unlock thread at exitPhysics

pybullet: don't crash in inverse kinematic if #dofs don't match due to free base
C-API: don't crash if status/statusHandle = 0
This commit is contained in:
erwincoumans
2017-10-10 11:10:42 -07:00
parent 7bddc7706d
commit c155e105a5
4 changed files with 128 additions and 95 deletions

View File

@@ -7659,7 +7659,7 @@ bool PhysicsServerCommandProcessor::processCommand(const struct SharedMemoryComm
btAlignedObjectArray<double> q_current;
q_current.resize(numDofs);
if (tree)
if (tree && (numDofs == tree->numDoFs()))
{
jacSize = jacobian_linear.size();
// Set jacobian value
@@ -7697,92 +7697,93 @@ bool PhysicsServerCommandProcessor::processCommand(const struct SharedMemoryComm
}
}
}
}
btAlignedObjectArray<double> q_new;
q_new.resize(numDofs);
int ikMethod = 0;
if ((clientCmd.m_updateFlags& IK_HAS_TARGET_ORIENTATION)&&(clientCmd.m_updateFlags&IK_HAS_NULL_SPACE_VELOCITY))
{
ikMethod = IK2_VEL_DLS_WITH_ORIENTATION_NULLSPACE;
}
else if (clientCmd.m_updateFlags& IK_HAS_TARGET_ORIENTATION)
{
ikMethod = IK2_VEL_DLS_WITH_ORIENTATION;
}
else if (clientCmd.m_updateFlags& IK_HAS_NULL_SPACE_VELOCITY)
{
ikMethod = IK2_VEL_DLS_WITH_NULLSPACE;
}
else
{
ikMethod = IK2_VEL_DLS;
}
if (clientCmd.m_updateFlags& IK_HAS_NULL_SPACE_VELOCITY)
{
btAlignedObjectArray<double> lower_limit;
btAlignedObjectArray<double> upper_limit;
btAlignedObjectArray<double> joint_range;
btAlignedObjectArray<double> rest_pose;
lower_limit.resize(numDofs);
upper_limit.resize(numDofs);
joint_range.resize(numDofs);
rest_pose.resize(numDofs);
for (int i = 0; i < numDofs; ++i)
{
lower_limit[i] = clientCmd.m_calculateInverseKinematicsArguments.m_lowerLimit[i];
upper_limit[i] = clientCmd.m_calculateInverseKinematicsArguments.m_upperLimit[i];
joint_range[i] = clientCmd.m_calculateInverseKinematicsArguments.m_jointRange[i];
rest_pose[i] = clientCmd.m_calculateInverseKinematicsArguments.m_restPose[i];
}
ikHelperPtr->computeNullspaceVel(numDofs, &q_current[0], &lower_limit[0], &upper_limit[0], &joint_range[0], &rest_pose[0]);
}
btAlignedObjectArray<double> q_new;
q_new.resize(numDofs);
int ikMethod = 0;
if ((clientCmd.m_updateFlags& IK_HAS_TARGET_ORIENTATION)&&(clientCmd.m_updateFlags&IK_HAS_NULL_SPACE_VELOCITY))
{
ikMethod = IK2_VEL_DLS_WITH_ORIENTATION_NULLSPACE;
}
else if (clientCmd.m_updateFlags& IK_HAS_TARGET_ORIENTATION)
{
ikMethod = IK2_VEL_DLS_WITH_ORIENTATION;
}
else if (clientCmd.m_updateFlags& IK_HAS_NULL_SPACE_VELOCITY)
{
ikMethod = IK2_VEL_DLS_WITH_NULLSPACE;
}
else
{
ikMethod = IK2_VEL_DLS;
}
btTransform endEffectorTransformWorld = bodyHandle->m_multiBody->getLink(endEffectorLinkIndex).m_cachedWorldTransform * bodyHandle->m_linkLocalInertialFrames[endEffectorLinkIndex].inverse();
if (clientCmd.m_updateFlags& IK_HAS_NULL_SPACE_VELOCITY)
{
btAlignedObjectArray<double> lower_limit;
btAlignedObjectArray<double> upper_limit;
btAlignedObjectArray<double> joint_range;
btAlignedObjectArray<double> rest_pose;
lower_limit.resize(numDofs);
upper_limit.resize(numDofs);
joint_range.resize(numDofs);
rest_pose.resize(numDofs);
for (int i = 0; i < numDofs; ++i)
{
lower_limit[i] = clientCmd.m_calculateInverseKinematicsArguments.m_lowerLimit[i];
upper_limit[i] = clientCmd.m_calculateInverseKinematicsArguments.m_upperLimit[i];
joint_range[i] = clientCmd.m_calculateInverseKinematicsArguments.m_jointRange[i];
rest_pose[i] = clientCmd.m_calculateInverseKinematicsArguments.m_restPose[i];
}
ikHelperPtr->computeNullspaceVel(numDofs, &q_current[0], &lower_limit[0], &upper_limit[0], &joint_range[0], &rest_pose[0]);
}
btTransform endEffectorTransformWorld = bodyHandle->m_multiBody->getLink(endEffectorLinkIndex).m_cachedWorldTransform * bodyHandle->m_linkLocalInertialFrames[endEffectorLinkIndex].inverse();
btVector3DoubleData endEffectorWorldPosition;
btVector3DoubleData endEffectorWorldOrientation;
btVector3DoubleData endEffectorWorldPosition;
btVector3DoubleData endEffectorWorldOrientation;
btVector3 endEffectorPosWorld = endEffectorTransformWorld.getOrigin();
btQuaternion endEffectorOriWorld = endEffectorTransformWorld.getRotation();
btVector4 endEffectorOri(endEffectorOriWorld.x(),endEffectorOriWorld.y(),endEffectorOriWorld.z(),endEffectorOriWorld.w());
btVector3 endEffectorPosWorld = endEffectorTransformWorld.getOrigin();
btQuaternion endEffectorOriWorld = endEffectorTransformWorld.getRotation();
btVector4 endEffectorOri(endEffectorOriWorld.x(),endEffectorOriWorld.y(),endEffectorOriWorld.z(),endEffectorOriWorld.w());
endEffectorPosWorld.serializeDouble(endEffectorWorldPosition);
endEffectorOri.serializeDouble(endEffectorWorldOrientation);
endEffectorPosWorld.serializeDouble(endEffectorWorldPosition);
endEffectorOri.serializeDouble(endEffectorWorldOrientation);
// Set joint damping coefficents. A small default
// damping constant is added to prevent singularity
// with pseudo inverse. The user can set joint damping
// coefficients differently for each joint. The larger
// the damping coefficient is, the less we rely on
// this joint to achieve the IK target.
btAlignedObjectArray<double> joint_damping;
joint_damping.resize(numDofs,0.5);
if (clientCmd.m_updateFlags& IK_HAS_JOINT_DAMPING)
{
for (int i = 0; i < numDofs; ++i)
{
joint_damping[i] = clientCmd.m_calculateInverseKinematicsArguments.m_jointDamping[i];
}
}
ikHelperPtr->setDampingCoeff(numDofs, &joint_damping[0]);
// Set joint damping coefficents. A small default
// damping constant is added to prevent singularity
// with pseudo inverse. The user can set joint damping
// coefficients differently for each joint. The larger
// the damping coefficient is, the less we rely on
// this joint to achieve the IK target.
btAlignedObjectArray<double> joint_damping;
joint_damping.resize(numDofs,0.5);
if (clientCmd.m_updateFlags& IK_HAS_JOINT_DAMPING)
{
for (int i = 0; i < numDofs; ++i)
{
joint_damping[i] = clientCmd.m_calculateInverseKinematicsArguments.m_jointDamping[i];
}
}
ikHelperPtr->setDampingCoeff(numDofs, &joint_damping[0]);
double targetDampCoeff[6] = { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 };
ikHelperPtr->computeIK(clientCmd.m_calculateInverseKinematicsArguments.m_targetPosition, clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation,
endEffectorWorldPosition.m_floats, endEffectorWorldOrientation.m_floats,
&q_current[0],
numDofs, clientCmd.m_calculateInverseKinematicsArguments.m_endEffectorLinkIndex,
&q_new[0], ikMethod, &jacobian_linear[0], &jacobian_angular[0], jacSize*2, targetDampCoeff);
double targetDampCoeff[6] = { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 };
ikHelperPtr->computeIK(clientCmd.m_calculateInverseKinematicsArguments.m_targetPosition, clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation,
endEffectorWorldPosition.m_floats, endEffectorWorldOrientation.m_floats,
&q_current[0],
numDofs, clientCmd.m_calculateInverseKinematicsArguments.m_endEffectorLinkIndex,
&q_new[0], ikMethod, &jacobian_linear[0], &jacobian_angular[0], jacSize*2, targetDampCoeff);
serverCmd.m_inverseKinematicsResultArgs.m_bodyUniqueId =clientCmd.m_calculateInverseDynamicsArguments.m_bodyUniqueId;
for (int i=0;i<numDofs;i++)
{
serverCmd.m_inverseKinematicsResultArgs.m_jointPositions[i] = q_new[i];
}
serverCmd.m_inverseKinematicsResultArgs.m_dofCount = numDofs;
serverCmd.m_type = CMD_CALCULATE_INVERSE_KINEMATICS_COMPLETED;
serverCmd.m_inverseKinematicsResultArgs.m_bodyUniqueId =clientCmd.m_calculateInverseDynamicsArguments.m_bodyUniqueId;
for (int i=0;i<numDofs;i++)
{
serverCmd.m_inverseKinematicsResultArgs.m_jointPositions[i] = q_new[i];
}
serverCmd.m_inverseKinematicsResultArgs.m_dofCount = numDofs;
serverCmd.m_type = CMD_CALCULATE_INVERSE_KINEMATICS_COMPLETED;
}
}
}
hasStatus = true;