add minitaur environment randomizer, enable it by default
this improves PPO training ( more stable)
This commit is contained in:
@@ -0,0 +1,68 @@
|
||||
"""Randomize the minitaur_gym_env when reset() is called."""
|
||||
import random
|
||||
import numpy as np
|
||||
from . import env_randomizer_base
|
||||
|
||||
# Relative range.
|
||||
MINITAUR_BASE_MASS_ERROR_RANGE = (-0.2, 0.2) # 0.2 means 20%
|
||||
MINITAUR_LEG_MASS_ERROR_RANGE = (-0.2, 0.2) # 0.2 means 20%
|
||||
# Absolute range.
|
||||
BATTERY_VOLTAGE_RANGE = (14.8, 16.8) # Unit: Volt
|
||||
MOTOR_VISCOUS_DAMPING_RANGE = (0, 0.01) # Unit: N*m*s/rad (torque/angular vel)
|
||||
MINITAUR_LEG_FRICTION = (0.8, 1.5) # Unit: dimensionless
|
||||
|
||||
|
||||
class MinitaurEnvRandomizer(env_randomizer_base.EnvRandomizerBase):
|
||||
"""A randomizer that change the minitaur_gym_env during every reset."""
|
||||
|
||||
def __init__(self,
|
||||
minitaur_base_mass_err_range=MINITAUR_BASE_MASS_ERROR_RANGE,
|
||||
minitaur_leg_mass_err_range=MINITAUR_LEG_MASS_ERROR_RANGE,
|
||||
battery_voltage_range=BATTERY_VOLTAGE_RANGE,
|
||||
motor_viscous_damping_range=MOTOR_VISCOUS_DAMPING_RANGE):
|
||||
self._minitaur_base_mass_err_range = minitaur_base_mass_err_range
|
||||
self._minitaur_leg_mass_err_range = minitaur_leg_mass_err_range
|
||||
self._battery_voltage_range = battery_voltage_range
|
||||
self._motor_viscous_damping_range = motor_viscous_damping_range
|
||||
|
||||
def randomize_env(self, env):
|
||||
self._randomize_minitaur(env.minitaur)
|
||||
|
||||
def _randomize_minitaur(self, minitaur):
|
||||
"""Randomize various physical properties of minitaur.
|
||||
|
||||
It randomizes the mass/inertia of the base, mass/inertia of the legs,
|
||||
friction coefficient of the feet, the battery voltage and the motor damping
|
||||
at each reset() of the environment.
|
||||
|
||||
Args:
|
||||
minitaur: the Minitaur instance in minitaur_gym_env environment.
|
||||
"""
|
||||
base_mass = minitaur.GetBaseMassFromURDF()
|
||||
randomized_base_mass = random.uniform(
|
||||
base_mass * (1.0 + self._minitaur_base_mass_err_range[0]),
|
||||
base_mass * (1.0 + self._minitaur_base_mass_err_range[1]))
|
||||
minitaur.SetBaseMass(randomized_base_mass)
|
||||
|
||||
leg_masses = minitaur.GetLegMassesFromURDF()
|
||||
leg_masses_lower_bound = np.array(leg_masses) * (
|
||||
1.0 + self._minitaur_leg_mass_err_range[0])
|
||||
leg_masses_upper_bound = np.array(leg_masses) * (
|
||||
1.0 + self._minitaur_leg_mass_err_range[1])
|
||||
randomized_leg_masses = [
|
||||
np.random.uniform(leg_masses_lower_bound[i], leg_masses_upper_bound[i])
|
||||
for i in range(len(leg_masses))
|
||||
]
|
||||
minitaur.SetLegMasses(randomized_leg_masses)
|
||||
|
||||
randomized_battery_voltage = random.uniform(BATTERY_VOLTAGE_RANGE[0],
|
||||
BATTERY_VOLTAGE_RANGE[1])
|
||||
minitaur.SetBatteryVoltage(randomized_battery_voltage)
|
||||
|
||||
randomized_motor_damping = random.uniform(MOTOR_VISCOUS_DAMPING_RANGE[0],
|
||||
MOTOR_VISCOUS_DAMPING_RANGE[1])
|
||||
minitaur.SetMotorViscousDamping(randomized_motor_damping)
|
||||
|
||||
randomized_foot_friction = random.uniform(MINITAUR_LEG_FRICTION[0],
|
||||
MINITAUR_LEG_FRICTION[1])
|
||||
minitaur.SetFootFriction(randomized_foot_friction)
|
||||
Reference in New Issue
Block a user