added GPU joint solver for non-contact constraints. Only point 2 point version for now, will add some other constraints soon (changes are very local)
This commit is contained in:
@@ -1,19 +1,84 @@
|
||||
/*
|
||||
Copyright (c) 2013 Advanced Micro Devices, Inc.
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
//Originally written by Erwin Coumans
|
||||
|
||||
|
||||
#define B3_GPU_POINT2POINT_CONSTRAINT_TYPE 3
|
||||
#define B3_INFINITY 1e30f
|
||||
|
||||
#define mymake_float4 (float4)
|
||||
|
||||
|
||||
__inline float dot3F4(float4 a, float4 b)
|
||||
{
|
||||
float4 a1 = mymake_float4(a.xyz,0.f);
|
||||
float4 b1 = mymake_float4(b.xyz,0.f);
|
||||
return dot(a1, b1);
|
||||
}
|
||||
|
||||
|
||||
typedef float4 Quaternion;
|
||||
|
||||
|
||||
typedef struct
|
||||
{
|
||||
float4 m_row[3];
|
||||
}Matrix3x3;
|
||||
|
||||
__inline
|
||||
float4 mtMul1(Matrix3x3 a, float4 b);
|
||||
|
||||
__inline
|
||||
float4 mtMul3(float4 a, Matrix3x3 b);
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
__inline
|
||||
float4 mtMul1(Matrix3x3 a, float4 b)
|
||||
{
|
||||
float4 ans;
|
||||
ans.x = dot3F4( a.m_row[0], b );
|
||||
ans.y = dot3F4( a.m_row[1], b );
|
||||
ans.z = dot3F4( a.m_row[2], b );
|
||||
ans.w = 0.f;
|
||||
return ans;
|
||||
}
|
||||
|
||||
__inline
|
||||
float4 mtMul3(float4 a, Matrix3x3 b)
|
||||
{
|
||||
float4 colx = mymake_float4(b.m_row[0].x, b.m_row[1].x, b.m_row[2].x, 0);
|
||||
float4 coly = mymake_float4(b.m_row[0].y, b.m_row[1].y, b.m_row[2].y, 0);
|
||||
float4 colz = mymake_float4(b.m_row[0].z, b.m_row[1].z, b.m_row[2].z, 0);
|
||||
|
||||
float4 ans;
|
||||
ans.x = dot3F4( a, colx );
|
||||
ans.y = dot3F4( a, coly );
|
||||
ans.z = dot3F4( a, colz );
|
||||
return ans;
|
||||
}
|
||||
|
||||
|
||||
|
||||
typedef struct
|
||||
{
|
||||
Matrix3x3 m_invInertia;
|
||||
Matrix3x3 m_invInertiaWorld;
|
||||
Matrix3x3 m_initInvInertia;
|
||||
} Shape;
|
||||
} BodyInertia;
|
||||
|
||||
|
||||
typedef struct
|
||||
{
|
||||
@@ -23,7 +88,7 @@ typedef struct
|
||||
|
||||
typedef struct
|
||||
{
|
||||
b3Transform m_worldTransform;
|
||||
// b3Transform m_worldTransformUnused;
|
||||
float4 m_deltaLinearVelocity;
|
||||
float4 m_deltaAngularVelocity;
|
||||
float4 m_angularFactor;
|
||||
@@ -41,9 +106,20 @@ typedef struct
|
||||
};
|
||||
int padding[3];
|
||||
|
||||
} b3SolverBody;
|
||||
} b3GpuSolverBody;
|
||||
|
||||
typedef struct
|
||||
{
|
||||
float4 m_pos;
|
||||
Quaternion m_quat;
|
||||
float4 m_linVel;
|
||||
float4 m_angVel;
|
||||
|
||||
unsigned int m_shapeIdx;
|
||||
float m_invMass;
|
||||
float m_restituitionCoeff;
|
||||
float m_frictionCoeff;
|
||||
} b3RigidBodyCL;
|
||||
|
||||
typedef struct
|
||||
{
|
||||
@@ -92,24 +168,109 @@ typedef struct
|
||||
|
||||
} b3BatchConstraint;
|
||||
|
||||
#define mymake_float4 (float4)
|
||||
|
||||
|
||||
__inline float dot3F4(float4 a, float4 b)
|
||||
|
||||
|
||||
typedef struct
|
||||
{
|
||||
float4 a1 = mymake_float4(a.xyz,0.f);
|
||||
float4 b1 = mymake_float4(b.xyz,0.f);
|
||||
return dot(a1, b1);
|
||||
int m_constraintType;
|
||||
int m_rbA;
|
||||
int m_rbB;
|
||||
float m_breakingImpulseThreshold;
|
||||
|
||||
float4 m_pivotInA;
|
||||
float4 m_pivotInB;
|
||||
Quaternion m_relTargetAB;
|
||||
|
||||
int m_flags;
|
||||
int m_padding[3];
|
||||
} b3GpuGenericConstraint;
|
||||
|
||||
|
||||
/*b3Transform getWorldTransform(b3RigidBodyCL* rb)
|
||||
{
|
||||
b3Transform newTrans;
|
||||
newTrans.setOrigin(rb->m_pos);
|
||||
newTrans.setRotation(rb->m_quat);
|
||||
return newTrans;
|
||||
}*/
|
||||
|
||||
|
||||
|
||||
|
||||
__inline
|
||||
float4 cross3(float4 a, float4 b)
|
||||
{
|
||||
return cross(a,b);
|
||||
}
|
||||
|
||||
__inline void internalApplyImpulse(__global b3SolverBody* body, float4 linearComponent, float4 angularComponent,float impulseMagnitude)
|
||||
__inline
|
||||
float4 fastNormalize4(float4 v)
|
||||
{
|
||||
v = mymake_float4(v.xyz,0.f);
|
||||
return fast_normalize(v);
|
||||
}
|
||||
|
||||
|
||||
__inline
|
||||
Quaternion qtMul(Quaternion a, Quaternion b);
|
||||
|
||||
__inline
|
||||
Quaternion qtNormalize(Quaternion in);
|
||||
|
||||
__inline
|
||||
float4 qtRotate(Quaternion q, float4 vec);
|
||||
|
||||
__inline
|
||||
Quaternion qtInvert(Quaternion q);
|
||||
|
||||
|
||||
|
||||
|
||||
__inline
|
||||
Quaternion qtMul(Quaternion a, Quaternion b)
|
||||
{
|
||||
Quaternion ans;
|
||||
ans = cross3( a, b );
|
||||
ans += a.w*b+b.w*a;
|
||||
// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z);
|
||||
ans.w = a.w*b.w - dot3F4(a, b);
|
||||
return ans;
|
||||
}
|
||||
|
||||
__inline
|
||||
Quaternion qtNormalize(Quaternion in)
|
||||
{
|
||||
return fastNormalize4(in);
|
||||
// in /= length( in );
|
||||
// return in;
|
||||
}
|
||||
__inline
|
||||
float4 qtRotate(Quaternion q, float4 vec)
|
||||
{
|
||||
Quaternion qInv = qtInvert( q );
|
||||
float4 vcpy = vec;
|
||||
vcpy.w = 0.f;
|
||||
float4 out = qtMul(qtMul(q,vcpy),qInv);
|
||||
return out;
|
||||
}
|
||||
|
||||
__inline
|
||||
Quaternion qtInvert(Quaternion q)
|
||||
{
|
||||
return (Quaternion)(-q.xyz, q.w);
|
||||
}
|
||||
|
||||
|
||||
__inline void internalApplyImpulse(__global b3GpuSolverBody* body, float4 linearComponent, float4 angularComponent,float impulseMagnitude)
|
||||
{
|
||||
body->m_deltaLinearVelocity += linearComponent*impulseMagnitude*body->m_linearFactor;
|
||||
body->m_deltaAngularVelocity += angularComponent*(impulseMagnitude*body->m_angularFactor);
|
||||
}
|
||||
|
||||
|
||||
void resolveSingleConstraintRowGeneric(__global b3SolverBody* body1, __global b3SolverBody* body2, __global b3SolverConstraint* c)
|
||||
void resolveSingleConstraintRowGeneric(__global b3GpuSolverBody* body1, __global b3GpuSolverBody* body2, __global b3SolverConstraint* c)
|
||||
{
|
||||
float deltaImpulse = c->m_rhs-c->m_appliedImpulse.x*c->m_cfm;
|
||||
float deltaVel1Dotn = dot3F4(c->m_contactNormal,body1->m_deltaLinearVelocity) + dot3F4(c->m_relpos1CrossNormal,body1->m_deltaAngularVelocity);
|
||||
@@ -140,7 +301,7 @@ void resolveSingleConstraintRowGeneric(__global b3SolverBody* body1, __global b3
|
||||
}
|
||||
|
||||
__kernel
|
||||
void solveJointConstraintRows(__global b3SolverBody* solverBodies,
|
||||
void solveJointConstraintRows(__global b3GpuSolverBody* solverBodies,
|
||||
__global b3BatchConstraint* batchConstraints,
|
||||
__global b3SolverConstraint* rows,
|
||||
int batchOffset,
|
||||
@@ -158,4 +319,415 @@ void solveJointConstraintRows(__global b3SolverBody* solverBodies,
|
||||
__global b3SolverConstraint* constraint = &rows[c->m_constraintRowOffset+jj];
|
||||
resolveSingleConstraintRowGeneric(&solverBodies[constraint->m_solverBodyIdA],&solverBodies[constraint->m_solverBodyIdB],constraint);
|
||||
}
|
||||
};
|
||||
};
|
||||
|
||||
__kernel void initSolverBodies(__global b3GpuSolverBody* solverBodies,__global b3RigidBodyCL* bodiesCL, int numBodies)
|
||||
{
|
||||
int i = get_global_id(0);
|
||||
if (i>=numBodies)
|
||||
return;
|
||||
|
||||
__global b3GpuSolverBody* solverBody = &solverBodies[i];
|
||||
__global b3RigidBodyCL* bodyCL = &bodiesCL[i];
|
||||
|
||||
solverBody->m_deltaLinearVelocity = (float4)(0.f,0.f,0.f,0.f);
|
||||
solverBody->m_deltaAngularVelocity = (float4)(0.f,0.f,0.f,0.f);
|
||||
solverBody->m_pushVelocity = (float4)(0.f,0.f,0.f,0.f);
|
||||
solverBody->m_pushVelocity = (float4)(0.f,0.f,0.f,0.f);
|
||||
solverBody->m_invMass = (float4)(bodyCL->m_invMass,bodyCL->m_invMass,bodyCL->m_invMass,0.f);
|
||||
solverBody->m_originalBodyIndex = i;
|
||||
solverBody->m_angularFactor = (float4)(1,1,1,0);
|
||||
solverBody->m_linearFactor = (float4) (1,1,1,0);
|
||||
solverBody->m_linearVelocity = bodyCL->m_linVel;
|
||||
solverBody->m_angularVelocity = bodyCL->m_angVel;
|
||||
}
|
||||
|
||||
__kernel void getInfo1Kernel(__global unsigned int* infos, __global b3GpuGenericConstraint* constraints, __global b3BatchConstraint* batchConstraints, int numConstraints)
|
||||
{
|
||||
int i = get_global_id(0);
|
||||
if (i>=numConstraints)
|
||||
return;
|
||||
|
||||
__global b3GpuGenericConstraint* constraint = &constraints[i];
|
||||
|
||||
switch (constraint->m_constraintType)
|
||||
{
|
||||
case B3_GPU_POINT2POINT_CONSTRAINT_TYPE:
|
||||
{
|
||||
infos[i] = 3;
|
||||
batchConstraints[i].m_numConstraintRows = 3;
|
||||
break;
|
||||
}
|
||||
default:
|
||||
{
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__kernel void initBatchConstraintsKernel(__global unsigned int* rowOffsets, __global b3BatchConstraint* batchConstraints, int numConstraints)
|
||||
{
|
||||
int i = get_global_id(0);
|
||||
if (i>=numConstraints)
|
||||
return;
|
||||
|
||||
batchConstraints[i].m_constraintRowOffset = rowOffsets[i];
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
typedef struct
|
||||
{
|
||||
// integrator parameters: frames per second (1/stepsize), default error
|
||||
// reduction parameter (0..1).
|
||||
float fps,erp;
|
||||
|
||||
// for the first and second body, pointers to two (linear and angular)
|
||||
// n*3 jacobian sub matrices, stored by rows. these matrices will have
|
||||
// been initialized to 0 on entry. if the second body is zero then the
|
||||
// J2xx pointers may be 0.
|
||||
union
|
||||
{
|
||||
__global float4* m_J1linearAxisFloat4;
|
||||
__global float* m_J1linearAxis;
|
||||
};
|
||||
union
|
||||
{
|
||||
__global float4* m_J1angularAxisFloat4;
|
||||
__global float* m_J1angularAxis;
|
||||
|
||||
};
|
||||
union
|
||||
{
|
||||
__global float4* m_J2linearAxisFloat4;
|
||||
__global float* m_J2linearAxis;
|
||||
};
|
||||
union
|
||||
{
|
||||
__global float4* m_J2angularAxisFloat4;
|
||||
__global float* m_J2angularAxis;
|
||||
};
|
||||
// elements to jump from one row to the next in J's
|
||||
int rowskip;
|
||||
|
||||
// right hand sides of the equation J*v = c + cfm * lambda. cfm is the
|
||||
// "constraint force mixing" vector. c is set to zero on entry, cfm is
|
||||
// set to a constant value (typically very small or zero) value on entry.
|
||||
__global float* m_constraintError;
|
||||
__global float* cfm;
|
||||
|
||||
// lo and hi limits for variables (set to -/+ infinity on entry).
|
||||
__global float* m_lowerLimit;
|
||||
__global float* m_upperLimit;
|
||||
|
||||
// findex vector for variables. see the LCP solver interface for a
|
||||
// description of what this does. this is set to -1 on entry.
|
||||
// note that the returned indexes are relative to the first index of
|
||||
// the constraint.
|
||||
__global int *findex;
|
||||
// number of solver iterations
|
||||
int m_numIterations;
|
||||
|
||||
//damping of the velocity
|
||||
float m_damping;
|
||||
} b3GpuConstraintInfo2;
|
||||
|
||||
|
||||
void getSkewSymmetricMatrix(float4 vecIn, __global float4* v0,__global float4* v1,__global float4* v2)
|
||||
{
|
||||
*v0 = (float4)(0. ,-vecIn.z ,vecIn.y,0.f);
|
||||
*v1 = (float4)(vecIn.z ,0. ,-vecIn.x,0.f);
|
||||
*v2 = (float4)(-vecIn.y ,vecIn.x ,0.f,0.f);
|
||||
}
|
||||
|
||||
|
||||
void getInfo2Point2Point(__global b3GpuGenericConstraint* constraint,b3GpuConstraintInfo2* info,__global b3RigidBodyCL* bodies)
|
||||
{
|
||||
float4 posA = bodies[constraint->m_rbA].m_pos;
|
||||
Quaternion rotA = bodies[constraint->m_rbA].m_quat;
|
||||
|
||||
float4 posB = bodies[constraint->m_rbB].m_pos;
|
||||
Quaternion rotB = bodies[constraint->m_rbB].m_quat;
|
||||
|
||||
|
||||
|
||||
// anchor points in global coordinates with respect to body PORs.
|
||||
|
||||
// set jacobian
|
||||
info->m_J1linearAxis[0] = 1;
|
||||
info->m_J1linearAxis[info->rowskip+1] = 1;
|
||||
info->m_J1linearAxis[2*info->rowskip+2] = 1;
|
||||
|
||||
float4 a1 = qtRotate(rotA,constraint->m_pivotInA);
|
||||
|
||||
{
|
||||
__global float4* angular0 = (__global float4*)(info->m_J1angularAxis);
|
||||
__global float4* angular1 = (__global float4*)(info->m_J1angularAxis+info->rowskip);
|
||||
__global float4* angular2 = (__global float4*)(info->m_J1angularAxis+2*info->rowskip);
|
||||
float4 a1neg = -a1;
|
||||
getSkewSymmetricMatrix(a1neg,angular0,angular1,angular2);
|
||||
}
|
||||
if (info->m_J2linearAxis)
|
||||
{
|
||||
info->m_J2linearAxis[0] = -1;
|
||||
info->m_J2linearAxis[info->rowskip+1] = -1;
|
||||
info->m_J2linearAxis[2*info->rowskip+2] = -1;
|
||||
}
|
||||
|
||||
float4 a2 = qtRotate(rotB,constraint->m_pivotInB);
|
||||
|
||||
{
|
||||
// float4 a2n = -a2;
|
||||
__global float4* angular0 = (__global float4*)(info->m_J2angularAxis);
|
||||
__global float4* angular1 = (__global float4*)(info->m_J2angularAxis+info->rowskip);
|
||||
__global float4* angular2 = (__global float4*)(info->m_J2angularAxis+2*info->rowskip);
|
||||
getSkewSymmetricMatrix(a2,angular0,angular1,angular2);
|
||||
}
|
||||
|
||||
// set right hand side
|
||||
// float currERP = (m_flags & B3_P2P_FLAGS_ERP) ? m_erp : info->erp;
|
||||
float currERP = info->erp;
|
||||
|
||||
float k = info->fps * currERP;
|
||||
int j;
|
||||
float4 result = a2 + posB - a1 - posA;
|
||||
float* resultPtr = &result;
|
||||
|
||||
for (j=0; j<3; j++)
|
||||
{
|
||||
info->m_constraintError[j*info->rowskip] = k * (resultPtr[j]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
__kernel void writeBackVelocitiesKernel(__global b3RigidBodyCL* bodies,__global b3GpuSolverBody* solverBodies,int numBodies)
|
||||
{
|
||||
int i = get_global_id(0);
|
||||
if (i>=numBodies)
|
||||
return;
|
||||
|
||||
if (bodies[i].m_invMass)
|
||||
{
|
||||
// solverBodies[i].m_linearVelocity += solverBodies[i].m_deltaLinearVelocity;
|
||||
// solverBodies[i].m_angularVelocity += solverBodies[i].m_deltaAngularVelocity;
|
||||
bodies[i].m_linVel += solverBodies[i].m_deltaLinearVelocity;
|
||||
bodies[i].m_angVel += solverBodies[i].m_deltaAngularVelocity;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
__kernel void getInfo2Kernel(__global b3SolverConstraint* solverConstraintRows,
|
||||
__global unsigned int* infos,
|
||||
__global b3GpuGenericConstraint* constraints,
|
||||
__global b3BatchConstraint* batchConstraints,
|
||||
__global b3RigidBodyCL* bodies,
|
||||
__global BodyInertia* inertias,
|
||||
__global b3GpuSolverBody* solverBodies,
|
||||
float timeStep,
|
||||
float globalErp,
|
||||
float globalCfm,
|
||||
float globalDamping,
|
||||
int globalNumIterations,
|
||||
int numConstraints)
|
||||
{
|
||||
|
||||
int i = get_global_id(0);
|
||||
if (i>=numConstraints)
|
||||
return;
|
||||
|
||||
int info1 = infos[i];
|
||||
|
||||
if (info1)
|
||||
{
|
||||
__global b3SolverConstraint* currentConstraintRow = &solverConstraintRows[batchConstraints[i].m_constraintRowOffset];
|
||||
__global b3GpuGenericConstraint* constraint = &constraints[i];
|
||||
|
||||
__global b3RigidBodyCL* rbA = &bodies[ constraint->m_rbA];
|
||||
__global b3RigidBodyCL* rbB = &bodies[ constraint->m_rbB];
|
||||
|
||||
int solverBodyIdA = constraint->m_rbA;
|
||||
int solverBodyIdB = constraint->m_rbB;
|
||||
|
||||
__global b3GpuSolverBody* bodyAPtr = &solverBodies[solverBodyIdA];
|
||||
__global b3GpuSolverBody* bodyBPtr = &solverBodies[solverBodyIdB];
|
||||
|
||||
if (rbA->m_invMass)
|
||||
{
|
||||
batchConstraints[i].m_bodyAPtrAndSignBit = solverBodyIdA;
|
||||
} else
|
||||
{
|
||||
// if (!solverBodyIdA)
|
||||
// m_staticIdx = 0;
|
||||
batchConstraints[i].m_bodyAPtrAndSignBit = -solverBodyIdA;
|
||||
}
|
||||
|
||||
if (rbB->m_invMass)
|
||||
{
|
||||
batchConstraints[i].m_bodyBPtrAndSignBit = solverBodyIdB;
|
||||
} else
|
||||
{
|
||||
// if (!solverBodyIdB)
|
||||
// m_staticIdx = 0;
|
||||
batchConstraints[i].m_bodyBPtrAndSignBit = -solverBodyIdB;
|
||||
}
|
||||
|
||||
int overrideNumSolverIterations = 0;//constraint->getOverrideNumSolverIterations() > 0 ? constraint->getOverrideNumSolverIterations() : infoGlobal.m_numIterations;
|
||||
// if (overrideNumSolverIterations>m_maxOverrideNumSolverIterations)
|
||||
// m_maxOverrideNumSolverIterations = overrideNumSolverIterations;
|
||||
|
||||
|
||||
int j;
|
||||
for ( j=0;j<info1;j++)
|
||||
{
|
||||
// memset(¤tConstraintRow[j],0,sizeof(b3SolverConstraint));
|
||||
currentConstraintRow[j].m_angularComponentA = (float4)(0,0,0,0);
|
||||
currentConstraintRow[j].m_angularComponentB = (float4)(0,0,0,0);
|
||||
currentConstraintRow[j].m_appliedImpulse = 0.f;
|
||||
currentConstraintRow[j].m_appliedPushImpulse = 0.f;
|
||||
currentConstraintRow[j].m_cfm = 0.f;
|
||||
currentConstraintRow[j].m_contactNormal = (float4)(0,0,0,0);
|
||||
currentConstraintRow[j].m_friction = 0.f;
|
||||
currentConstraintRow[j].m_frictionIndex = 0;
|
||||
currentConstraintRow[j].m_jacDiagABInv = 0.f;
|
||||
currentConstraintRow[j].m_lowerLimit = 0.f;
|
||||
currentConstraintRow[j].m_upperLimit = 0.f;
|
||||
|
||||
currentConstraintRow[j].m_originalContactPoint = 0;
|
||||
currentConstraintRow[j].m_overrideNumSolverIterations = 0;
|
||||
currentConstraintRow[j].m_relpos1CrossNormal = (float4)(0,0,0,0);
|
||||
currentConstraintRow[j].m_relpos2CrossNormal = (float4)(0,0,0,0);
|
||||
currentConstraintRow[j].m_rhs = 0.f;
|
||||
currentConstraintRow[j].m_rhsPenetration = 0.f;
|
||||
currentConstraintRow[j].m_solverBodyIdA = 0;
|
||||
currentConstraintRow[j].m_solverBodyIdB = 0;
|
||||
|
||||
currentConstraintRow[j].m_lowerLimit = -B3_INFINITY;
|
||||
currentConstraintRow[j].m_upperLimit = B3_INFINITY;
|
||||
currentConstraintRow[j].m_appliedImpulse = 0.f;
|
||||
currentConstraintRow[j].m_appliedPushImpulse = 0.f;
|
||||
currentConstraintRow[j].m_solverBodyIdA = solverBodyIdA;
|
||||
currentConstraintRow[j].m_solverBodyIdB = solverBodyIdB;
|
||||
currentConstraintRow[j].m_overrideNumSolverIterations = overrideNumSolverIterations;
|
||||
}
|
||||
|
||||
bodyAPtr->m_deltaLinearVelocity = (float4)(0,0,0,0);
|
||||
bodyAPtr->m_deltaAngularVelocity = (float4)(0,0,0,0);
|
||||
bodyAPtr->m_pushVelocity = (float4)(0,0,0,0);
|
||||
bodyAPtr->m_turnVelocity = (float4)(0,0,0,0);
|
||||
bodyBPtr->m_deltaLinearVelocity = (float4)(0,0,0,0);
|
||||
bodyBPtr->m_deltaAngularVelocity = (float4)(0,0,0,0);
|
||||
bodyBPtr->m_pushVelocity = (float4)(0,0,0,0);
|
||||
bodyBPtr->m_turnVelocity = (float4)(0,0,0,0);
|
||||
|
||||
int rowskip = sizeof(b3SolverConstraint)/sizeof(float);//check this
|
||||
|
||||
|
||||
|
||||
|
||||
b3GpuConstraintInfo2 info2;
|
||||
info2.fps = 1.f/timeStep;
|
||||
info2.erp = globalErp;
|
||||
info2.m_J1linearAxisFloat4 = ¤tConstraintRow->m_contactNormal;
|
||||
info2.m_J1angularAxisFloat4 = ¤tConstraintRow->m_relpos1CrossNormal;
|
||||
info2.m_J2linearAxisFloat4 = 0;
|
||||
info2.m_J2angularAxisFloat4 = ¤tConstraintRow->m_relpos2CrossNormal;
|
||||
info2.rowskip = sizeof(b3SolverConstraint)/sizeof(float);//check this
|
||||
|
||||
///the size of b3SolverConstraint needs be a multiple of float
|
||||
// b3Assert(info2.rowskip*sizeof(float)== sizeof(b3SolverConstraint));
|
||||
info2.m_constraintError = ¤tConstraintRow->m_rhs;
|
||||
currentConstraintRow->m_cfm = globalCfm;
|
||||
info2.m_damping = globalDamping;
|
||||
info2.cfm = ¤tConstraintRow->m_cfm;
|
||||
info2.m_lowerLimit = ¤tConstraintRow->m_lowerLimit;
|
||||
info2.m_upperLimit = ¤tConstraintRow->m_upperLimit;
|
||||
info2.m_numIterations = globalNumIterations;
|
||||
|
||||
switch (constraint->m_constraintType)
|
||||
{
|
||||
case B3_GPU_POINT2POINT_CONSTRAINT_TYPE:
|
||||
{
|
||||
getInfo2Point2Point(constraint,&info2,bodies);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
{
|
||||
}
|
||||
}
|
||||
|
||||
///finalize the constraint setup
|
||||
for ( j=0;j<info1;j++)
|
||||
{
|
||||
__global b3SolverConstraint* solverConstraint = ¤tConstraintRow[j];
|
||||
|
||||
if (solverConstraint->m_upperLimit>=constraint->m_breakingImpulseThreshold)
|
||||
{
|
||||
solverConstraint->m_upperLimit = constraint->m_breakingImpulseThreshold;
|
||||
}
|
||||
|
||||
if (solverConstraint->m_lowerLimit<=-constraint->m_breakingImpulseThreshold)
|
||||
{
|
||||
solverConstraint->m_lowerLimit = -constraint->m_breakingImpulseThreshold;
|
||||
}
|
||||
|
||||
// solverConstraint->m_originalContactPoint = constraint;
|
||||
|
||||
Matrix3x3 invInertiaWorldA= inertias[constraint->m_rbA].m_invInertiaWorld;
|
||||
{
|
||||
|
||||
//float4 angularFactorA(1,1,1);
|
||||
float4 ftorqueAxis1 = solverConstraint->m_relpos1CrossNormal;
|
||||
solverConstraint->m_angularComponentA = mtMul1(invInertiaWorldA,ftorqueAxis1);//*angularFactorA;
|
||||
}
|
||||
|
||||
Matrix3x3 invInertiaWorldB= inertias[constraint->m_rbB].m_invInertiaWorld;
|
||||
{
|
||||
|
||||
float4 ftorqueAxis2 = solverConstraint->m_relpos2CrossNormal;
|
||||
solverConstraint->m_angularComponentB = mtMul1(invInertiaWorldB,ftorqueAxis2);//*constraint->m_rbB.getAngularFactor();
|
||||
}
|
||||
|
||||
{
|
||||
//it is ok to use solverConstraint->m_contactNormal instead of -solverConstraint->m_contactNormal
|
||||
//because it gets multiplied iMJlB
|
||||
float4 iMJlA = solverConstraint->m_contactNormal*rbA->m_invMass;
|
||||
float4 iMJaA = mtMul3(solverConstraint->m_relpos1CrossNormal,invInertiaWorldA);
|
||||
float4 iMJlB = solverConstraint->m_contactNormal*rbB->m_invMass;//sign of normal?
|
||||
float4 iMJaB = mtMul3(solverConstraint->m_relpos2CrossNormal,invInertiaWorldB);
|
||||
|
||||
float sum = dot3F4(iMJlA,solverConstraint->m_contactNormal);
|
||||
sum += dot3F4(iMJaA,solverConstraint->m_relpos1CrossNormal);
|
||||
sum += dot3F4(iMJlB,solverConstraint->m_contactNormal);
|
||||
sum += dot3F4(iMJaB,solverConstraint->m_relpos2CrossNormal);
|
||||
float fsum = fabs(sum);
|
||||
if (fsum>FLT_EPSILON)
|
||||
{
|
||||
solverConstraint->m_jacDiagABInv = 1.f/sum;
|
||||
} else
|
||||
{
|
||||
solverConstraint->m_jacDiagABInv = 0.f;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
///fix rhs
|
||||
///todo: add force/torque accelerators
|
||||
{
|
||||
float rel_vel;
|
||||
float vel1Dotn = dot3F4(solverConstraint->m_contactNormal,rbA->m_linVel) + dot3F4(solverConstraint->m_relpos1CrossNormal,rbA->m_angVel);
|
||||
float vel2Dotn = -dot3F4(solverConstraint->m_contactNormal,rbB->m_linVel) + dot3F4(solverConstraint->m_relpos2CrossNormal,rbB->m_angVel);
|
||||
|
||||
rel_vel = vel1Dotn+vel2Dotn;
|
||||
|
||||
float restitution = 0.f;
|
||||
float positionalError = solverConstraint->m_rhs;//already filled in by getConstraintInfo2
|
||||
float velocityError = restitution - rel_vel * info2.m_damping;
|
||||
float penetrationImpulse = positionalError*solverConstraint->m_jacDiagABInv;
|
||||
float velocityImpulse = velocityError *solverConstraint->m_jacDiagABInv;
|
||||
solverConstraint->m_rhs = penetrationImpulse+velocityImpulse;
|
||||
solverConstraint->m_appliedImpulse = 0.f;
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user