppu_address_t rayOutputAddr, SpuRaycastTaskWorkUnitOut* rayOutput, uint32_t dmaTag)
|
||||
@@ -82,6 +98,366 @@ void dmaStoreRayOutput (ppu_address_t rayOutputAddr, const SpuRaycastTaskWorkUni
|
||||
cellDmaLargePut (rayOutput, rayOutputAddr, sizeof(*rayOutput), DMA_TAG(dmaTag), 0, 0);
|
||||
}
|
||||
|
||||
#if 0
|
||||
SIMD_FORCE_INLINE void small_cache_read(void* buffer, ppu_address_t ea, size_t size)
|
||||
{
|
||||
#if USE_SOFTWARE_CACHE
|
||||
// Check for alignment requirements. We need to make sure the entire request fits within one cache line,
|
||||
// so the first and last bytes should fall on the same cache line
|
||||
btAssert((ea & ~SPE_CACHELINE_MASK) == ((ea + size - 1) & ~SPE_CACHELINE_MASK));
|
||||
|
||||
void* ls = spe_cache_read(ea);
|
||||
memcpy(buffer, ls, size);
|
||||
#else
|
||||
stallingUnalignedDmaSmallGet(buffer,ea,size);
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
|
||||
void small_cache_read_triple( void* ls0, ppu_address_t ea0,
|
||||
void* ls1, ppu_address_t ea1,
|
||||
void* ls2, ppu_address_t ea2,
|
||||
size_t size)
|
||||
{
|
||||
btAssert(size<16);
|
||||
ATTRIBUTE_ALIGNED16(char tmpBuffer0[32]);
|
||||
ATTRIBUTE_ALIGNED16(char tmpBuffer1[32]);
|
||||
ATTRIBUTE_ALIGNED16(char tmpBuffer2[32]);
|
||||
|
||||
uint32_t i;
|
||||
|
||||
|
||||
///make sure last 4 bits are the same, for cellDmaSmallGet
|
||||
char* localStore0 = (char*)ls0;
|
||||
uint32_t last4BitsOffset = ea0 & 0x0f;
|
||||
char* tmpTarget0 = tmpBuffer0 + last4BitsOffset;
|
||||
tmpTarget0 = (char*)cellDmaSmallGetReadOnly(tmpTarget0,ea0,size,DMA_TAG(1),0,0);
|
||||
|
||||
|
||||
char* localStore1 = (char*)ls1;
|
||||
last4BitsOffset = ea1 & 0x0f;
|
||||
char* tmpTarget1 = tmpBuffer1 + last4BitsOffset;
|
||||
tmpTarget1 = (char*)cellDmaSmallGetReadOnly(tmpTarget1,ea1,size,DMA_TAG(1),0,0);
|
||||
|
||||
char* localStore2 = (char*)ls2;
|
||||
last4BitsOffset = ea2 & 0x0f;
|
||||
char* tmpTarget2 = tmpBuffer2 + last4BitsOffset;
|
||||
tmpTarget2 = (char*)cellDmaSmallGetReadOnly(tmpTarget2,ea2,size,DMA_TAG(1),0,0);
|
||||
|
||||
|
||||
cellDmaWaitTagStatusAll( DMA_MASK(1) );
|
||||
|
||||
//this is slowish, perhaps memcpy on SPU is smarter?
|
||||
for (i=0; btLikely( i<size );i++)
|
||||
{
|
||||
localStore0[i] = tmpTarget0[i];
|
||||
localStore1[i] = tmpTarget1[i];
|
||||
localStore2[i] = tmpTarget2[i];
|
||||
}
|
||||
}
|
||||
|
||||
void performRaycastAgainstConvex (RaycastGatheredObjectData* gatheredObjectData, const SpuRaycastTaskWorkUnit& workUnit, SpuRaycastTaskWorkUnitOut* workUnitOut, RaycastTask_LocalStoreMemory* lsMemPtr);
|
||||
|
||||
class spuRaycastNodeCallback : public btNodeOverlapCallback
|
||||
{
|
||||
RaycastGatheredObjectData* m_gatheredObjectData;
|
||||
const SpuRaycastTaskWorkUnit& m_workUnit;
|
||||
SpuRaycastTaskWorkUnitOut* m_workUnitOut;
|
||||
RaycastTask_LocalStoreMemory* m_lsMemPtr;
|
||||
|
||||
ATTRIBUTE_ALIGNED16(btVector3 spuTriangleVertices[3]);
|
||||
ATTRIBUTE_ALIGNED16(btScalar spuUnscaledVertex[4]);
|
||||
//ATTRIBUTE_ALIGNED16(int spuIndices[16]);
|
||||
public:
|
||||
spuRaycastNodeCallback(RaycastGatheredObjectData* gatheredObjectData,const SpuRaycastTaskWorkUnit& workUnit, SpuRaycastTaskWorkUnitOut* workUnitOut, RaycastTask_LocalStoreMemory* lsMemPtr)
|
||||
: m_gatheredObjectData(gatheredObjectData),
|
||||
m_workUnit(workUnit),
|
||||
m_workUnitOut(workUnitOut),
|
||||
m_lsMemPtr (lsMemPtr)
|
||||
{
|
||||
}
|
||||
|
||||
virtual void processNode(int subPart, int triangleIndex)
|
||||
{
|
||||
///Create a triangle on the stack, call process collision, with GJK
|
||||
///DMA the vertices, can benefit from software caching
|
||||
|
||||
// spu_printf("processNode with triangleIndex %d\n",triangleIndex);
|
||||
|
||||
int* indexBasePtr = (int*)(m_lsMemPtr->bvhShapeData.gIndexMesh.m_triangleIndexBase+triangleIndex*m_lsMemPtr->bvhShapeData.gIndexMesh.m_triangleIndexStride);
|
||||
|
||||
small_cache_read_triple(&m_lsMemPtr->spuIndices[0],(ppu_address_t)&indexBasePtr[0],
|
||||
&m_lsMemPtr->spuIndices[1],(ppu_address_t)&indexBasePtr[1],
|
||||
&m_lsMemPtr->spuIndices[2],(ppu_address_t)&indexBasePtr[2],
|
||||
sizeof(int));
|
||||
//printf("%d %d %d\n", m_lsMemPtr->spuIndices[0], m_lsMemPtr->spuIndices[1], m_lsMemPtr->spuIndices[2]);
|
||||
// spu_printf("SPU index0=%d ,",spuIndices[0]);
|
||||
// spu_printf("SPU index1=%d ,",spuIndices[1]);
|
||||
// spu_printf("SPU index2=%d ,",spuIndices[2]);
|
||||
// spu_printf("SPU: indexBasePtr=%llx\n",indexBasePtr);
|
||||
|
||||
const btVector3& meshScaling = m_lsMemPtr->bvhShapeData.gTriangleMeshInterfacePtr->getScaling();
|
||||
|
||||
for (int j=2;btLikely( j>=0 );j--)
|
||||
{
|
||||
int graphicsindex = m_lsMemPtr->spuIndices[j];
|
||||
|
||||
//spu_printf("SPU index=%d ,",graphicsindex);
|
||||
btScalar* graphicsbasePtr = (btScalar*)(m_lsMemPtr->bvhShapeData.gIndexMesh.m_vertexBase+graphicsindex*m_lsMemPtr->bvhShapeData.gIndexMesh.m_vertexStride);
|
||||
|
||||
// spu_printf("SPU graphicsbasePtr=%llx\n",graphicsbasePtr);
|
||||
|
||||
|
||||
///handle un-aligned vertices...
|
||||
|
||||
//another DMA for each vertex
|
||||
small_cache_read_triple(&spuUnscaledVertex[0],(ppu_address_t)&graphicsbasePtr[0],
|
||||
&spuUnscaledVertex[1],(ppu_address_t)&graphicsbasePtr[1],
|
||||
&spuUnscaledVertex[2],(ppu_address_t)&graphicsbasePtr[2],
|
||||
sizeof(btScalar));
|
||||
|
||||
//printf("%f %f %f\n", spuUnscaledVertex[0],spuUnscaledVertex[1],spuUnscaledVertex[2]);
|
||||
spuTriangleVertices[j] = btVector3(
|
||||
spuUnscaledVertex[0]*meshScaling.getX(),
|
||||
spuUnscaledVertex[1]*meshScaling.getY(),
|
||||
spuUnscaledVertex[2]*meshScaling.getZ());
|
||||
|
||||
//spu_printf("SPU:triangle vertices:%f,%f,%f\n",spuTriangleVertices[j].x(),spuTriangleVertices[j].y(),spuTriangleVertices[j].z());
|
||||
}
|
||||
|
||||
RaycastGatheredObjectData triangleGatheredObjectData (*m_gatheredObjectData);
|
||||
triangleGatheredObjectData.m_shapeType = TRIANGLE_SHAPE_PROXYTYPE;
|
||||
triangleGatheredObjectData.m_spuCollisionShape = &spuTriangleVertices[0];
|
||||
|
||||
//printf("%f %f %f\n", spuTriangleVertices[0][0],spuTriangleVertices[0][1],spuTriangleVertices[0][2]);
|
||||
//printf("%f %f %f\n", spuTriangleVertices[1][0],spuTriangleVertices[1][1],spuTriangleVertices[1][2]);
|
||||
//printf("%f %f %f\n", spuTriangleVertices[2][0],spuTriangleVertices[2][1],spuTriangleVertices[2][2]);
|
||||
SpuRaycastTaskWorkUnitOut out;
|
||||
out.hitFraction = 1.0;
|
||||
|
||||
performRaycastAgainstConvex (&triangleGatheredObjectData, m_workUnit, &out, m_lsMemPtr);
|
||||
/* XXX: For now only take the closest hit */
|
||||
if (out.hitFraction < m_workUnitOut->hitFraction)
|
||||
{
|
||||
m_workUnitOut->hitFraction = out.hitFraction;
|
||||
m_workUnitOut->hitNormal = out.hitNormal;
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
void spuWalkStacklessQuantizedTreeAgainstRay(RaycastTask_LocalStoreMemory* lsMemPtr, btNodeOverlapCallback* nodeCallback,const btVector3& raySource, const btVector3& rayTarget,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax,const btQuantizedBvhNode* rootNode, int startNodeIndex,int endNodeIndex)
|
||||
{
|
||||
|
||||
int curIndex = startNodeIndex;
|
||||
int walkIterations = 0;
|
||||
int subTreeSize = endNodeIndex - startNodeIndex;
|
||||
|
||||
int escapeIndex;
|
||||
|
||||
unsigned int boxBoxOverlap, rayBoxOverlap;
|
||||
unsigned int isLeafNode;
|
||||
#define RAYAABB2
|
||||
#ifdef RAYAABB2
|
||||
btScalar lambda_max = 1.0;
|
||||
btVector3 rayFrom = raySource;
|
||||
btVector3 rayDirection = (rayTarget-raySource);
|
||||
rayDirection.normalize ();
|
||||
lambda_max = rayDirection.dot(rayTarget-raySource);
|
||||
rayDirection[0] = btScalar(1.0) / rayDirection[0];
|
||||
rayDirection[1] = btScalar(1.0) / rayDirection[1];
|
||||
rayDirection[2] = btScalar(1.0) / rayDirection[2];
|
||||
unsigned int sign[3] = { rayDirection[0] < 0.0, rayDirection[1] < 0.0, rayDirection[2] < 0.0};
|
||||
#endif
|
||||
|
||||
while (curIndex < endNodeIndex)
|
||||
{
|
||||
//catch bugs in tree data
|
||||
assert (walkIterations < subTreeSize);
|
||||
|
||||
walkIterations++;
|
||||
boxBoxOverlap = spuTestQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode->m_quantizedAabbMin,rootNode->m_quantizedAabbMax);
|
||||
isLeafNode = rootNode->isLeafNode();
|
||||
|
||||
rayBoxOverlap = 0;
|
||||
btScalar param = 1.0;
|
||||
btVector3 normal;
|
||||
if (boxBoxOverlap)
|
||||
{
|
||||
btVector3 bounds[2];
|
||||
bounds[0] = lsMemPtr->bvhShapeData.getOptimizedBvh()->unQuantize(rootNode->m_quantizedAabbMin);
|
||||
bounds[1] = lsMemPtr->bvhShapeData.getOptimizedBvh()->unQuantize(rootNode->m_quantizedAabbMax);
|
||||
#ifdef RAYAABB2
|
||||
rayBoxOverlap = btRayAabb2 (raySource, rayDirection, sign, bounds, param, 0.0, lambda_max);
|
||||
#else
|
||||
rayBoxOverlap = btRayAabb(raySource, rayTarget, bounds[0], bounds[1], param, normal);
|
||||
#endif
|
||||
}
|
||||
|
||||
if (isLeafNode && rayBoxOverlap)
|
||||
{
|
||||
//printf("overlap with node %d\n",rootNode->getTriangleIndex());
|
||||
nodeCallback->processNode(0,rootNode->getTriangleIndex());
|
||||
// spu_printf("SPU: overlap detected with triangleIndex:%d\n",rootNode->getTriangleIndex());
|
||||
}
|
||||
|
||||
if (rayBoxOverlap || isLeafNode)
|
||||
{
|
||||
rootNode++;
|
||||
curIndex++;
|
||||
} else
|
||||
{
|
||||
escapeIndex = rootNode->getEscapeIndex();
|
||||
rootNode += escapeIndex;
|
||||
curIndex += escapeIndex;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void performRaycastAgainstConcave (RaycastGatheredObjectData* gatheredObjectData, const SpuRaycastTaskWorkUnit& workUnit, SpuRaycastTaskWorkUnitOut* workUnitOut, RaycastTask_LocalStoreMemory* lsMemPtr)
|
||||
{
|
||||
//order: first collision shape is convex, second concave. m_isSwapped is true, if the original order was opposite
|
||||
register int dmaSize;
|
||||
register ppu_address_t dmaPpuAddress2;
|
||||
|
||||
btBvhTriangleMeshShape* trimeshShape = (btBvhTriangleMeshShape*)gatheredObjectData->m_spuCollisionShape;
|
||||
|
||||
//need the mesh interface, for access to triangle vertices
|
||||
dmaBvhShapeData (&(lsMemPtr->bvhShapeData), trimeshShape);
|
||||
|
||||
btVector3 aabbMin;
|
||||
btVector3 aabbMax;
|
||||
|
||||
/* Calculate the AABB for the ray in the triangle mesh shape */
|
||||
btTransform rayInTriangleSpace;
|
||||
rayInTriangleSpace = gatheredObjectData->m_worldTransform.inverse();
|
||||
|
||||
btVector3 rayFromInTriangleSpace = rayInTriangleSpace(workUnit.rayFrom);
|
||||
btVector3 rayToInTriangleSpace = rayInTriangleSpace(workUnit.rayTo);
|
||||
|
||||
aabbMin = rayFromInTriangleSpace;
|
||||
aabbMin.setMin (rayToInTriangleSpace);
|
||||
aabbMax = rayFromInTriangleSpace;
|
||||
aabbMax.setMax (rayToInTriangleSpace);
|
||||
|
||||
unsigned short int quantizedQueryAabbMin[3];
|
||||
unsigned short int quantizedQueryAabbMax[3];
|
||||
lsMemPtr->bvhShapeData.getOptimizedBvh()->quantizeWithClamp(quantizedQueryAabbMin,aabbMin);
|
||||
lsMemPtr->bvhShapeData.getOptimizedBvh()->quantizeWithClamp(quantizedQueryAabbMax,aabbMax);
|
||||
|
||||
QuantizedNodeArray& nodeArray = lsMemPtr->bvhShapeData.getOptimizedBvh()->getQuantizedNodeArray();
|
||||
//spu_printf("SPU: numNodes = %d\n",nodeArray.size());
|
||||
|
||||
BvhSubtreeInfoArray& subTrees = lsMemPtr->bvhShapeData.getOptimizedBvh()->getSubtreeInfoArray();
|
||||
|
||||
spuRaycastNodeCallback nodeCallback (gatheredObjectData, workUnit, workUnitOut, lsMemPtr);
|
||||
|
||||
IndexedMeshArray& indexArray = lsMemPtr->bvhShapeData.gTriangleMeshInterfacePtr->getIndexedMeshArray();
|
||||
|
||||
//spu_printf("SPU:indexArray.size() = %d\n",indexArray.size());
|
||||
// spu_printf("SPU: numSubTrees = %d\n",subTrees.size());
|
||||
//not likely to happen
|
||||
if (subTrees.size() && indexArray.size() == 1)
|
||||
{
|
||||
///DMA in the index info
|
||||
dmaBvhIndexedMesh (&lsMemPtr->bvhShapeData.gIndexMesh, indexArray, 0 /* index into indexArray */, 1 /* dmaTag */);
|
||||
cellDmaWaitTagStatusAll(DMA_MASK(1));
|
||||
|
||||
//display the headers
|
||||
int numBatch = subTrees.size();
|
||||
for (int i=0;i<numBatch;)
|
||||
{
|
||||
// BEN: TODO - can reorder DMA transfers for less stall
|
||||
int remaining = subTrees.size() - i;
|
||||
int nextBatch = remaining < MAX_SPU_SUBTREE_HEADERS ? remaining : MAX_SPU_SUBTREE_HEADERS;
|
||||
|
||||
dmaBvhSubTreeHeaders (&lsMemPtr->bvhShapeData.gSubtreeHeaders[0], (ppu_address_t)(&subTrees[i]), nextBatch, 1);
|
||||
cellDmaWaitTagStatusAll(DMA_MASK(1));
|
||||
|
||||
|
||||
// spu_printf("nextBatch = %d\n",nextBatch);
|
||||
|
||||
for (int j=0;j<nextBatch;j++)
|
||||
{
|
||||
const btBvhSubtreeInfo& subtree = lsMemPtr->bvhShapeData.gSubtreeHeaders[j];
|
||||
|
||||
unsigned int overlap = spuTestQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,subtree.m_quantizedAabbMin,subtree.m_quantizedAabbMax);
|
||||
if (overlap)
|
||||
{
|
||||
btAssert(subtree.m_subtreeSize);
|
||||
|
||||
//dma the actual nodes of this subtree
|
||||
dmaBvhSubTreeNodes (&lsMemPtr->bvhShapeData.gSubtreeNodes[0], subtree, nodeArray, 2);
|
||||
|
||||
cellDmaWaitTagStatusAll(DMA_MASK(2));
|
||||
|
||||
/* Walk this subtree */
|
||||
spuWalkStacklessQuantizedTreeAgainstRay(lsMemPtr, &nodeCallback,rayFromInTriangleSpace, rayToInTriangleSpace, quantizedQueryAabbMin,quantizedQueryAabbMax,
|
||||
&lsMemPtr->bvhShapeData.gSubtreeNodes[0],
|
||||
0,
|
||||
subtree.m_subtreeSize);
|
||||
}
|
||||
// spu_printf("subtreeSize = %d\n",gSubtreeHeaders[j].m_subtreeSize);
|
||||
}
|
||||
|
||||
// unsigned short int m_quantizedAabbMin[3];
|
||||
// unsigned short int m_quantizedAabbMax[3];
|
||||
// int m_rootNodeIndex;
|
||||
// int m_subtreeSize;
|
||||
i+=nextBatch;
|
||||
}
|
||||
|
||||
//pre-fetch first tree, then loop and double buffer
|
||||
}
|
||||
}
|
||||
|
||||
void performRaycastAgainstCompound (RaycastGatheredObjectData* gatheredObjectData, const SpuRaycastTaskWorkUnit& workUnit, SpuRaycastTaskWorkUnitOut* workUnitOut, RaycastTask_LocalStoreMemory* lsMemPtr)
|
||||
{
|
||||
spu_printf ("Currently no support for ray. vs compound objects. Support coming soon.\n");
|
||||
}
|
||||
|
||||
void
|
||||
performRaycastAgainstConvex (RaycastGatheredObjectData* gatheredObjectData, const SpuRaycastTaskWorkUnit& workUnit, SpuRaycastTaskWorkUnitOut* workUnitOut, RaycastTask_LocalStoreMemory* lsMemPtr)
|
||||
{
|
||||
SpuVoronoiSimplexSolver simplexSolver;
|
||||
|
||||
btTransform rayFromTrans, rayToTrans;
|
||||
rayFromTrans.setIdentity ();
|
||||
rayFromTrans.setOrigin (workUnit.rayFrom);
|
||||
rayToTrans.setIdentity ();
|
||||
rayToTrans.setOrigin (workUnit.rayTo);
|
||||
|
||||
SpuCastResult result;
|
||||
|
||||
/* Load the vertex data if the shape is a convex hull */
|
||||
/* XXX: We might be loading the shape twice */
|
||||
ATTRIBUTE_ALIGNED16(char convexHullShape[sizeof(btConvexHullShape)]);
|
||||
if (gatheredObjectData->m_shapeType == CONVEX_HULL_SHAPE_PROXYTYPE)
|
||||
{
|
||||
register int dmaSize;
|
||||
register ppu_address_t dmaPpuAddress2;
|
||||
dmaSize = sizeof(btConvexHullShape);
|
||||
dmaPpuAddress2 = gatheredObjectData->m_collisionShape;
|
||||
cellDmaGet(&convexHullShape, dmaPpuAddress2, dmaSize, DMA_TAG(1), 0, 0);
|
||||
cellDmaWaitTagStatusAll(DMA_MASK(1));
|
||||
dmaConvexVertexData (&lsMemPtr->convexVertexData, (btConvexHullShape*)&convexHullShape);
|
||||
cellDmaWaitTagStatusAll(DMA_MASK(2)); // dmaConvexVertexData uses dma channel 2!
|
||||
lsMemPtr->convexVertexData.gSpuConvexShapePtr = gatheredObjectData->m_spuCollisionShape;
|
||||
lsMemPtr->convexVertexData.gConvexPoints = &lsMemPtr->convexVertexData.g_convexPointBuffer[0];
|
||||
}
|
||||
|
||||
/* performRaycast */
|
||||
SpuSubsimplexRayCast caster (gatheredObjectData->m_spuCollisionShape, &lsMemPtr->convexVertexData, gatheredObjectData->m_shapeType, 0.0, &simplexSolver);
|
||||
bool r = caster.calcTimeOfImpact (rayFromTrans, rayToTrans, gatheredObjectData->m_worldTransform, gatheredObjectData->m_worldTransform,result);
|
||||
|
||||
if (r)
|
||||
{
|
||||
workUnitOut->hitFraction = result.m_fraction;
|
||||
workUnitOut->hitNormal = result.m_normal;
|
||||
}
|
||||
}
|
||||
|
||||
void processRaycastTask(void* userPtr, void* lsMemory)
|
||||
{
|
||||
RaycastTask_LocalStoreMemory* localMemory = (RaycastTask_LocalStoreMemory*)lsMemory;
|
||||
@@ -95,22 +471,36 @@ void processRaycastTask(void* userPtr, void* lsMemory)
|
||||
for (int objectId = 0; objectId < taskDesc.numSpuCollisionObjectWrappers; objectId++)
|
||||
{
|
||||
RaycastGatheredObjectData gatheredObjectData;
|
||||
GatherCollisionObjectAndShapeData (gatheredObjectData, *localMemory, (ppu_address_t)&cows[objectId]);
|
||||
GatherCollisionObjectAndShapeData (&gatheredObjectData, localMemory, (ppu_address_t)&cows[objectId]);
|
||||
/* load initial collision shape */
|
||||
for (int rayId = 0; rayId < taskDesc.numWorkUnits; rayId++)
|
||||
{
|
||||
SpuRaycastTaskWorkUnitOut rayOut;
|
||||
|
||||
dmaLoadRayOutput ((ppu_address_t)taskDesc.workUnits[rayId].output, &rayOut, 1);
|
||||
const SpuRaycastTaskWorkUnit& workUnit = taskDesc.workUnits[rayId];
|
||||
ATTRIBUTE_ALIGNED16(SpuRaycastTaskWorkUnitOut workUnitOut);
|
||||
dmaLoadRayOutput ((ppu_address_t)workUnit.output, &workUnitOut, 1);
|
||||
cellDmaWaitTagStatusAll(DMA_MASK(1));
|
||||
|
||||
float t = (float)rayId/(float)taskDesc.numWorkUnits;
|
||||
/* performRaycast */
|
||||
rayOut.hitFraction = 0.1f * t;
|
||||
rayOut.hitNormal = btVector3(1.0, 0.0, 0.0);
|
||||
|
||||
SpuRaycastTaskWorkUnitOut tWorkUnitOut;
|
||||
tWorkUnitOut.hitFraction = 1.0;
|
||||
|
||||
if (btBroadphaseProxy::isConvex (gatheredObjectData.m_shapeType))
|
||||
{
|
||||
//performRaycastAgainstConvex (&gatheredObjectData, workUnit, &tWorkUnitOut, localMemory);
|
||||
} else if (btBroadphaseProxy::isCompound (gatheredObjectData.m_shapeType)) {
|
||||
performRaycastAgainstCompound (&gatheredObjectData, workUnit, &tWorkUnitOut, localMemory);
|
||||
} else if (btBroadphaseProxy::isConcave (gatheredObjectData.m_shapeType)) {
|
||||
performRaycastAgainstConcave (&gatheredObjectData, workUnit, &tWorkUnitOut, localMemory);
|
||||
}
|
||||
|
||||
/* XXX Only support taking the closest hit for now */
|
||||
if (tWorkUnitOut.hitFraction < workUnitOut.hitFraction)
|
||||
{
|
||||
workUnitOut.hitFraction = tWorkUnitOut.hitFraction;
|
||||
workUnitOut.hitNormal = tWorkUnitOut.hitNormal;
|
||||
}
|
||||
|
||||
/* write ray cast data back */
|
||||
dmaStoreRayOutput ((ppu_address_t)taskDesc.workUnits[rayId].output, &rayOut, 1);
|
||||
dmaStoreRayOutput ((ppu_address_t)workUnit.output, &workUnitOut, 1);
|
||||
cellDmaWaitTagStatusAll(DMA_MASK(1));
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user